17th European Signal Processing Conference (EUSIPCO 2009)

Glasgow, Scotland, August 24-28, 2009

ANALYSIS OF A PARALLEL LEXICAL-TREE-BASED SPEECH DECODER
FOR MULTI-CORE PROCESSORS

Naveen Parihar

Dept. of Electrical and Computer Engineering
Mississippi State University
Mississippi State, MS 39762
email: npl @ece.msstate.edu

ABSTRACT

We present a systematic analysis of a lexical-tree based par-
allel search algorithm for multi-core desktop processors. We
introduce an analytical model that predicts the speedup from
parallelization after accounting for load imbalance among
the cores. Various sources of overhead in the parallel search
algorithm are described, benchmarked and analyzed. Besides
load imbalance, these include the inherently serial steps of
the parallel search algorithm and an increase in main mem-
ory access latency.

1. INTRODUCTION

With multi-core architectures becoming more prevalent in
desktop computers, applications including speech decoding
must be parallelized to exploit the resources of the multiple
cores. In [1], we presented a novel approach to parallelizing
a lexical-tree based LVCSR decoding algorithm for multi-
core desktop processors. The approach distributes the search
among the cores by dividing the lexical tree in a way that
minimizes communication between cores. We presented ex-
perimental results for running the decoder on the two cores
of an Intel Core 2 Duo processor.

In this paper, we present experimental results for running
the decoder on the four cores of an Intel Core 2 Quad proces-
sor and analyze the results in order to better understand the
performance of the parallel search algorithm. We identify
and benchmark the various sources of overhead in the par-
allel search algorithm. We also propose an analytical model
that predicts the speedup after accounting for the overhead
due to load imbalance. Although our experimental results
are for a specific decoder and hardware platform, the analyt-
ical model we develop is general and a similar analysis can
be applied to any other speech recognition decoder.

2. SYSTEM SETUP

The system setup used for our experiments consists of a
speech recognition decoder, corpus, and computing platform.

e Decoder: The details of the serial and parallel search
algorithms of the Mississippi State decoder are provided
in [1, 2]. It is a hierarchical dynamic programming based
time-synchronous Viterbi search engine that supports N-
gram context dependent cross-word triphone decoding.
It has been used on several evaluations including Aurora
Evaluations [3].

e Corpus: Our parallel search algorithm was bench-
marked on the SK-word closed-loop WSJO task [4]. Pho-
netic decision-tree based state-tied cross-word speaker-
independent triphone acoustic models with 16 Gaussian

© EURASIP, 2009

Eric A. Hansen

Dept. of Computer Science and Engineering
Mississippi State University
Mississippi State, MS 39762

email: hansen@cse.msstate.edu

mixtures per state were trained using the SI-84 training
set [5]. The Nov’92 NIST evaluation set (330 utterances),
when decoded with a standard 5K lexicon and bigram
language model, achieves a WER of 8.4%. Eight utter-
ances were randomly selected from the evaluation set to
facilitate rapid experimentation. All the timing measure-
ments are averaged over five runs.

e Hardware, OS and Compiler: Experiments were run
on an Intel Core 2 Quad (Model number Q6600) running
Fedora Core 6 Linux operating system. Each of the four
cores runs at a clock speed of 2.40 GHz. Each core has
its own 32 KB L1 data cache and 32 KB L1 instruction
cache. Each pair of cores shares one of the two available
4 MB L2 caches. The total size of L2 cache is § MB. The
size of main memory is 2 GB. Note that the entire search
space fits in main memory, and therefore page faults are
not investigated in this research. The compiler used is
GNU gcc version 4.1.1. The parallel search algorithm is
implemented using the P-thread library. Assuming one
thread per core, the terms thread and core are used inter-
changeably.

3. ANALYTICAL MODEL FOR LOAD IMBALANCE

Among several sources of overhead due to parallelization is
load imbalance among the processor cores. We first develop
an analytical model that captures the influence of load imbal-
ance on parallel speedup.

The parallel search algorithm we consider is the Algo-
rithm 2,3 presented in [1]. In our approach, the lexical tree
is statically divided among the cores at the root node. The
active search space during the search process then gets dis-
tributed among the cores based on the division of the lexical
tree. The load imbalance occurs due to the uneven distribu-
tion of the active search space.

