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ABSTRACT

For closely spaced signals, we demonstrate that the min-
imum signal-to-noise ratio (SNR) at which they can
be resolved (and their parameters reliably estimated)
strongly depends on the a priori source-power model.
If no restrictions are made on the admissible powers,
then there will exist an “ambiguity region” that encom-
passes scenarios with completely erroneous direction-of-
arrival (DOA) estimates in addition to the true sce-
nario with closely spaced emitters. We implement a
global maximum-likelihood (ML) search to support the
Cramér–Rao bound (CRB) predictions.

1. INTRODUCTION AND BACKGROUND

In a number of classic papers, such as [1], it has been
argued that an M -sensor antenna array can correctly de-
tect m closely spaced sources down to a SNR εITC that
is significantly lower than the minimum SNR at which
ML techniques can properly resolve the signals and esti-
mate their parameters (such as DOA and power), εML.
To put it crudely, “estimation breaks before detection”:

εITC ≪ εML. (1)

Yet most of the empirical evidence that supports this
argument has come from practical high-resolution tech-
niques, such as MUSIC, which approximate maximum-
likelihood estimation (MLE) but are not precisely ML.
Such “ML proxy” techniques are asymptotically equiv-
alent to MLE, i.e. as the number of training samples T
and/or the SNR tends to infinity. However, their be-
haviour in the practical domain of few snapshots and
low SNR can be completely different. It is well-known
that at sufficiently small T and/or SNR (the “threshold
region”), these techniques suffer from a dramatic fail-
ure rate (“performance breakdown”); moreover, MUSIC
performance breakdown often occurs at T and SNR val-
ues where MLE still gives proper estimates [2]. We re-
cently demonstrated [3,4] that MUSIC breakdown could
be “cured” in this threshold region.

Another signal-processing maxim is that the resolu-
tion limit of MLE is equal to the sum of the standard de-

viations of the two DOA estimates, as predicted by the
CRB [5,6]. Thus we could not expect to accurately esti-
mate DOAs below the CRB limit, and yet this approach
still does not explicitly describe MLE performance in the
threshold region. In particular, we may expect MLE to
breakdown far above the CRB limit [7–11].

Apart from obvious theoretical interest, this issue
is also of practical importance. Techniques developed
in [3,4] for MUSIC performance breakdown “prediction
and cure” have been proven capable of rectifying er-
roneous MUSIC estimates “up to ML quality”. More
specifically, those methods give estimates that are sta-
tistically as likely as the true (exact) scenario, and still
may contain an outlier. In this regard, it is important
to understand the conditions under which we can get an
ML estimate that nevertheless is an outlier.

The ultimate performance of ML DOA estimation
must be investigated directly in the threshold region,
where the intersource separation is comparable with the
CRB limit. In this paper, we investigate the threshold
behaviour of the accurate ML DOA estimate for two
close emitters, for different assumptions on the admis-
sible source powers. In a related paper [12], we demon-
strated that the random matrix theory (RMT) [also
known as general statistical analysis (GSA)] technique
can be used to accurately predict statistical nonidenti-
fiability.

2. MLE BREAKDOWN FOR DIFFERENT

POWER MODELS

We consider the standard detection-estimation problem
of m < M independent Gaussian sources in white noise,
where the M -variate vector y that represents the output
of the M -sensor antenna array can be expressed as

y(t) =

m
∑

j=1

s(θj)xj(t) + η(t), t = 1, . . . , T (2)
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where xj is the jth independent signal complex ampli-
tude with power pj , and

E
{

η(t)ηH(t)
}

= p0IM (3)

with s(θj) ∈ CM×1 being the antenna array manifold
(steering) vector for the DOA (azimuthal angle) θj , and
p0 being the white-noise power (which we assume to be
known a priori). Here we consider a uniform linear array
(ULA), so that

s(θj)=

[

1, exp(2πi
d

λ
sin θj), . . . , exp(2πi(M−1)

d

λ
sin θj)

]T

(4)
even though the properties of the array geometry are
not important for this analysis.

