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ABSTRACT phase after the BSS algorithm what increases the complex-

An adaptive Analytical Simplified Constant Modulus Algo- ity of these algorithms. _ o
rithm (adaptive-ASCMA) which accomplishes blind sourceS0. We propose a new algorithm, called ASCMA, to minimize
separation and carrier phase recovery is proposed. Tlos al the cost function SCM by using some analytical method. Sim-
rithm is applied on Multiple Input Multiple Output (MIMO) ulations show that adaptive-ASCMA allows to obtain a higher
communication systems and uses some analytical methods $NR and lower BER than adaptive-ACMA and SCMA. Fur-
minimize the Simplified Constant Modulus (SCM) cost func-thermore, phase recovery is accomplished conjointly viiéh t
tion. A study was done to find the subspace containing th8SS Dy using our algorithm. _ _
solution of the minimization problem. With comparable com- 1 Nis paper is organized as follows. In section 2 we briefly
putational complexities, the adaptive ASCMA accomplishegeview the system model and the principle of BSS. Next the
better performances in Bit Error Rate (BER) and Signal tgoroposed algorithm is described in section 3. Simulatien re
Interference and Noise Ratio (SINR) terms than the adaptiveSults are discussed in section 4, and conclusions are given i
ACMA with time varying environment. section 5

1. INTRODUCTION 2. PROBLEM FORMULATION

MIMO systems, created by the Bell Labs [1], are wireless2
communications techniques which uses several antennas @
emission and reception and has a high transmission capagfe first introduce some basic notation and properties used.
ity. At the receiver the channel characteristics are knoien v Lower-case boldface letters are used to denote vectors and
a training sequence, but in situations like interceptioohsu upper-case boldface letters to denote matrices. In additio
sequences can't be used then Blind Source Separation (BSS)

EL. Notations

is considered. _ _ ()7 denotes the transpose
BSS algorithms allow to obtain transmitted symbols from ()H denotes the transpose conjugate
only received signals. With BSS we obtein the sources di- tf (.) denotes the trace operator

rectly sontrary to methods which estimate the channel like t

X R ; O, i trix with t
Kalman filter used in blind context [2]. This type of method IS anil > I matrix with zeros components

I, is theN; x N; identity matrix

requires a decoder to obtain sources, that is increase the co E [.] is the expectation operator

plexity. Among possible adaptive BSS, there are the claksic @ denotes the direct sum

Constant Modulus Algorithm (CMA) [3, 4] , its simplified 0 denotes the real part of complex
version called SCMA [5] and the adaptive-Analytical Con- 0 denotes the imaginary part of complex

stant Modulus Algorithm (ACMA) described in [6, 7]. The i :

SCMA and the CMA use, to minimize their cost function, a \éeicéBﬂ)]sts::é(;]ré%l?é:g?O%odtérns @ into a vector
stochastic gradient descent, so they may be slow to converge 5 ;g — (aa @b ap @by ...)

and with time-varying environments they are less accurate.

On the other hand, the adaptive-ACMA uses some analyti-

cal methods to minimize the cost function, thus it converge@.2. System model

quickly and can be used on varying environments. :
The SCMA allows to accomplish equalization and carrierLet us consider a MIMO system whekg and N, represent

phase recovery simultaneously contrary to the CMA an(il(\a/spectlvely the number of transmit and receive antennas.

i p , e assume thal; independent and identically distributed
adaptive-ACMA. ‘Therefore, with the CMA and adaptive- and mutually independent zero-mean discrete-time seggenc

ACMA, a carrier loop must be used to recover the carrlerx(k) are transmitted at time instakathrough aN; x N MIMO

This work was supported by the DGA &Bgation Grérale de time-varying memoryless chanrie(k).
I'Armement) Assuming a carrier frequency offséf, theN; x 1 vector of
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received signalg(k) can be expressed as:
ived signalg(k) Xp y(k) BSS filter z(k)
. — W(k) —
y(k) = H(K).x(K)el?™*Ts | b(k)
y1(k) x1(K) or
y2(K) x2(K)
where  y(k) = : , x(k) = : ;
Y (K) X (K) ¥(K) | pre-whitening filter | ¥(k) | BSS separator z(k)
by (K) F(k) " T(k)
ba(K) hll(k) e iy (k)
b(k) = : ,H(k) = : : : . .
: Fig. 1. Scheme for the blind source separation
b, (K) hna(k) - e (K)
whereb(k) is theN; x 1 vector of additive noise samples and gqualization matrixT (k) is searched in order to separate the
1/Ts is the baud rate of the transmitter. mixing of sources/(K) (figure 1):