The parallel algorithm consists of both parallel steps and
inherently serial steps. A detailed description of these steps
is not provided here due to space limitations. In order to
achieve good speedup, the time taken by each of the paral-
lel steps during the processing of each frame should ideally
be perfectly balanced between the CPU cores. We can es-
timate the time taken by each of these parallel steps based
on one or more statistics about the search space. For ex-
ample, the number of words that need to be expanded is a
search space statistic that influences the time taken by the
step expand_words_to_states. For each step of the algorithm,
we identify a search space statistic that influences runtime
the most. In case more than one search space statistic influ-
ences runtime, we empirically select the one that contributes
most to the search step’s runtime.

2509

In general, we can predict the speedup for each parallel
step, p, based on its search space statistic, s, as follows:

A serial _runtime

N. - Bs
Sy = .

~ parallel_elapsed_runtime Py + oty

ey

where f is the perfectly balanced work due to search space
statistic s, 0 is the load imbalance in search space statistic s,
and N, is the total number of cores.

The perfectly balanced work due to search space statis-
tic s is given by:

Ny
ﬁs = Z ﬁs,fa (2)
f=1
where Ny is the total number of frames, and
ZN; Ns.f.c
By = == 3)

where ny ¢ . is the value of search space statistic s in core ¢
during the processing of frame f.
The load imbalance in search space statistic s is:

Ny
N
0 = Z max{n s —Ps.r}, @
==t

Note that for a perfectly balanced load,
ns.f.c = Ps., for all c, f. Hence, o, = 0, and SAp =N,.

The predicted speedup and the corresponding search
space statistic used to estimate this speedup for all parallel
steps is shown in Table 1. We observe that for 2-core, most
of the parallel steps are reasonably balanced. However, for
4-core, there is greater load imbalance. Because imbalance
in any step only influences the time spent in that specific step,
we can apply these speedups to time taken by corresponding
steps in serial search (Table 2), and add them to get a predic-
tion of the elapsed runtime for these parallel steps. Adding
the time taken by serial steps to the predicted runtime taken
by parallel steps, provides the prediction of the elapsed run-
time as shown below:

=

Ny
P=Y {tsp-Sp}+ Y ts. ®)
p=1 r=1

where N, is the number of steps in serial search that can be
parallelized, N, is the number of inherently serial steps, and
tsy is the time taken by search step x.

We can then predict the speedup of the parallel search
algorithm. The speedup prediction for 2-core is 1.52, and
for 4-core is 2.29. The accuracy of our model might be im-
proved by using more than one search space statistic to pre-
dict speedup for a search step. This possibility is left for
future work.

4. OVERHEAD IN PARALLEL SEARCH
ALGORITHM

In this section, we analyze and discuss various sources of
overhead in the parallel search algorithm.

search space stat

[2cores][4cores

parallel step |

exp_wd_paths #Word-ends 1.97 3.85
exp_phn_paths #Phone-end Paths 1.65 2.31
prune_model_inst || #Mod. Inst. Pruned 1.84 2.92
project_states #State Paths 1.87 3.25
prune_state_paths || #State Paths Pruned 1.84 2.98
likelihood_comp #States Evaluated 1.80 2.68
LM _lookups #Lookups 1.63 2.33
LM _lookaheads #Lookaheads 1.79 2.87

Table 1. Predicted speedup (S;,) considering load imbalance.

[[[%time [time(s) [xRT |
exp_wd_paths_to_states 30.73 | 203.44 3.72
exp_phn_paths_to_states 9.71 64.26 1.18
compute_max_phone
model_inst _thresh 8.65 57.25 1.05

Search prune_phn_model_inst 11.59 76.70 1.40
Man project_states 19.05 | 126.12 2.31
& prune_state_paths 10.82 71.65 1.31
create_word _paths 1.46 9.66 0.18
compute _word-end _

pruning _thresh 0.01 0.08 0.01
initialization 0.54 3.56 0.07
total 92.55 | 612.72 | 11.20

state_likelihood_computation . . .
likelihood 4.34 28.70 0.53
LM LM _lookups 2.66 17.63 0.32
comp. | LM_lookaheads 0.43 2.84 0.05
total 33 20.47 0.4

[total [[100.0 [661.89 [12.11 |

total serial 10.65 70.55 1.29
total parallel potential 89.35 | 591.34 | 10.82

Table 2. Serial search algorithm’s timing measure-
ments (¢s,). Inherently serial steps are shown in bold case.

