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ABSTRACT

In many demosaicing algorithms the red and the blue colors
are reconstructed based on the interpolated green. Although
additional information such as the statistics of the color com-
ponents could be easily obtained, these algorithms are not
optimized according to the available data. In this work we
propose optimized color transforms for the reconstruction of
the red and blue colors, based on properties of the input im-
age. When comparing the results of the optimized algorithms
to existing known techniques, we show improvement in the
reconstructed images both visually and according to the S-
CIELAB quality measure. Based on extensive simulation re-
sults, we show and conclude that the proposed optimization
techniques could be useful and instrumental in digital pho-
tography.

1. INTRODUCTION

Image interpolation has been researched intensively recently.
In particular, the problem of demosaicing has attracted atten-
tion due to its role in many acquisition devices. In demosaic-
ing a full color image is reconstructed from a single image,
where at each pixel only one of the primary colors: R (red),
G (green) or B (blue) is known. Usually a Bayer Color Filter
Array (CFA) pattern [1] is used as shown in Fig. 1. In or-
der to obtain the image in full color, the missing color values
(50% of the green and 75% of the red and blue pixels) have to
be reconstructed using the available information. Naturally,
the high correlations of the RGB colors in most images [2],
[3] should be considered in the reconstruction process.
This problem can be solved by the straightforward meth-
ods of nearest neighbor (pixel replication), bi-linear (neigh-
bor averaging), bi-cubic or bi-spline interpolation methods,
where each component is processed independently. How-
ever, higher image quality is expected if also the inter-color
correlations are exploited. One way to do so is to recon-
struct the red and blue colors using the green (which is re-
constructed first) as done in sequential demosaicing meth-
ods [4]. This is motivated by the fact that G has twice more
samples than R or B in the Bayer CFA pattern. Such algo-
rithms are presented, for example, in [5], [6], [7], [8], [9] and
[10]. Much effort has been invested in such algorithms to
the reconstruction of the green, both because it is closest to
the luminance information of the image and since errors in
its reconstruction are propagated to the chrominance chan-
nels (R and B). However, the quality of interpolation of the
chrominance information of the image is also important for
high performance of the overall demosaicing algorithm, as
shown in this work.

Other non-sequential algorithms may apply an iterative ap-
proach to demosaicing of refining G and R/B together, e.g.,
using color ratios [11] or color differences [12] or employ si-
multaneous modelling of the three colors [13].
We start with analyzing a basic demosaicing method. Sta-

tistical and other methods for its optimization are introduced
in Sections 2 and 3, respectively.

1.1 The basic demosaicing method

In the basic demosaicing method we use the technique pro-
posed in [10] for R and B interpolation. For the presentation
of this technique, the input Charged Coupled Device (CCD)
image is considered as made of four input images according
to color: RR for the red, BB for the blue and GR and GB
for the green (see Fig. 1). Also for each pixel two types
of neighbors are considered, namely ’x’ type neighbors and
’+’ type neighbors (Fig. 2). The idea in [10] is to learn the
relationships between a pixel p and its (’x’ or ’+’ type) neigh-
bors ni in the small images (e.g., GR, GB) and then use these
relationships to reconstruct the missing pixels. A linear ap-
proximation is used, i.e.

p = ∑
i

αini, (1)

where i runs on the neighbors and αi is the coefficient corre-
sponding to ni in the expansion. The learned expansion coef-
ficients αi are used to build the interpolated image in separate
stages for pixels with known ’x’ type neighbors and pixels
with known ’+’ type neighbors. The expansion coefficients
are chosen to be optimal in the Least Squares (LS) sense.
For a group of pixels a linear system of equations is built:
p = Nα , where p is the pixel vector, α is the coefficient
vector and N is the neighbor matrix. The solution of this
system in the LS sense is α =

(
NTN

)−1 NTp. The groups

Figure 1: The Bayer CFA pattern (left) and the input images
(right): RR, BB (top row from left to right), GR, GB (bottom
row).
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Figure 2: ’x’ type and ’+’ type neighbors of a pixel p.

of pixels on which the LS optimization is performed corre-
spond to the image regions. These regions are the result of
image segmentation based on the relationships between the
intensity values of the neighbors of a given pixel. Thus the
pixels of each region are not necessarily spatially adjacent.
The stages of the basic demosaicing method follow.