2.3. BSS principle

. . : 2k = TH(Ky(K
To recover blindly the transmitted source&) an algorithm =

of BSS is used. In order to realize the BSS, some hypotheses = TR (Ky(k)
must be verified: - wH (K)y(Kk)
o Nr >N

e H have iid complex components, is unitary else the rewhereW=FT.
ceived signaly(k) must be prewhitened before applying
BSS. 3. THE ADAPTIVE ANALYTICAL SCMA

* The noise IS additive, wh|te and %au53|gln with zero Me3Afh this section the following properties of the Kronecker
and a covariance matriX, = E[bb"™] = ofl, . product are used:

e The sources are zero mean discrete-time sequences, with

a covariance matrixCy = E[xxH] = In., and they must veqab"') =b*®a
be mutually independent at a given time instant and veqABC) = (CH @ A)veqB)
identically distributed. veqAdiag(b)C) = (CH o A)b

In order to recover the source signals, the received signal$ 1. Cost function

y(k) are processed by &, x Ni matrix equalizeMW (k) that ) . :
produces the\; x 1 vector outputz(k). The receiver output The adaptive Analytical SCMA uses the SCM cost function

can be represented as (figure 1): proposed by [5]:
_ Nt
W o= Wiyl ATM) = 3 (D@ () ~R)?
= WH(K) (H(K).x(k)el2maTs b(k)) =)
= GH(k)x(k)+b'(k) E[I0(x(k)1*]

whereR, = E[Ee) to bring out the real part of (k), it

wherez(k) should ideally match thé& transmitted signals is written as:
x(k), b’ (k) = WH (k)b(K) is the colored noise at the equalizer

output and3 (k) = H" (k)e~ 12 Tsw (k) is theN; x N; global 2(k) = t(k"yK),l€{1...,N}
response matrix. The matriw/ is feasible to separate the — P 0T iiTo
sources, except for a possible permutation and an arbitrary Uk (k) + ity y(k)
rotation.
herei (k) — (D@D Y oo _ ( B(K)
s not un wheretil) =1 oy ) YW= o) )
Generally the channel matrkt is not unitary, so we must y

prewhiten the received signajgk) to verify the second hy- y(k) = —DO(y(k))
pothesis. So, th&l; x N; prewhitening filter(k) is applied V7
on the received signaigk):

y(k) =Fy(k)

As inspired by [7], by using the Kronecker product prop-
erties,[12(z (k)) and0?(z (k)) can be written as:

2 _ T (1T (NF
wherey (k) is theN; x 1 vector of prewhitened received sig- D%zk) = tk) TRy (k) (k)~

t
nals. Once the received signals pre-whitened,Nax N; = (y(k)@)y(k))T(ﬂ(k)®t|(k))

—
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From [7], by using a QR factorization, the cost function be-Property 1 ker(C) @ image(C) = R® where® denotes the
comes: direct sum, i.e.ker(C) Nnimage(C) = {0} and ker(C) and
N N image(C) are subspace dk'6.
tk) argd,(k):fm?@al (k>|:1d' (C i (k) Definition 1 By construction, the only dependence obtained
|ldi (k) ||=R on columns oC are: G, = Cs, C3 = Cg, C4 = Cy3, C7 = Cyp,
. ) o ] Cg = C14, C12 = Cy5, Where G represents the'h column ofC.
where the constrainfd, (k)| = R avoids the trivial solution o, dinfker(C)] = 6. A basis Rer of the nullspace is defined

di (k) =0. as:
The matrixC(k) is defined as: Beer = {€1,€),€,€),6,65}

C(K) = AC(k—1) + BK)c(k)cT (K) (1) = {e2—e5,e3— 9,04 —€13,€7— 10,83 — €14,€12— €15}

with 0< A <1, B(k) = a(k=1) y (1-A),B>0 where g, i € {1,...,16} are vectors in the standard basis of
! a(k ! R16
a(k)=Aa(k-1)+1-A and The ¢ are linearly independent and verifel = 0.
ck) = YKk oyk —pk-1)/a(k—1) Thanks to the rank-nullity theorem:

where rank(C) 4+ dim(ker(C)) = dim(R1®),

ki = Apk—D+(1-2)FKk ¥k
P(K) P( )+ ICRIO) and since the dimensionkér(C) is equal to 6, the dimension