4.1 Overhead in Parallel Steps

Let s, denote the time spent by the serial search algorithm to
process a step p. Let z, denote the time spent by the parallel
search algorithm to process the parallel step p using N, cores.
The overhead for parallel step p is defined as follows, by the
standard parallel computing analysis [6]:

topp = N¢ -ty —tsp, (6)

The total parallel cost, N, -, is the sum of cost for all
cores. If Ny frames are processed in parallel step p, the cost
per core for processing each frame is the sum of the time
spent executing the parallel step p and idling due to load im-
balance, for the core. The total parallel cost is defined as:

Ne Nf

Ne-tp = Z Z {tpp.fettiprel, (7N
=1 /=1

where tp,, 7 . is the time taken by core c to process parallel
step p during frame f, and tij, ¢ is the idling time due to
load imbalance. Rearranging Equation (7) and substituting
in Equation (6):

N(' Nf NC Nf
topp ={Y, Y tppse—tsp} + X Y tipree (8
c=1f=1 c=1f=1

2510

We define the first term as overhead due to parallel execu-
tion, topp,, and the second term as overhead due to load
imbalance, topip.

Ne Ny

toppp =Y, Y, 1Pp.fc—1Sp: Q)
c=1f=1
Ne Nf

topiy =Y Y tip s, and (10)
c=1f=1

top, = toppp +topip. an

Table 3 compares the actual overhead due to load im-
balance (topi), and predicted overhead due to load imbal-
ance (1‘7)\171') using the analytical model introduced in Sec-
tion 3.

to/pTiPZNC-tSTp—tspztsp{&—l}. (12)
Sp Sp

Note that the predicted overhead is an overestimate of
the actual overhead. As described in Section 3, the accuracy
of the model can be improved by incorporating more than
one search space statistic for certain search steps, if required.
Nonetheless, the model based on one search space statistic
per search step is useful for feasibility analysis. Both the
predicted and actual load imbalance show that the load im-
balance in 4-core parallel search is approximately 3.5 times
the load imbalance on 2-core parallel search.

4.1.1 Overhead Due to Parallel Execution

Three sources of overhead due to parallel execution (topp)
are:

e Excess Computations due to an increase in likelihood
computations: This overhead is incurred only by the like-
lihood computation step. Each thread keeps its own local
copy of the likelihood cache and hence, the states that fall
in multiple threads get evaluated multiple times. Table 4
presents the increase in number of likelihood computa-
tions. Assuming equal cost for each likelihood compu-
tation during the serial search, we can estimate the time
taken by likelihood computations in the parallel search,
also shown in Table 4.

o Excess Computations due to changes required to convert
serial code into parallel code: Changes in the algorithm
might increase work. Also, the compiler might produce a
different set of processor instructions due to the changes

in the code.
parallel step 2 cores 4 cores
topi, | topip topi, topiy
exp_wd_paths_to_states
+ exp_phn_paths_to_states
+ LM _Lkups+LM _Lkah. 21.06 | 15.83 68.69 50.06
prune_phn_model_inst 6.66 4.92 28.36 17.49
project_states
+ state_likelihood_comp 11.95 | 14.48 43.24 55.30
prune_state_paths 6.23 4.03 24.52 14.06
[total [4590] 39.26][164.81 | 136.91 |

Table 3. Comparison of actual (fopi,) and predicted over-
head (to/ﬁ,,) due to load imbalance in seconds.

[[Tcore J 2 cores | 4 cores]
#Comp. 1413.8 1793.6 (+379.8) 2054.5 (+640.7)
Time 28.70 36.40 (+7.70) 41.70 (+13.00)

Table 4. Average number of likelihood computations per
frame, and corresponding estimated parallel runtime in secs.

e Increase in CPU Pipeline Stalls due to hardware limits:
For example, on an Intel Core 2 Quad processor, par-
allel concurrent execution increases the front side bus-
bandwidth utilization and main memory access latency.