1. The green color component is interpolated using the edge
sensitive method introduced in [5]. The technique in-
cludes filtering the CFA pattern horizontally and verti-
cally and choosing either the horizontal interpolator, the
vertical one or the average of the two according to the di-
rection of the smaller one of the estimated horizontal and
vertical gradients. Other more sophisticated methods of
combining the horizontal and vertical interpolators have
been recently proposed [7], [8], however for simplicity
we use the original technique.

2. The red and the blue colors are reconstructed using the
interpolated green component Ĝ1. The color differences
∆RG

1 � RCCD − Ĝ1, ∆BG
1 � BCCD − Ĝ1 are considered,

where RCCD and BCCD are the original CCD pixels of
the red and the blue colors, respectively. The differences
are reconstructed at the locations of pixels, where the ’x’
type neighbors are known, using the relationships with
these neighbors. The reconstructed color differences are
denoted ∆RG

2 and ∆BG
2 .

3. Again the pixels at the same locations as in Step 2 are re-
constructed to achieve higher accuracy of the algorithm.
The color difference ∆RB

1 � ∆RG
2 −∆BG

2 is calculated and
reconstructed at odd row, even column positions using
the relationships learned from the even row, odd column
positions (with their ’x’ type neighbors) and vice versa.
The result is ∆RB

2 , used to derive the R and B values (R̂1

and B̂1).
4. The remaining missing pixels of the red and the blue are

reconstructed using again the color differences ∆RG
3 =

R̂1 − Ĝ1 and ∆BG
3 = B̂1 − Ĝ1 and the relationships with

their ’+’ type neighbors. The results are ∆RG
4 and ∆BG

4 .
5. The final red and blue components are calculated accord-

ing to R̂2 = Ĝ1 + ∆RG
4 , B̂2 = Ĝ1 + ∆BG

4 . The output of
the algorithm is

(
R̂2, Ĝ1, B̂2

)
.

2. STATISTICAL OPTIMIZATION METHODS

As can be seen above, the basic method uses the differences
R-G, B-G in Steps 2 and 4. This choice is rather arbitrary and
other combinations of the colors can be considered, so that
the color components are, for example, more de-correlated.
The color transform can be, actually, chosen to optimally
achieve some desired property [14], [15]. Since more than
half of the pixel values are missing in the input image it is
difficult to apply a color transform at the very beginning of
the algorithm. However, after the reconstruction of the green
it is possible. Thus, in Steps 2 and 4 we propose the follow-

ing generalization:

C1 = G, C2 = a1R+a2G, C3 = d1B+d2G (2)

for some constants a1,a2,d1,d2. Note that we do not include
B in C2 or R in C3 because R and B are known at totally dif-
ferent pixel locations in the CCD image. We consider several
choices of the a and d coefficients.

2.1 Minimal variances of C2 and C3

The idea is to look for a1 and a2 that minimize the variance
of C2 and for d1 and d2 that minimize the variance of C3.
Clearly, if the variance of C2 becomes zero the algorithm will
introduce no error in the interpolation of the red color. Sim-
ilarly for C3 and the blue. In order to avoid the trivial choice
of a1 = a2 = 0 or d1 = d2 = 0, a constraint has to be added
that can force, for example, the L1 or L2 norm of the a and d
coefficients to be 1, i.e.,

|a1|+ |a2| = 1, |d1|+ |d2| = 1 or
a2

1 +a2
2 = 1, d2

1 +d2
2 = 1.

(3)

The expressions for the variances are

var(C2) = a2
1var(R)+2a1a2cov(R,G)+a2

2var(G)

var(C3) = d2
1var(B)+2d1d2cov(B,G)+d2

2var(G)
(4)

and these are minimized under one of the constraints of (3).
var() stands here for variance and cov() for covariance. The
solution under the L1 norm constraint for a1 and a2 is

a1 =
cov(R,G)+ var(G)

var(R)+2cov(R,G)+ var(G)

a2 = − cov(R,G)+ var(R)
var(R)+2cov(R,G)+ var(G)

.

(5)

The solution for d1 and d2 is the same as (5) except that R
should be replaced everywhere by B.

