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ABSTRACT
An adaptive Analytical Simplified Constant Modulus Algo-
rithm (adaptive-ASCMA) which accomplishes blind source
separation and carrier phase recovery is proposed. This algo-
rithm is applied on Multiple Input Multiple Output (MIMO)
communication systems and uses some analytical methods to
minimize the Simplified Constant Modulus (SCM) cost func-
tion. A study was done to find the subspace containing the
solution of the minimization problem. With comparable com-
putational complexities, the adaptive ASCMA accomplishes
better performances in Bit Error Rate (BER) and Signal to
Interference and Noise Ratio (SINR) terms than the adaptive-
ACMA with time varying environment.

1. INTRODUCTION

MIMO systems, created by the Bell Labs [1], are wireless
communications techniques which uses several antennas at
emission and reception and has a high transmission capac-
ity. At the receiver the channel characteristics are known via
a training sequence, but in situations like interception such
sequences can’t be used then Blind Source Separation (BSS)
is considered.
BSS algorithms allow to obtain transmitted symbols from
only received signals. With BSS we obtein the sources di-
rectly sontrary to methods which estimate the channel like the
Kalman filter used in blind context [2]. This type of method
requires a decoder to obtain sources, that is increase the com-
plexity. Among possible adaptive BSS, there are the classical
Constant Modulus Algorithm (CMA) [3, 4] , its simplified
version called SCMA [5] and the adaptive-Analytical Con-
stant Modulus Algorithm (ACMA) described in [6, 7]. The
SCMA and the CMA use, to minimize their cost function, a
stochastic gradient descent, so they may be slow to converge
and with time-varying environments they are less accurate.
On the other hand, the adaptive-ACMA uses some analyti-
cal methods to minimize the cost function, thus it converges
quickly and can be used on varying environments.
The SCMA allows to accomplish equalization and carrier
phase recovery simultaneously contrary to the CMA and
adaptive-ACMA. Therefore, with the CMA and adaptive-
ACMA, a carrier loop must be used to recover the carrier
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phase after the BSS algorithm what increases the complex-
ity of these algorithms.
So, we propose a new algorithm, called ASCMA, to minimize
the cost function SCM by using some analytical method. Sim-
ulations show that adaptive-ASCMA allows to obtain a higher
SINR and lower BER than adaptive-ACMA and SCMA. Fur-
thermore, phase recovery is accomplished conjointly with the
BSS by using our algorithm.
This paper is organized as follows. In section 2 we briefly
review the system model and the principle of BSS. Next the
proposed algorithm is described in section 3. Simulation re-
sults are discussed in section 4, and conclusions are given in
section 5

2. PROBLEM FORMULATION

2.1. Notations

We first introduce some basic notation and properties used.
Lower-case boldface letters are used to denote vectors and
upper-case boldface letters to denote matrices. In addition:

(.)T denotes the transpose
(.)H denotes the transpose conjugate
tr (.) denotes the trace operator
0Nt is anNt ×Nt matrix with zeros components
INt is theNt ×Nt identity matrix
E [.] is the expectation operator
⊕ denotes the direct sum
ℜ denotes the real part of complex
ℑ denotes the imaginary part of complex
vec(B) stacking of the columns ofB into a vector
⊗ is the Kronecker product
A ◦B = (a1⊗b1 a2⊗b2 . . .)

2.2. System model

Let us consider a MIMO system whereNt andNr represent
respectively the number of transmit and receive antennas.
We assume thatNt independent and identically distributed
and mutually independent zero-mean discrete-time sequences
x(k) are transmitted at time instantk through aNr ×Nt MIMO
time-varying memoryless channelH(k).
Assuming a carrier frequency offsetδ f , theNr ×1 vector of
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received signalsy(k) can be expressed as:

y(k) = H(k).x(k)ej2πkδ f Ts +b(k)

where y(k) =









y1(k)
y2(k)

...
yNr (k)









, x(k) =









x1(k)
x2(k)

...
xNt (k)









,

b(k) =









b1(k)
b2(k)

...
bNr (k)









, H(k) =





h11(k) · · · h1Nt (k)
...

. . .
...

hNr 1(k) · · · hNr Nt (k)





whereb(k) is theNr ×1 vector of additive noise samples and
1/Ts is the baud rate of the transmitter.