Table 5 presents a comparison of topp), for all the par-
allel steps among serial (1-core), 2-core parallel, and 4-core
parallel search. Due to space limitation, instead of consider-
ing the behavior of each parallel step individually, we ana-
lyze the overall behavior. The overhead for 2-core search is
77.12 seconds. The overhead for 4-core search increases by
approximately three times, and is 267.89 secs. The contribu-
tion from Excess Computations due to an increase likelihood
computations to the total overhead is very small (7.7 secs for
2-core and 13.0 secs for 4-core) and can be ignored.

The total overhead (fopp) due to parallel execution can
then be decomposed into the two remaining sources by ob-
serving the measurements of processor-specific high perfor-
mance events shown in Table 6. Excess Computations due
to changes required to convert serial code into parallel code
result in time overhead for an increase in non-stalled CPU
cycles (12.28 secs for 2-core and 26.00 secs for 4-core). The
overhead due to Increase in CPU Pipeline Stalls dominates
the total overhead. For 4-core parallel search, this overhead
is 241.86 secs which approximately 3.7 times the overhead
for 2-core parallel search (64.84 secs). In the next section,
we present a detailed analysis of the factors that contribute to
the Increase in CPU Pipeline Stalls.

4.1.2 CPU Pipeline Stalls

Table 6 presents the decomposition of time due to CPU
pipeline stalls among four major performance events. These
events include stalls due to Branch-MisPrediction, Non-
prefetched Retired Load L2 Cache Hits, Non-prefetched Re-
tired Load L2 Cache Misses, and Non-prefetched Retired
Load Data-TLB Cache Misses. The number of cycles stalled
due to Branch-MisPrediction can be directly measured; from
this, the corresponding time is computed. For the other three
events, the penalty in the form of number of stalled cycles
needs to be estimated and this can result in an overestimation.
An estimate of 10 cycles for Data-TLB cache miss penalty

[parallel step [2cores [4 cores |

expand_word_paths_to_states -5.2 23.42
expand_phone_paths_to_states 1.45 4.91
prune_phone_model_instances 25.36 73.14
project_states 31.84 66.35
prune_state_paths 20.12 68.33
state_likelihood_computation 11.82 27.20
LM _lookups 0.08 242
LM _lookaheads 1.58 2.09
[total [87.05] 267.89 |

Table 5. Overhead due to parallel execution (fopp),) in secs.

2511

| 1 core | 2 cores [4 cores
Retired Load L2 Hit 1,759,406,790 1,952,197,334 (+10.95%) 2,202,346,210 (+25.17%)
Retired Load L2 Miss 4,356,423,142 4,355,233,453 (-0.02%) 4,043,894,647 (-7.17%)
Retired Load Data-TLB Miss 4,372,081,635 4,110,294,090 (-5.98%) 3,693,061,200 (-15.53%)
Total # Outstanding Load Bus Regs./cyc || 3,034,881,101,734 || 3,217,675,629,573 (+6.02%) || 4,256,667,328,050 (+40.25%)
Total # Load Bus Request 12,849,414,742 11,812,248,446 (-8.07%) 10,544,482,341 (-17.93%)
Access Latency in cycles 236.18 272.40 (+15.33%) 403.68 (+70.91%)
Total Time (s) 591.34 678.39 (+87.05) 859.20 (+267.86)
Time taken by Non-stall Cycles (s) 163.28 175.56 (+12.28) 189.28 (+26.00)
Time taken by Pipeline Stall Cycles (s) 428.06 492.90 (+64.84) 669.92 (+241.86)
Stalls due to Branch-MisPrediction (s) 5.95 9.72 (+3.77) 16.27 (+10.32)
Stalls due to Retired Load L2 Hit (s) 10.26 11.38 (+1.12) 12.84 (+2.58)
Stalls due to Retired Load L2 Miss (s) 428.67 494.27 (+65.60) 680.12 (+251.45)
Stalls due to Data-TLB-Load-Miss (s) 18.21 17.12 (-1.09) 15.38 (-2.83)

Table 6. Important performance measurements for parallel steps.

for the Intel Core 2 architecture was taken from [7]. An L2
cache hit penalty of 14 cycles was estimated using [8]. The
L2 cache miss penalty is computed as main memory access
latency, as described in [9]. As shown in Table 6, the access
latency varies for serial (1-core), 2-core parallel, and 4-core
parallel search. This leads to the following important obser-
vation: concurrent execution among multiple cores results in
a greater number of load bus requests per cycle. This hap-
pens due to a larger number of L2 cache misses generated as
a result of the load requests from multiple cores in a given
time interval as compared to serial search. Hence, the main
memory access latency increases.