2.2 Minimal covariance of C2 and C3

Here we search for the values of a1,a2 and d1,d2 that mini-
mize the covariance of C2 and C3, given by

cov(C2,C3) =a1d1cov(R,B)+a1d2cov(R,G)
+a2d1cov(B,G)+a2d2var(G).

(6)

The same constraints of (3) can be used. Under the L1 norm
constraint the a1, a2 solution follows (similarly for d1, d2).

a1 =
cov(B,G)+ var(G)

cov(R,G)+ cov(B,G)+ cov(R,B)+ var(G)

a2 = − cov(R,G)+ cov(R,B)
cov(R,G)+ cov(B,G)+ cov(R,B)+ var(G)

.

(7)

The motivation for this optimization is similar to the one for
using de-correlating color transforms in image compression:
concentration of most of the energy of C2 and C3 in one of
them to reduce the reconstruction errors.
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2.3 Gram-Schmidt orthogonalization

The idea of de-correlation of Subsection 2.2 can be viewed
as orthogonalization using the inner product of 〈C1,C2〉 =
cov(C1,C2). We can use the Gram-Schmidt process for such
orthogonalization. The problem is that if we start with C2 and
C3 as in (2) for some non-zero values of a1 and d1, we will
get as a result linear combinations where both R and B are
present. An alternative is to consider the orthogonalization
of R,G and B,G separately. We start with G and project R on
it and similarly, for B and G orthogonalization, B is projected
on G. Now we propose to take these two vectors as C2 and
C3, i.e., under the L1 norm constraint in (3)

a1 =
var(G)

var(G)+ cov(R,G)
, a2 = − cov(R,G)

var(G)+ cov(R,G)
,

d1 =
var(G)

var(G)+ cov(B,G)
, d2 = − cov(B,G)

var(G)+ cov(B,G)
.

(8)

Note that although cov(C1,C2) = cov(C1,C3) = 0 we do not
expect that cov(C2,C3) = 0 using this choice of the coeffi-
cients, but C2 and C3 usually become de-correlated since it
can be shown that

cov(C2,C3) = cov(a1R+a2G, d1B+d2G)

= var(G)
var(G)cov(R,B)− cov(R,G)cov(B,G)

(var(G)+ cov(R,G))(var(G)+ cov(B,G))

=

√
var(R)var(B)

(
1+ cov(R,G)

var(G)

)(
1+ cov(B,G)

var(G)

) (ρRB −ρRGρBG) ,

(9)

which can be expected to be small. ρRB denotes here the
correlation of R and B and similarly for ρRG and ρBG.
It is of interest that the Gram Schmidt process described here
is the solution of two other problems as presented next.

2.3.1 Mininimizing the covariance of R−αG and B−βG

Considering the simplified choice of C2 = R−αG and C3 =
B−βG and taking the covariance of the two we get that

cov(C2,C3) =cov(R,B)−βcov(R,G)
−αcov(B,G)+αβvar(G).

(10)

Minimizing (10) for α and β results in the solution

α =
cov(R,G)
var(G)

, β =
cov(B,G)
var(G)

, (11)

which is the same as in (8) up to a scale parameter.

2.3.2 Mininimizing the correlation of R−αG and B−βG

We consider the correlation of C2 = R−αG and C3 = B−
βG given by

corr(C2,C3) =
cov(C2,C3)√

var(C2)var(C3)
. (12)

The expression for cov(C2,C3) is given in (10) and the vari-
ances are given by

var (C2) = var(R)−2αcov(R,G)+α2var(G)

var (C3) = var(B)−2βcov(B,G)+β 2var(G).
(13)

It can be shown that the solution of this problem is once again
as in (11).

3. OPTIMAL SMOOTHNESS OF C2 AND C3

The reason that many algorithms use the R−G and B−G
differences to reconstruct R and B is that these differences
are primarily low pass signals [7]. This means that R−G
and B−G are smooth or have low gradients in the spatial
domain. Furthermore, this fact can be exploited in the es-
timation process of the missing pixels by using, for exam-
ple, bilinear interpolation of the differences [7], [8], [9]. To
further impose this smoothness on C2 and C3, the following
methods are proposed.