In this model, the true covariance matrix is

R = SPSH + p0IM (5)

where

S = [s(θ1), . . . , s(θm)], P = diag [p1, . . . , pm] (6)

with the source powers pj (j = 1, . . . ,m). For MLE
with T > M , we adopt the likelihood ratio (LR) as our
(normalised) likelihood function [13], which is defined as

LR(Rµ) =
det(R−1

µ R̂) exp M

exp tr (R−1
µ R̂)

≤ 1 (7)

where the estimated covariance matrix is, as usual,

R̂ =
1

T

T
∑

t=1

y(t)yH(t) (8)

and the model covariance matrix is

Rµ = SµPµSH
µ + p0IM (9)

where

Sµ = [s(θ̆1), . . . , s(θ̆µ)], Pµ = diag [p̆1, . . . , p̆µ]. (10)

Thus µ, [θ̆1, . . . , θ̆µ] and [p̆1, . . . , p̆µ] are the modelled
number of sources with their DOAs and powers, respec-
tively.

The estimated number of sources µ can be found
either by information-theoretic criteria (ITC) [14], or by
the generalised likelihood-ratio test (GLRT) method [15]
whereby

µ = arg min
j

{

max
θ1, ..., θj,p1, ..., pj

LR(Rj) ≥ γLR(PFA)

}

(11)
where the false-alarm threshold is

γLR(PFA) = arg
γ

{
∫ γ

0

w(x) dx = PFA

}

(12)

and w(x) is the probability density function (pdf) for
LR(R). Note that w(x) does not depend on R, but is

fully specified by the known parameters T and M in a
complex Wishart distribution:

LR(R) =
det(Ĉ/T ) expM

exp tr (Ĉ/T )
(13)

where

Ĉ = R−
1

2 R̂R−
1

2 ∼ CW(T ≥ M, M, IM ). (14)

In this study, we consider the same scenario as in Lee
and Li [1], that was chosen to demonstrate εITC ≪ εML:

M = 3, T = 100, m = 2,

p1 = p2, p0 = 1, {θ1, θ2} = {0◦, 1.08◦} (15)

with half-wavelength spacing in the antenna array. As
demonstrated in [1], reliable detection of µ = 2 sources
in this closely spaced scenario by the minimum de-
scription length (MDL) ITC method occurs down to
εITC ≃ 22 dB (where MDL’s failure rate suddenly rises
to 62%). Obviously it is desirable that ML DOA esti-
mation also be accurate down to at least this SNR. (To
put it crudely, we would like to have “estimation and
detection break simultaneously”.)
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Figure 1: CRB analysis for the Lee and Li scenario.

Fig. 1 shows the behaviour of the CRB (equal for
the two sources in this case) as a function of SNR for
the following three source-power models in (9):

- arbitrary powers,
- a priori known powers, and
- equal (but a priori unknown) powers.

These CRBs are calculated for scenario (15) with equal
powers using the standard technique [15] that involves,
respectively, the 2m-variate, m-variate and (m + 1)-
variate Fisher information matrices. This simple analy-
sis shows the crucial dependence of MLE performance on
the admissible source powers below about 60 dB, above
which the CRB is practically the same for these three
power models. For the arbitrary/unrestricted model
(plotted with circles), the CRB limit of (θ2 − θ1)/2 =
0.54◦ occurs at the very high SNR of 37 dB. On the
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other hand, the CRB limit for the equi-power model
(diamonds) is at 12 dB, and moreover this CRB is al-
most independent of SNR in the range 25–55 dB approx-
imately. Meanwhile, the arbitrary model has its conven-
tional CRB increasing so rapidly at low SNRs that by
12 dB it has reached 41◦. Interestingly, the model with
accurately known powers negligibly improves the CRB
compared with equal (but a priori unknown) signal pow-
ers.

These dramatic differences in potential DOA estima-
tion accuracy can be interpreted as the transition from
statistical identifiability (under the equi-power model)
to statistical nonidentifiability (if a source power could
be arbitrarily small). This means that, with equal pow-
ers, an optimally high LR value (7) can be achieved only
if two DOAs in the model covariance matrix Rµ (9) are
sufficiently close to the true ones {θ1, θ2}. On the other
hand, if we allow arbitrary powers, most of the total
power p1 + p2 can be attributed to a source close to the
midpoint DOA

θ̄ ≡ (θ1 + θ2)/2 = 0.54◦, (16)

with the remaining insignificant power attributed to an-
other source with a large DOA estimation error (an out-
lier). Such solutions are frequently produced by MUSIC
(at much higher SNRs) when its performance starts to
break down [4].