The estimated time due to stalls caused by Non-
prefetched Retired Load L2 Cache Misses dominates the
overall time due to stalls. The number of Non-prefetched
Retired Load L2 Cache Misses decreases in parallel search
because of an increase in overall L1 data cache size (each
core has its own L1 cache) and L2 cache size (for 4-core
parallel search, both the available L2 data caches are used).
However, the main memory access latency increases which
results in an increase in stall time due to Non-prefetched
Retired Load L2 Cache Misses. It is obvious that the esti-
mated L2 cache miss penalty is an overestimate. Nonethe-
less, it provides useful information required to characterize
the overhead. Efforts to reduce the overall stall time should
involve optimizations that reduce the overall bus-traffic and
Non-prefetched Retired Load L2 Cache Misses.

4.2 Overhead due to Serial Steps

When processing a serial step, r, of the parallel search algo-
rithm, all but one of the cores is idling. This results in an
overhead, tor,, due to serial step r,

Nf
tor, ={Ne—1}- Y trg,, (13)
f=1

where 17y, is the time taken by a single core to process serial
step r during frame f. In Section 4.4, it is shown that the
overall time taken by the serial steps is comparable among
serial (1-core), 2-core parallel, and 4-core parallel search.
The overhead ror, for all serial steps is shown in Table 7. As
expected, the total overhead due to inherently serial steps in
4-core parallel search is approximately three times the over-
head in 2-core parallel search.

[serial step [[2cores][4 cores |

compute_max_phone_model_inst_thresh 57.19 || 166.77
create_word_paths 10.88 36.72
lex-tree_synchronization 0.94 4.08
compute_word-end_pruning_thresh 0.36 1.68
initialization 3.85 10.17
read_featVector 0.05 0.48
[total [7327] 219.90 |

Table 7. Overhead due to serial steps (for,) in seconds.

[overhead || 2 cores | 4 cores]
Y0 topip || 3926 1971% [13691 21.92%
Zgiltoppp 87.05 43.60% 267.89 42.88%
YV tor, 7327 36.69% || 21990 35.20%

[t [199.68 100.00% || 624.70 _100.00% |

Table 8. Distribution of total overhead in seconds.

4.3 Total Overhead

The total overhead, fo, of the parallel search algorithm is
given by:

Np Np N,
to=N.-t—ts=Y topp,+ Y topi,+ Y tor,, (14)
p=1 p=1 r=1

where ¢ is the total elapsed runtime of the parallel search al-
gorithm, s is the total runtime of the serial search algorithm,
N, is the total number of parallel steps, and N, is the to-
tal number of serial steps. Table 8 shows the distribution
of the total overhead. The overhead due to inherently se-
rial steps (tor) is about 35%, and cannot be eliminated. Ide-
ally, we want this overhead to be the only overhead in par-
allel search. Hence, future research efforts need to focus on
reducing the overhead in parallel steps due to load imbal-
ance (topi) and parallel execution (topp).

4.4 Elapsed Timing Analysis
The total elapsed runtime, ¢, of parallel search is given by:

Nf NI’ N, Ny
r= LAY (mixigpe} + Lireh (15)
p= r=

f=1

2512

[[Tcore J 2 cores | 4 cores
expand_word_paths_to _states
+ expand_phone_paths_to_states
+ LM _lookups+LM lookaheads 288.17 || 150.29 (-137.88) 91.10 (-197.07)
compute_max_phone_model_inst_thresh 57.25 57.19 (-0.06) 55.59 -(1.66)
prune_phone_model_inst 76.70 53.44 (-23.26) 41.62 (-35.08)
project_states+state_likelihood_comp 154.82 || 106.40 (-48.42) 76.05 (-78.77)
prune_state_paths 71.65 47.81 (-23.84) 38.87 (+32.78)
create_word _paths 9.66 10.88 (+1.22) 12.24 (+2.58)
lex-tree_synchronization 0.00 0.94 (+0.94) 1.36 (+1.36)
compute _word-end _pruning thresh 0.08 0.36 (+0.28) 0.56 (+0.48)
initialization 3.56 3.85 (+0.29) 3.39 (-0.17)
read_featVector 0.00 0.05 (+0.05) 0.16 (+0.16)
total 661.89 || 431.21 (-230.68) || 320.94 (-340.95)
speedup 1.00 1.54 2.06
total serial 70.55 73.27 (+2.72) 73.30 (+2.75)
total parallel 591.34 || 357.94 (-233.40) || 247.64 (-343.70)

Table 9. Elapsed timing measurements in seconds. Serial steps are shown in bold letters.