3.1 Minimal high pass energy

The idea here is to minimize the energy of C2 and C3, fil-
tered by a two dimensional High Pass (HP) filter. We de-
note the filtered color components by CHP

k and minimize

∑M
i=1 ∑N

j=1

(
CHP

k

)2
i j, k = 2,3 for an image of size M×N. Al-

ternatively, a pair of one dimensional HP filters HPx and HPy
can be used to filter C2/C3 horizontally and vertically, re-
spectively. Usually, HPy is chosen as HPy = HPT

x . Then

the expression to be minimized becomes ∑i ∑ j

(
CHPx

k

)2

i j
+

∑i ∑ j

(
C

HPy
k

)2

i j
, k = 2,3, where CHPx

k is Ck filtered by HPx

and similarly for C
HPy
k . The optimal a1,a2 coefficients for

this problem under the L1 norm constraint in (3) are

a1 =
α12 +α22

α11 +2α12 +α22
, a2 = − α12 +α11

α11 +2α12 +α22
, (14)

where

α11 � ∑
i

∑
j

[(
RHPx

)2
i j +

(
RHPy

)2
i j

]
,

α22 � ∑
i

∑
j

[(
GHPx

)2
i j +

(
GHPy

)2
i j

]
and

α12 � ∑
i

∑
j

[(
RHPx

)
i j

(
GHPx

)
i j +

(
RHPy

)
i j

(
GHPy

)
i j

]
.

(15)

The solution for the d1 and d2 coefficients is the same as
the solution for a1 and a2, respectively, (in (14)) with B re-
placing R everywhere in (15). For simple choices of HPx,
such as the backward/forward approximation of the horizon-
tal derivative (HPx = [1− 1]), the calculations can be per-
formed on the available small images obtained from the CFA
(Fig. 1). Alternatively, R and B can be first reconstructed
using some simple technique, such as bilinear filtering of the
R−G and B−G differences and then used for the estimation
of the derivatives. In this work we use the Sobel gradient

operator given by HPx =

(
1 0 −1
2 0 −2
1 0 −1

)

.

3.2 Minimal energy in the frequency domain

Another approach is to consider the energy of C2 and C3
color components in the frequency domain. To impose op-
timal smoothness we look for the coefficients a1, a2, d1
and d2 that minimize the energy in the high frequencies.
One possible formulation for this problem is to minimize∫ π

π/2

∫ π
π/2 |FCk(θ1,θ2)|2dθ1dθ2, k = 2,3, where FCk is the
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Fourier transform of Ck. The solution for this problem is the
same as in (14), where the α11,α12 and α22 parameters are

α11 �
∫ π

π/2

∫ π

π/2
|FR(θ1,θ2)|2dθ1dθ2,

α22 �
∫ π

π/2

∫ π

π/2
|FG(θ1,θ2)|2dθ1dθ2 and

α12 �
∫ π

π/2
Re

(
FR(θ1,θ2)

(
FG(θ1,θ2)

)∗)
dθ1dθ2.

(16)

Here Re() denotes the real part of a complex number and ∗ is
the complex conjugate operator. Also in our implementation
the Discrete Fourier Transform (DFT) is used, so that the in-
tegrals

∫ π
π/2

∫ π
π/2(·)dθ1dθ2 are replaced by ∑M/2−1

M/4 ∑N/2−1
N/4 on

the DFTs of the signals (assuming their size is M ×N). To
calculate the DFTs, R and B are first reconstructed as pro-
posed in Subsection 3.1. Usually, the small matrices RR and
BB cannot be used for the DFTs because of aliasing produced
by the CFA sampling in the red and the blue colors.

4. SIMULATIONS

First we discuss the comparison of the techniques based on
the optimization proposed in Sections 2 and 3. The demo-
saicing results for a set of images are shown in Table 1. The
distortion measure used is the spatially extended CIELAB
(S-CIELAB [16]) with 25 samples/degree. The demosaicing
results of all the algorithms were refined by the technique
proposed in [17]. As can be seen from Table 1, all the pro-
posed methods improve the performance of the basic method.
The best one among them is the algorithm that minimizes
HP energy (Min HP). Also among the statistical methods the
Gram-Schmidt algorithm is better than the algorithms min-
imizing the covariance or the variances of C2 and C3. This
means de-correlation by itself is not a sufficient optimization
criterion [14]. Similarly, just minimizing the variances is not
optimal. The non-singularity of the color transform is also
important as ensured by the Gram Schmidt method.