Now we shall demonstrate how the dramatic differ-
ences in CRB reflect the actual MLE behaviour at these
“threshold” SNR values.

To investigate the true ML performance (rather than
that of an ML-proxy algorithm), we have searched for
the global LR maximum in two stages. First, on a finely
discretised grid over the diagonal half-plane (θ2 > θ1),
we find the maximum LR(θ1, θ2). We calculate the pow-
ers for the two DOAs (in the arbitrary power model)
following [15]:

[p̆1, p̆2] = diag +

{

(sH
s)−1

s
H(R̂ − p0IM )s(sH

s)−1
}

(17)
where

diag +{x} ≡

{

x for x ≥ 0
0 for x < 0

(18)

For the equi-power model, we use

p̆1 = p̆2 =
1

2M
tr (R̂ − p0IM ). (19)

Then we use (9) and (7) to calculate LR(Rµ) at each
grid point.

The second stage is to use this grid global maxi-
mum as the initial solution to a numerical optimisa-
tion routine; we use the Matlab function fmincon to
find the local LR maximum over either {θ1, θ2, p1, p2}
or {θ1, θ2, p1 = p2}, i.e. over all four or just three pa-
rameters.

Fig. 2 shows a plot of LR(θ1, θ2) for an example real-
isation of our scenario at 22 dB SNR. The left plot is for
the arbitrary power model, while the right (zoomed) plot
is for the equi-power model (with the same set of train-
ing data). This realisation was chosen to illustrate how
the completely different behaviour in CRB (depending

on signal-power model) arises. For unrestricted powers,
the global ML estimates are found to be

{θ̂1, θ̂2} = {0.51◦, 38.28◦},

{p̂1 = 24.93 dB, p̂2 = −7.92 dB}, LR = 0.961. (20)

As predicted, one source “grabs” most of the total power
and lies near θ̄ (the midpoint of the true DOAs), while
the other source has a ridiculous power and almost ar-
bitrary DOA. This accounts for a typical outlier.

If instead we assume equal powers for this same ran-
dom realisation, the ML estimates are

{θ̂1, θ̂2} = {0.09◦, 0.96◦},

p̂1 = p̂2 = 21.93 dB, LR = 0.927. (21)

We also see that ML optimisation for the equi-power
(constrained) model results in the optimised LR of 0.927
which is closer to the LR of the exact covariance ma-
trix (0.918) than is the LR for the unconstrained model
(0.961).

Underlying this dramatic difference in MLE is the
distinction between the two likelihood functions in
Fig. 2. The equi-power model has a tiny region (in the
(θ1, θ2) plane) of high LR values, whereas the arbitrary
source-power model has a likelihood function that has
two “arms” forming an L-shape centred on the midpoint
DOA {θ1, θ2} = {θ̄, θ̄}, both of which have very high
LR values in this case. In fact, these “arms” constitute
an “ambiguity region” of DOAs with almost equal and
maximal likelihood along them, so that MLE will choose
a scenario comprising one source near the midpoint θ̄
and another source that can have almost any value; this
also explains why MLE does not produce two outliers
simultaneously. In the equi-power model, it seems that
the “arms” in the likelihood surface have degenerated,
leaving only a tiny “ambiguity region” so that MLE has
little latitude to produce outliers.

It is worth mentioning that the GLRT detection-
estimation routine (11), for a single source with PFA =
10−2 and γLR(PFA) = 0.896, gives approximately the
same probability of detection as the ITC criterion.
Therefore both conventional (ITC) and more recent
(GLRT-based) detection-estimation routines demon-
strate the unavoidable failure of the entire detection-
estimation procedure within the SNR range of about
22–37 dB [3,4,12]. This is because the ML single-source
model is not “sufficiently likely”, but on the other hand
the “sufficiently likely” two-source model contains an
outlier. A similar phenomenon was observed in [2] for
more sources and a circular antenna array, but since
they could not prove their solutions were globally opti-
mal, it has been necessary for us to demonstrate that
the “ML breakdown” encountered by our detection-
estimation routine is an intrinsic property of ML esti-
mation.

