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ABSTRACT 
In this paper, the design of variable fractional delay filter is 
investigated. First, the discrete Fourier transform (DFT) 
interpolation approach is described. Then, the Taylor series 
expansion and DFT interpolation formula are used to design 
the variable fractional delay filter which can be imple-
mented by using Farrow structure. Finally, numerical com-
parison with conventional Lagrange-type variable fractional 
delay filter is made to demonstrate the effectiveness of this 
new design approach. 

1. INTRODUCTION 

In many applications of signal processing, there is a need 
for a delay which is a fraction of the sampling period. These 
applications include time adjustment in digital receivers, 
beam steering of antenna array, speech coding and synthesis, 
modelling of music instruments, sampling rate conversion, 
time delay estimation and fractional order differentiator de-
sign etc [1]-[8]. An excellent survey of fractional delay filter 
design is presented in tutorial paper [1]. Generally speaking, 
the design methods can be classified into two categories. 
One is the fixed fractional delay (FFD) filter design, the 
other is variable fractional delay (VFD) filter design. In FFD 
case, the delay value is fixed, so conventional FIR and IIR 
filter design techniques can be used to design FFD filter 
directly. In VFD case, the delay is adjustable or tuneable, so 
variable filter design method must be developed to design 
this type filters, In this paper, we will study the design of 
VFD filter. On the other hand, the discrete Fourier transform 
(DFT) is defined as follows: 
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where Nj
N eW

π2−= . It is well known that zero padding in 
the frequency domain provides interpolation in the time do-
main. Therefore, we should be able to use zero padding in 
the high frequency range of the DFT domain as a means of 
interpolating finite-duration, discrete-time signals. The de-
tails can be found in the literature [9]-[14]. So far, the DFT 
interpolation and variable fractional delay filter design are 
two independent research topics in signal processing area. 

The relation between them has not been investigated. The 
purpose of this paper is to study this relation such that DFT 
interpolation concept can be directly used to design variable 
fractional delay FIR filters. The main advantage is that the 
filter coefficients are easily computed because a closed-form 
design is obtained. 

2. DFT INTERPOLATION METHOD 

In this section, the DFT interpolation formula of even-
length sequence will be derived. Given DFT )(kX  of an 
even-length real-valued sequence )(nx , let us define the 
zero-padded DFT as 
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Also, we assume M  is an integer multiple of N , say 
LNM = , where L  is called interpolation factor. The 

above DFT has zero values in the high frequency range and 
satisfies the following conjugate symmetry condition: 
           

2
* 1)()( N

dd kkXkMX ≤≤=−            (3) 
Now, the interpolated sequence )(nxd  is chosen as the 

length-M inverse DFT of )(kX d , i.e.,  
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Let kMk −='  and using the equality 1=−Mn
MW  and 

Eq.(3), the second term in Eq.(4) can be written as 
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Substituting Eq.(5) into Eq.(4) and using the equality 
22 )( NnN

M
nM

M WW =−− , we have 
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Using the DFT defined in Eq.(1), the first term in Eq.(6) can 
be written as  
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Moreover, using the equality 12 −=
N

NW , the second term in 
Eq.(6) can be written as  
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Substituting Eq.(7) and Eq.(8) into Eq.(6), the sequence 
)(nxd  becomes the form:  
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Using the identities )sin()sin()cos()cos()cos( 212121 θθθθθθ +=− , 
mm )1()cos( −=π  and 0)sin( =πm , we have 
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Substituting Eq.(10) into Eq.(9), it yields 

      ∑ ∑
−

= =
⎟
⎠
⎞

⎜
⎝
⎛ −=

1

0 0

2 22cos)()(
N

m k
kd

N

N
mk

M
nkmxnx ππβ     (11) 

where 
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Because the sequence )(nxd  is the interpolated version of 
the sequence )(nx  with factor L , we have the following 
relation:  
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p
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for 10 −≤≤ Lp  and 10 −≤≤ Ni . Combining Eq.(11) 
and Eq.(13) and using LNM = , we have 
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where 
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Let L
pit += , then the value of t  can be any real number 

in [0,N) if interpolation factor L approaches infinity. Substi-
tuting L

pit +=  into Eq.(14), we get 
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where the interpolation basis is given by 

                      ∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

2

0
1

2cos)(
N

k
k N

kttb πβ                  (17) 