For comparison of this algorithm to other available tech-
niques we have taken several of the algorithms that achieve
the best performance according to [4]: Projection on Convex
Sets (POCS [6]), Adaptive Filtering (AF [18]), Directional
Linear minimum mean square error (DL [7]), Local Poly-
nomial Approximation (LPA [9]), Variance of Color Dif-
ferences (VCD [8]) and Color Correlation Approach (CCA
[19]) with post-processing [20]. Their performance is shown
in the right part of Table 1. As can be seen, the Min HP
algorithm is superior to the other methods. This can be fur-
ther seen in Fig. 3 where demosaicing results for part of the
fourth image in Table 1 are shown. Note the artifacts on the
red coat, least noticeable for the proposed methods.

5. SUMMARY AND CONCLUSIONS

We have proposed new optimized color transforms for image
demosaicing. These transforms are used to convert the RGB
color components to an alternative color space, where the
reconstruction of the missing pixels is performed. The opti-
mization is based on major statistical properties of the new
color components, such as minimal variances or minimal co-
variance. This increases the energy compactness of the color
components and reduces the demosaicing error. The smooth-
ness of the color components can be increased as well, mea-

Original POCS AF LPA

CCA DL VCD Min HP

Min Var Min Cov GS Min DFT

Figure 3: Demosaicing results for the different algorithms for
the fourth image in Table 1. Min HP and the bottom row are
the new algorithms. GS stands for Gram-Schmidt.

sured in terms of the energy in the high frequencies, either
in the image or the Fourier transform domain. Since many
demosaicing techniques rely on the smoothness of the inter-
polated colors, this also improves the interpolation perfor-
mance.
We present simulations results of a basic interpolation
method, with and without optimization of its color transform.
Having compared the performance of our algorithms to other
available demosaicing techniques, it can be shown that the
algorithm that minimizes the energy in the high frequencies
in the image domain is superior to all the other methods both
with respect to the S-CIELAB metric and to visual evalu-
ation. Our conclusion is that optimization of color trans-
forms could be instrumental and helpful in image demosaic-
ing tasks.
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New Algorithms Existing Algorithms
Image Min

HP
Min
Var

Min
Cov

Gram
Schmidt

Min
DFT

Basic POCS AF DL LPA VCD CCA

0.5485 0.5579 0.5713 0.5652 0.5814 0.5865 0.8826 0.5880 0.5812 0.5615 0.5880 0.8418

0.7557 0.7546 0.7600 0.7605 0.7723 0.7749 1.0419 0.7716 0.7598 0.7647 0.7458 0.9640

1.6152 1.6301 1.6363 1.6300 1.7326 1.7338 2.0024 1.6244 1.7942 2.2520 1.6870 2.1220

0.5329 0.5356 0.5263 0.5261 0.5716 0.5754 0.8147 0.5675 0.5774 0.5788 0.5563 0.8097

0.8663 0.8666 0.8839 0.8782 0.8901 0.8951 1.1585 0.8585 0.8738 0.8705 0.9335 1.0872

1.4234 1.4439 1.5073 1.4808 1.4261 1.4228 1.7269 1.4376 1.4970 1.5408 1.6777 1.8649

1.2609 1.3149 1.2473 1.2464 1.3230 1.3349 1.4314 1.2993 1.2925 1.6054 1.2073 1.5139

0.9743 1.0687 0.9904 1.0001 1.0236 1.0180 1.1793 0.9903 0.9760 1.0060 0.9741 1.1040
Mean 0.9972 1.0215 1.0153 1.0109 1.0401 1.0427 1.2797 1.0171 1.0440 1.1475 1.0462 1.2884

Table 1: S-CIELAB results for the algorithms (from left to right): minimal HP energy, minimal variance, minimal covariance,
Gram-Schmidt, minimal DFT energy, the basic method, POCS [6], AF [18], DL [7], LPA [9], VCD [8] and CCA [19].

REFERENCES

[1] B. E. Bayer, ”Color imaging array”, U.S. Patent
3971065, July 1976.