Apart from imposing source-power constraints, we
can try to find DOAs from this ambiguity region that, in
addition to the global ML estimated DOAs, will demon-
strate the nonidentifiability of that particular scenario.
Fig. 3 compares sample pdf’s over 1000 trials, each of
DOA estimates and arbitrary source powers, for (a) the
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Figure 2: Example LR plot for two different source-power models. (a) arbitrary source-power model (yielding an
outlier): exact DOAs [0, 1.08]◦, [22, 22] dB, LR=0.918 (circle); stage 1 (maximum over grid, square): [0.50, 38.25]◦,
[24.93, -7.90] dB, LR=0.960; stage 2 (fmincon optimised, diamond): [0.51, 38.28]◦, [24.93, -7.92] dB, LR=0.961 (b)
equi-power model (no outlier): exact DOAs [0, 1.08]◦, [22, 22] dB, LR=0.918; stage 1: [0, 1]◦, [21.93, 21.93] dB,
LR=0.923; stage 2: [0.09, 0.96]◦, [21.93, 21.93] dB, LR=0.927.

ML search described above, and (b) an “expected like-
lihood” (EL) [3] search for two DOAs with minimum
intersource separation such that LR(Rµ) exceeds the
precalculated LR threshold γLR(PFA) (12). For M = 3,
T = 100 and PFA = 10−2, we have γLR(PFA) = 0.896.
We see a significant difference in the two pdf’s, as pre-
dicted by CRB equi-power analysis. The (unrestricted)
global ML search gives a pdf for each DOA that looks
like a heavy-tailed χ2-distribution. While the maximum
outlier is 38.3◦ (which we investigated in Fig. 2(a)), the
standard deviations of the DOA estimates are both 5.7◦,
which is surprisingly close to the CRB of 5.0◦ (see Fig. 1
for 22 dB SNR). Of course, the severe non-Gaussianity of
the pdf’s together with the significant bias (2.7◦) means
that we cannot use the CRB to accurately describe the
performance of MLE in this “threshold region” (with
performance breakdown).

On the contrary, the EL DOA estimates at Fig. 3(b)
form Gaussian-like pdfs, with a bias due to the relatively
low EL threshold 0.896 compared with 99% of the op-
timised LRs. Yet the DOA standard deviation (0.09◦)
is now far below the CRB (and is comparable with the
CRB for the equi-power model), while the worst DOA
total error is 0.22◦, which is significantly smaller than
the intersource separation (1.08◦).

3. SUMMARY AND CONCLUSIONS

Both CRB analysis and Monte-Carlo simulations of the
globally optimal ML estimator have demonstrated that
accurate MLE of close sources strongly depends on any
a priori assumptions about the source powers. Under
the equi-power source model, MLE resolution is far be-

low the SNR threshold for detection (where ITC ceases
to reliably detect the proper number of sources). For
the model with arbitrary source powers, DOA resolution
suffers from statistical nonidentifiability that is poorly
described by CRB analysis. The mechanism for this
phenomenon is when MLE randomly selects one of a
range of statistically equally likely models. This group
of models has one source at approximately the midpoint
of the two true DOAs with a power approximately the
sum of the two true powers; the other source (an outlier)
wanders over the “ambiguity region” (which depends on
SNR and sample support). In a related paper [12], we
demonstrated that the random matrix theory (RMT)
[also known as general statistical analysis (GSA)] tech-
nique can be used to accurately predict the ambiguity
region analytically.

We also introduced the expected-likelihood (EL) esti-
mate which searches for a model with the smallest in-
tersource separation that exceeds the precalculated LR.
This EL estimate is much better than the unconstrained
global ML estimate, but of course worse than the ML
estimate under the equi-power source model. The EL
estimate may be used in addition to the ML one, or
even a MUSIC one, to establish the statistical noniden-
tifiability of a given scenario (where two different models
have equally high LRs).