3.2. Search of the subspace containing the solution of Imageg(C) is equal to 10. And &, is a basis of image:

To find the subspace which contains the solution we propose o PR R R R R R R

the following anpalysis. In this section, we will usg tvI\D/o B = {€],€,€,€;,€,6,€,6, €, €1}

antennas at emissiol(= 2) to make the theoretical study. = {e1,65,€11,€16,62 + 65,63+ €9, €4 + €13,

Now, it will be shown that vectord|, VI € {1...2}, which €7+ e10,63+ €14,€12+ €15}

minimize the functionzledrcm under the hypotheses ] ] o

d =i of and HalH —"R are in the minor subspace of The ¢ are linearly independent, verif@€ # 0 and we can

C spanned by a linear combination of eigenvectorsCof Verify the property 1: thejeand the ¢ are linearly indepen-
associated to smallest eigenvalues different of 0. dent, then{e,, ..., &, €],...,€,} is a basis forR*®.

By using the nullspace basis @f we deduce the following

First, we use properties @ to reformulate the optimiza- theorem (the proof of this theorem is shown in appendix 6):

tion problem:
Theorem 1 The matrix16 x 16 C is symmetric and semi- Theorem 2 In the nullspace o€, only vectoiO:c has a Kro-
define positive. necker structure.

Lemma 1 leCd| >0,Vl € {1...2} and so the optimization By using the properties 1, we deduce the following lemma:

problem becomes: ) ]
, Lemma 2 Let E, the{set ozs\/ectors iR16 ha\}/lng a Kro-
v . ker structure: E= {peR*°/p=txt,te R*}, then EC
fky=arg  min dT (K)C(k)d (k nec ’

) %t k>®f.<k>.z1  (CHa k) Image(C).

Finally, we search to minimize the cost function:

(k) = i d’ (k)C(k)d (k TN AT
(k) =arg, . min. o0 Kctkd k), J(E)=dl Cdy, ¥l €{1...2}
underd, =t @1, ||di|| =R

[ (9[|=R
vle{1...2} Vectors which minimizeJ(f)) are eigenvectors/, corre-
Proof 1 By constructioncc” is symmetric and semi-define sponding to the smallest eigenvalues different of zero of

positive and by using the equation 1, we deduce @@ C, and vectors which minimizé(f)) under the hypotheses
is symmetric and semi-define positive too. dy =1 ®1 and||t|| = Rare spanned by the eigenvecturs

Afterward, the nullspace and image®fk) will be used, 91 =SPan(va,...,Vn).

they are defined as: Now, we will show how to track the solutiag .

ker(C) = R'®/Cy =0 , ,
er(C) {y €RT/Cy Rle} 3.3. Tracking of the solution d
image(C) = {z eR®/z=Cy,ye R16} To track vectod,, we use, like in [7] the NOOJA (Normalized
Orthogonal Oja) algorithm [8]. This algorithm extracts pda
ker(C) andimage(C) are subspaces &f'6. tively the minor subspacB = (dy,...,dn,), spanned by the
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eigenvectors corresponding to the smallest eigenvaltfes-di Received signals Adaptive-SCMA

ent of zero, of the autocorrelation matfixof the signalk(k) o ¥
(C = E [cc'']) by maximizing the following cost function: 2’ S o
JD) = Ellc(k)—DD (k)| £, LR~ P
= tr(C)—2tr(D'CD) +tr(D"CDD'D) T T e T |
Real Real
The vectorsd; (k) obtained by the NOOJA must satisfy the . Adaptive-ACMA ) SCMA
constraintd; (k) = t; (k) ®; (k). To do that we use, like Van
Der Veen [7], the following method: 2’ [ iataa 2!
First, T(k—1) o T(k— 1) is computed and regarded as the 5o & R
current estimate of the subspace babigk(- 1) = T(k—1) o £ g £
T(k—1)). Then, by using this basis, the subspace update | A -l |
performed thanks to the NOOJA, giviig k). The last step Real

of this algorithm is the mapping of the columaigk) of D(k)

to a Kronecker-product: Fig. 2. Constellations of a 4-QAM with a carrier frequency