[2] H. Yamaguchi, ”Efficient Encoding of Colored Pictures
in R, G, B Components”, IEEE Trans. on Communica-
tions, vol. 32, pp. 1201–1209, Nov. 1984.

[3] Y. Roterman and M. Porat, ”Color Image Coding using
Regional Correlation of Primary Colors”, Elsevier Im-
age and Vision Computing, vol. 25, pp. 637–651, 2007.

[4] X. Li, B. Gunturk and L. Zhang, ”Image Demosaicing:
A Systematic Survey”, Proc. of SPIE, vol. 6822, pp.
68221J–68221J-15, 2008.

[5] J. F. Hamilton and J. E. Adams, ”Adaptive Color Plane
Interpolation in Single Sensor Color Electronic Cam-
era”, U.S. Patent 5629734, 1997.

[6] B. K. Gunturk, Y. Altunbasak and R. M. Mersereau,
”Color plane interpolation using alternating projec-
tions”, IEEE Trans. Image Proc., vol. 11, pp. 997–1013,
2002.

[7] L. Zhang and X. Wu, ”Color Demosaicking via Di-
rectional Linear Minimum Mean Square-Error Estima-
tion”, IEEE Trans. on Image Processing, vol. 14, no.
12, pp. 2167–2178, 2005.

[8] K.-H. Chung and Y.-H. Chan, ”Color Demosaicing Us-
ing Variance of Color Differences”, IEEE Trans. on Im-
age Processing, vol. 15, no. 10, pp. 2944–2955, 2006.

[9] D. Paliy, V. Katkovnik, R. Bilcu, S. Alenius, and K.
Egiazarian, ”Spatially Adaptive Color Filter Array In-
terpolation for Noiseless and Noisy Data”, Int. Journal
of IS&T, vol. 17, no. 3, pp. 105-122, 2007.

[10] R. Sher and M. Porat, ”CCD Image Demosaicing using
Localized Correlations”, in Proc. of EUSIPCO, 2007.

[11] R. Kimmel, ”Demosaicing: Image Reconstruction from
Color CCD Samples,” IEEE Trans. Image Proc., vol. 8,
no. 9, pp. 1221–1228, 1999.

[12] C.-Y. Su, ”Highly effective iterative demosaicing using
weighted-edge color-difference interpolations”, IEEE
Trans. Consum. Electron., vol. 52, pp. 639–645, 2006.

[13] C. Kwan and X. Wu, ”A classification approach to color
demosaicing”, Proc. ICIP, pp. 2415–2418, 2004.

[14] E. Gershikov and M. Porat, ”On Color Transforms and
Bit Allocation for Optimal Subband Image Compres-
sion”, Signal Processing: Image Communication, vol.
22, no. 1, pp 1–18, Jan. 2007.

[15] E. Gershikov, E. Lavi-Burlak and M. Porat,
”Correlation-Based Approach to Color Image Com-
pression”, Signal Processing: Image Communication,
vol. 22, no. 9, pp. 719–733, Oct. 2007.

[16] X. Zhang and B. A. Wandell, ”A spatial ex-
tension of cielab for digital color image re-
production”, SID Journal, 1997. [Available:
http://white.stanford.edu/∼brian/scielab/scielab.html].

[17] L. Chang and Y.-P. Tan, “Effective use of spatial and
spectral correlations for color filter array demosaicing”,
Trans. Consum. Electron., vol. 50, pp. 355-365, 2004.

[18] N.-X. Lian, L. Chang, Y.-P. Tan and V. Zagorodnov,
”Adaptive filtering for color flter array demosaicking”,
Trans. Image Proc., vol. 16, pp. 2515–2525, 2007.

[19] R. Lukac, K.N. Plataniotis, D. Hatzinakos, and M.
Aleksix, ”A novel cost effective demosaicing ap-
proach”, IEEE Trans. Consum. Electron., vol. 50, no.
1, pp. 256–261, 2004.

[20] R. Lukac, K. Martin and K.N. Plataniotis, ”Demo-
saicked image postprocessing using local color ratios”,
Trans. Cir. Sys. Video Tech., vol. 14, pp. 914–920, 2004.

2031