This study has investigated the global ML search for
a very simple scenario to demonstrate “ML breakdown”
that has been observed in a number of “ML proxy” rou-
tines with practically important scenarios.
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Figure 3: Statistical analysis of DOA estimation results for (a) conventional ML global search, and (b) proposed
EL threshold method.

REFERENCES

[1] H. Lee and F. Li, “Quantification of the differ-
ence between detection and resolution thresholds
for multiple closely spaced emitters,” IEEE Trans.
Sig. Proc., vol. 41, no. 6, pp. 2274–2277, Jun. 1993.

[2] D. Tufts, A. Kot, and R. Vaccaro, “The thresh-
old analysis of SVD-based algorithms,” in Proc.
ICASSP-88, New York, 1988, pp. 2416–2419.

[3] Y. Abramovich, N. Spencer, and A. Gorokhov,
“GLRT-based threshold detection-estimation per-
formance improvement and application to uniform
circular antenna arrays,” IEEE Trans. Sig. Proc.,
vol. 55, no. 1, pp. 20–31, Jan. 2007.

[4] B. Johnson, Y. Abramovich, and X. Mestre,
“MUSIC, G-MUSIC, and maximum-likelihood per-
formance breakdown,” IEEE Trans. Sig. Proc.,
vol. 56, no. 8, pp. 3944–3958, Aug. 2008.

[5] A. Amar and A. Weiss, “Fundamental resolution
limits of closely spaced random signals,” IET Radar
Sonar Navig., vol. 2 (3), pp. 170–179, 2008.

[6] S. Smith, “Statistical resolution limits and the com-
plexified Cramér–Rao bound,” IEEE Trans. Sig.
Proc., vol. 53, no. 5, pp. 1597–1609, May 2005.

[7] H. Messer, Y. Rockah, and P. Schultheiss, “Local-
ization in the presence of coherent interference,”
IEEE Trans. Acoust. Sp. Sig. Proc., vol. 38, no. 12,
pp. 2025–2032, 1990.

[8] H. Messer, “The potential performance gain
in using spectral information in passive de-
tection/localization of wideband sources,” IEEE
Trans. Sig. Proc., vol. 43, no. 12, pp. 2964–2974,
Dec. 1995.

[9] I. Reuven and H. Messer, “The use of the Barankin
bound for determining the threshold SNR in es-
timating the bearing of a source in the presence
of another,” in Proc. ICASSP-95, vol. 3, Detroit,
1995, pp. 1645–1648.

[10] F. Athley, “Threshold region performance of max-
imum likelihood direction of arrival estimators,”
IEEE Trans. Signal Processing, vol. 53, no. 4, pp.
1359–1373, Apr 2005.

[11] P. Forster, P. Larzabal, and E. Boyer, “Thresh-
old performance analysis of maximum likelihood
DOA estimation,” IEEE Trans. Signal Processing,
vol. 52, no. 11, pp. 3183–3191, Nov 2004.

[12] Y. Abramovich, B. Johnson, and N. Spencer,
“Statistical nonidentifiability of close emitters:
Maximum-likelihood estimation breakdown and its
GSA analysis,” in Proc. ICASSP-2009, Taipei, Tai-
wan, 2009, pp. 2133–2136.

[13] R. Muirhead, Aspects of Multivariate Statistical
Theory. New York: Wiley, 1982.

[14] M. Wax and T. Kailath, “Detection of signals by in-
formation theoretic criteria,” IEEE Trans. Acoust.
Sp. Sig. Proc., vol. 33, no. 2, pp. 387–392, Apr.
1985.

[15] B. Ottersten, M. Viberg, P. Stoica, and A. Ne-
horai, “Exact and large sample maximum likeli-
hood techniques for parameter estimation and de-
tection in array processing,” in Radar Array Pro-
cessing, S. Haykin, J. Litva, and T. Shepherd, Eds.
Berlin: Springer-Verlag, 1993, pp. 99–151, chapter
4, Springer Series in Information Sciences, vol 25.

1972