This means that the continuous-time signal )(tx  can be 
approximately reconstructed from its samples x(0), x(1), ..., 
x(N-1) in the range [0,N) by using continuous-time interpo-
lation basis )(1 tb . Finally, one remark is made. From sam-
pling theorem, it is well-known that the discrete-time signal 
can be reconstructed by using sinc function below: 

t
ttb

π
π )sin()(2 =                            (18) 

Thus, it is interesting to compare DFT interpolation basis 
)(1 tb  with sinc basis )(2 tb . Fig.1 shows the basis )(1 tb  

(solid line) for 30=N . The dashed line is sinc basis )(2 tb . 
It is clear that )(1 tb  is similar to a sinc function )(2 tb . 

3. DESIGN OF VARIABLE FRACTIONAL DELAY 
FILTER 

In this section, the DFT interpolation formula in Eq.(16) 
and Taylor series expansion will be used to design variable 
fractional delay filter which can be implemented by using 
Farrow structure. The details are described below: The ideal 
frequency response of a fractional delay filter is given by 

                           )()( dIjeD +−= ωω                           (19) 
where I is a positive integer and d is a fractional number in 
the interval [-0.5,0.5]. The transfer function of the FIR filter 
of length N used to approximate this specification is given by 
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Thus, the problem is how to design an FIR filter ),( dzH  to 
fit fractional delay specification )(ωD  as closely as possi-
ble. Here, the fractional delay d is adjustable, so this is one of 
the variable digital filter design problems. As shown in Fig.2, 
when a signal )(ns  passes through the FIR filter ),( dzH  

427



in Eq.(20), its output is the weighted average of the integer 
delayed samples )(ns , )1( −ns , )2( −ns ,..., 

)1( +− Nns , i.e.,  
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If the frequency response ),( deH jω  approximates speci-
fication )(ωD  in Eq.(19) well, then this weighted average 
output )(ny  is almost the same as the fractional delayed 
sample )( dIns −− , i.e., 
                         )()( dInsny −−≈                        (22)  

Combining Eq.(21) with Eq.(22), it yields 
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Now, the problem is how to link two expressions in Eq.(16) 
and Eq.(23) to obtain filter coefficients )(dhr  because basis 

)(1 tb  has been known. In the following, the index mapping 
will be used to solve this problem. After we choose 

))1(()( tNnstx +−−= , then Eq.(16) can be rewrit-
ten as  
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Let rNm −−= 1  and dINt −−−= 1 , Eq.(24) re-
duces to the following form: 
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Comparing Eq.(23) with Eq.(25), it is clear that the filter 
coefficients )(dhr  are 

                     )()( 1 dIrbdhr −−=                          (26) 
Based on this result and Eq.(17), the coefficients )(dhr  can 
be rewritten as 
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From the above results, the procedure for fixed fractional 
delay filter design is summarized below: 
Step 1: Specify the design parameters N, I and d. 
Step 2: Using Eq.(27) to compute filter coefficients )(dhr . 
Step 3: The designed fixed fractional delay filter is given by 
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Now, one example is illustrated. The parameters are chosen 
as N=60, I=30 and d=0.5. Fig.3(a)(b) shows the magnitude 
response and group delay of the proposed DFT-based frac-
tional delay filter. Obviously, the specification is fitted well. 
Because the purpose of this paper is to design variable frac-
tional delay filter, we will use the Taylor series expansion to 
transform the above fixed filter to a variable filter below. 

Using the Taylor series expansion at d=0, the coefficients 
)(dhr  can be written as the following polynomial form: 
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In order to use Eq.(27) to compute the coefficients )(nar  
easily, Eq.(27) is rewritten as  
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where Re{.} denotes the real part of a complex number. 
Based on Eq.(30), the partial derivatives can be computed as 
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Combining Eq.(31) with Eq.(29), we obtain )(nar  below: 
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Moreover, because fractional delay d is in the range [-0.5,0.5], 
the nd  is very small for large n. Thus, the coefficients 

)(dhr  in Eq.(28) can be approximated by 
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where K is called truncation order. The larger K is, the better 
approximation has. Substituting Eq.(33) into Eq.(20), the 
transfer function can be rewritten as 
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where sub-filters )(zAn  are 
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Based on Eq.(34), the fractional delay filter ),( dzH  can 
be implemented by using Farrow structure shown in Fig.4 
where fractional delay d can be easily adjusted without re-
designing the filter. Finally, the procedure for variable frac-
tional delay filter design is summarized below: 
Step 1: Specify the design parameters N, I and K. 
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Step 2: Using Eq.(32) to compute filter coefficients )(nar  
and obtain sub-filters )(zAn . 
Step 3: The designed variable fractional delay filter is given 
by ∑

=

=
K

n

n
n dzAdzH

0

)(),( . 