~ ~ ~ ~ — _ o _ 4 _
vec (di(k) = Di(k) =Tk (K
Then, a power iteration [9] is applied, which takes the form: the SCMA (figure 2). We considered the case of a carrier fre-
quency offsetd; Ts = 10~4 with SNR=30dB. Here only the

ti(k) = Di(k)t (k—1) adaptive-ASCMA can remove the offset without the use of

, a carrier tracking loop. The equalizer output of adaptive-

3.4. Estimated symbols ACMA and SCMA is spinning due to the carrier frequency
To obtain the transmitted symbols, the complex mafrils  Offset and the time-varying channel, so a carrier recovery i
rebuilt fromT: necessary after them. Normally, the SCMA allows to track
B 5 the carrier phase, but in this case the carrier phase is gho hi

tim =tim+ Jtimings LMEL ... N to obtain a good tracking. Then, we use the signal to interfer

. ence and noise ratio (SINR) criterion defined as:
To guarantee that outputs BSS converge to independent so-

lutions, T must be orthogonal [10]. This can be formulated |gmm|2

as: SINR, =
1 1m|9m”+ TmCoTH

T =arg min |[T—T2
THT = 1 N

The solution of this optimization problem is done in [9]. SINR= N WZlSINR“

First a singular value decompositionbfasT = ¥ ajujv';I is

computed. Then, the singular valuesTofire replaced by 1: ~ Where SINRy is the SNR at thert" output, gim = HRW,,
whereW, andH, are thd'™ and themt" column vector of the

T =reorth(T) = Z UjV|J'-| matricesW andH respectively. The figure 3 represents the

SINR with a SNR of 15 dB. The adaptive-ASCMA achieves

Finally, the matrixT" is applied on the pre-whitened received higher SINR than adaptive-ACMA and SCMA.
signals:

3k) =T " (Ky(K) The figure 4 shows the average BER versus SNR where
the average is a time average. The lower BER is achieved
4. SIMULATION RESULTS by the adaptive-ASCMA, followed by the adaptive-ACMA

and by the SCMA. The proposed adaptive-ASCMA allows

performances of the adaptive-ASCMA. Each transmitte odgbt_am_ a gain of 2 dB in SNR terms compared with the

. . ; ptive-ACMA for a BER equal to 16.

signal is drawn from 4-QAM constellation and undergoes

a time-varying MIMO channel. The considered channel

Doppler shift f4Ts) is equal to 33.10°3. A two-transmit 5. CONCLUSION

four-receive type of scenario is considered. We run theén this paper we have presented a new BSS algorithm for

adaptive-ASCMA and the adaptive-ACMA with a forget time-varying environments. The proposed algorithm isechll

factorA = 0.99 and the SCMA with a stepsize= 5.1072. adaptive-ASCMA and implements the SCM cost function

by using some analytical methods. Moreover, we have

First, to examine the performance of joint source separashown which subspace contains the solution of our optimiza-

tion and carrier phase recovery, we compare the output comion problem. This algorithm can accomplish blind sep-

stellation of the adaptive-ASCMA, the adaptive-ACMA and aration and carrier phase recovery simultaneously contrar

In this section we present simulation results illustratihg
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SINR with 1000 runs, fdTs=0.0033, Ns=200, Nt:2‘ N,=4, SNR=15 dB

14 T
12r
10r
g e
z |k
5 6 adaptive ASCMA
—adaptive ACMA
4 ---SCMA
2
0 ; ; ;
0 50 100 150 200

nb symboles

Fig. 3. SINR of a 4-QAM without a carrier frequency offset

versusEp/No.N; =2, N, =4, 6fT; =0, fgTs = 0.0033 and
SNR= 15dB

BER with fdTs=0.0033, Ns=10000, N[ZZ, Nr=4

—adaptive ASCMA
—e—adaptive ACMA
---SCMA

10 15 20
Es/N,(dB)

Fig. 4. BER of a 4-QAM without a carrier frequency offset

versusEp/No. Nt =2, Ny =4, 0; Ts =0, fqTs = 0.0033

So,X = vec }(x) is a(4 x 4) skew-symmetric matrix.
X andvecl(t®t), witht = (t1 to t3 t4)T € R* are equal to:

0 X —X3 —X
X — X2 0 —X7 —Xg
|l X3 X7 0 —X2
X4 Xg X2 O
2ty tits tts
1 |ty t3 tts oty
veetEN = | vt bte € tatg
tits totg tats 2

vecl(t®t) is a (4 x 4) symmetric matrix and its values on
diagonal are positive whil¥ is a skew-symmetric matrix. So,
vectorsx don’t have a Kronecker structure, excepid
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