Equation (15) can be rearranged as follows:

Np Ny N, Ny
=Y {) Illjlfctfy,,,c} +Y) s (16)
p=1 f=1°= =1 f=1

N .
The first term Y, ff: 1 rnaxlcv;‘1 tfp.c Tepresents elapsed time for

parallel step p. The max operator indicates that if there is
any load imbalance among the cores, the elapsed time will be
equal to the time taken by core with maximum load. Other
sources of overhead discussed in Section 4.1 increase the
elapsed time also. The second term in Equation (16) rep-
resents the serial steps and includes the overhead discussed
in Section 4.2. The comparison of elapsed time for the par-
allel and serial steps among serial (1-core), 2-core parallel
and 4-core parallel search is shown in Table 9. The total time
due to serial steps is almost constant in serial (1-core), 2-core
parallel and 4-core parallel search. The overall speedup for
2-core parallel search is 1.54, and for 4-core parallel search
is 2.06.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a detailed analysis of an approach to par-
allelizing a lexical-tree based search algorithm for LVCSR
on a multicore architecture. We propose an analytical model
that is useful for predicting speedup for feasibility analy-
sis. Various sources of overhead in the parallel search algo-
rithm are identified, described and analyzed. The overhead
due to inherently serial steps cannot be eliminated. The two
sources of overhead in the parallel steps that can potentially
be reduced are load imbalance and increase in CPU pipeline
stalls. The overhead due to load imbalance in 4-core paral-
lel search is approximately 3.5 times the load imbalance in
2-core parallel search. The overhead due to increase in CPU
pipeline stalls in 4-core parallel search is approximately 3.7
times the overhead in 2-core parallel search. The increase in
main memory access latency dominates the increase in over-
head due to increase in CPU pipeline stalls. In the future, we
plan to explore more sophisticated load balancing techniques
and ways to reduce main memory access latency that could
result in improved scalability.

REFERENCES

[1] N. Parihar and E. Hansen, “A Lexical-tree Division-
based Approach to paralleize a Cross-word Speech De-
coder for Multi-core Procesors ,” in Proc. EUSIPCO
2008, Lausanne, Switzerland, August 2008.

N. Deshmukh et al., “Hierarchical Search for Large
Vocabulary Conversational Speech Recognition,” IEEE
Signal Processing Magazine, vol. 16, no. 5, pp. 84-107,
September 1999.

N. Parihar et al,, “An Analysis of the Aurora Large
Vocabulary Evaluation,” in Proc. EUROSPEECH 2003,
Geneva, Switzerland, September 2003, pp. 337-340.

D. Paul and J. Baker, “The Design of Wall Street Journal-
based CSR corpus,” in Proc. ICSLP 1992, Banff, Al-
berta, Canada, October 1992, pp. 899-902.

N. Parihar, Performance Ananlysis of Advanced Front
Ends on the Aurora Large Vocabulary Evaluation. M.S.
thesis, Department of Electrical and Computer Engineer-
ing, Mississippi State University, USA, December 2003.

A. Grama, A. Gupta, G. Karypis, and V. Kumar, Intro-
duction to Parallel Computing, Second Edition, Pearson
Education, 2004.

D. Levinthal, Execution-based cycle accounting on In-
tel Core 2 Duo processors. http://www.devx.com/go-
parallel/Link/33315

[8] L. McVoy and C. Staelin,
Tools for Performance Analysis,
http://www.bitmover.com/Imbench.

(2]

(3]

(4]

(5]

(6]

(7]

Lmbench -
1998.

[9] Stéphane Eranian, “What can performance counters do
for memory subsystem analysis?,” in Proceedings of the
2008 ACM SIGPLAN workshop on Memory systems per-
formance and correctness, Seattle, Washington, 2008.

2513