The main advantage of the above DFT-based method is that 
the computation of coefficients )(nar  has closed-form for-
mula in Eq.(32) without performing any optimization. 

4. EXAMPLE AND COMPARISON 

In this section, we will compare DFT-based design with 
the conventional Lagrange method because both methods 
have closed-form designs. For completeness, the Lagrange 
design is first reviewed briefly. Given the discrete-time se-
quence x(0), x(1), ..., x(N-1), the Lagrange method to recon-
struct the continuous-time signal )(tx  is given by 
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Based on this polynomial basis, the filter coefficients )(dhr  
in Eq.(20) can be obtained as 
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The above formula can be found in [1]. To get variable frac-
tional delay filter, Eq.(38) is rewritten as 
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where )(nbr  is easily computed by using polynomial multi-
plication. Because fractional delay d is in the range [-0.5,0.5], 
the nd  is very small for large n. Thus, truncating high-
degree terms, the )(dhr  in Eq.(39) can be approximated by 
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Substituting Eq.(40) into Eq.(20), the transfer function of 
Lagrange-type design is given by 
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where ∑
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rn znbzB . Now, let us compare DFT and 

Lagrange methods. To evaluate the performance, the root 
mean squares (RMS) error is defined by 
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where ),()(),( deHDde jωωω −= . Obviously, the smaller 
the error E  is, the better the performance of the design 
method is. Now, one example is illustrated. The parameters 
are chosen as 60=N , 7=K , 30=I  and 9.0=α . 
Fig.5 shows the absolute frequency response error 

|),(| de ω  of the designed variable fractional delay filters in 
the frequency range ]9.0,0[ π  and ]5.0,5.0[−∈d  for 
DFT and Lagrange methods. The RMS error E  of the pro-
posed DFT-based method is 0.0029. The RMS error E  of 
Lagrange method is 0.0379. It is clear that DFT method has 
smaller error than Lagrange method. Finally, one remark is 
made. If the coefficient )(nar  in Eq.(32) is replaced by 

)()( rwnar  where )(rw  is the Hamming window, the 
RMS error E  of DFT design is reduced to 0.002. Thus, de-
sign accuracy can be slightly improved by using window. 
Fig.6 shows the magnitude response and group delay of the 
designed DFT-based variable fractional delay filter after win-
dowing. Obviously, the specification is fitted well. 

5. CONCLUSIONS 

In this paper, the design of variable fractional delay filter 
has been presented. The DFT interpolation formula and Tay-
lor series expansion are applied to design the variable frac-
tional delay filter which can be implemented by using 
Farrow structure. And, numerical comparison with conven-
tional Lagrange-type variable fractional delay filter is made 
to demonstrate the effectiveness of this new design approach. 
However, only one-dimensional design is studied here. Thus, 
it is interesting to extend DFT interpolation method to de-
sign two-dimensional fractional delay filter in the future. 
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Fig.1 The interpolation basis )(1 tb  (solid line) for N=30. 
The dashed line is sinc basis )(2 tb . 
 
 
 
 
 
 
 
Fig.2 The input/output relation of fractional delay filter. 
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Fig.3 The designed results of a fractional delay filter. (a) 
Magnitude response. (b) Group delay response. 

 
 
 
 
 
 
 
 
Fig.4 The Farrow structure for implementing variable frac-
tional delay filter with adjustable delay d. 
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Fig.5 The absolute frequency response error |),(| de ω  of 
the designed variable fractional delay filters. (a) DFT design 
(b) Lagrange design. 

0
0.2

0.4
0.6

0.8

-0.5

0

0.5
0

0.5

1

1.5

normalized frequencyfractional delay

m
ag

ni
tu

de
 re

sp
on

se

(a) 

0
0.2

0.4
0.6

0.8

-0.5

0

0.5
29.5

30

30.5

31

normalized frequencyfractional delay

gr
ou

p 
de

la
y

(b) 
Fig.6 The designed results of DFT-based variable fractional 
delay filter. (a) Magnitude response. (b) Group delay. 
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