2.3. BSS principle

To recover blindly the transmitted sourcesx(k) an algorithm
of BSS is used. In order to realize the BSS, some hypotheses
must be verified:
• Nr ≥ Nt

• H have iid complex components, is unitary else the re-
ceived signalsy(k) must be prewhitened before applying
BSS.

• The noise is additive, white and gaussian with zero mean
and a covariance matrixCb = E[bbH ] = σ2

b INr .
• The sources are zero mean discrete-time sequences, with

a covariance matrixCx = E[xxH ] = INt , and they must
be mutually independent at a given time instant and
identically distributed.

In order to recover the source signals, the received signals
y(k) are processed by aNr ×Nt matrix equalizerW(k) that
produces theNt × 1 vector outputz(k). The receiver output
can be represented as (figure 1):

z(k) = WH(k)y(k)

= WH(k)
(

H(k).x(k)ej2πkδ f Ts +b(k)
)

= GH(k)x(k)+b′(k)

wherez(k) should ideally match theNt transmitted signals
x(k), b′(k) = WH(k)b(k) is the colored noise at the equalizer
output andG(k) = HH(k)e− j2πkδ f TsW(k) is theNt ×Nt global
response matrix. The matrixW is feasible to separate the
sources, except for a possible permutation and an arbitrary
rotation.

Generally the channel matrixH is not unitary, so we must
prewhiten the received signalsy(k) to verify the second hy-
pothesis. So, theNr ×Nt prewhitening filterF(k) is applied
on the received signalsy(k):

y(k) = FHy(k)

wherey(k) is theNt ×1 vector of prewhitened received sig-
nals. Once the received signals pre-whitened, anNt × Nt

Fig. 1. Scheme for the blind source separation

equalization matrixT(k) is searched in order to separate the
mixing of sourcesy(k) (figure 1):

z(k) = TH(k)y(k)

= TH(k)FH(k)y(k)

= WH(k)y(k)

whereW=FT .

3. THE ADAPTIVE ANALYTICAL SCMA

In this section the following properties of the Kronecker
product are used:

vec(abH) = b∗⊗a
vec(ABC) = (CH ⊗A)vec(B)
vec(Adiag(b)C) = (CH ◦A)b

3.1. Cost function

The adaptive Analytical SCMA uses the SCM cost function
proposed by [5]:

J(T(k)) =
Nt

∑
l=1

(

ℜ2(zl (k))−Rr
)2

whereRr =
E[|ℜ(x(k))|4]
E[|ℜ(x(k))|2]

, to bring out the real part ofzl (k), it

is written as:

zl (k) = t l (k)
Hy(k), l ∈ {1, . . . ,Nt}

= t̃ l (k)
T ỹ(k)+ j t̃T

l y(k)

wheret̃ l (k) =

(

ℜ(t l (k))
ℑ(t(k))

)

, ỹ(k) =

(

ℜ(y(k))
ℑ(y(k))

)

,

y(k) =

(

−ℑ(y(k))
ℜ(y(k))

)

As inspired by [7], by using the Kronecker product prop-
erties,ℜ2(zl (k)) andℑ2(zl (k)) can be written as:

ℜ2(zl (k)) = t̃ l (k)
T(ỹ(k)ỹT(k))t̃ l (k)

= (ỹ(k)⊗ ỹ(k))T(t̃ l (k)⊗ t̃ l (k))
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From [7], by using a QR factorization, the cost function be-
comes:

t̃(k) = arg min
dl (k)=t̃l (k)⊗d̃l (k)
‖d̃l (k)‖=R

Nt

∑
l=1

dT
l (k)C(k)dl (k)

where the constraint
∥

∥d̃l (k)
∥

∥ = R avoids the trivial solution
d̃l (k) = 0.

The matrixC(k) is defined as:

C(k) = λC(k−1)+β (k)c(k)cT(k) (1)

with 0 < λ < 1, β (k) = α(k−1)
α(k) λ (1−λ ), β > 0

α(k) = λα(k−1)+1−λ and

c(k) = ỹ(k)⊗ ỹ(k)−p(k−1)/α(k−1)

where

p(k) = λp(k−1)+(1−λ )(ỹ(k)⊗ ỹ(k))

3.2. Search of the subspace containing the solution

To find the subspace which contains the solution we propose
the following analysis. In this section, we will use two
antennas at emission (Nt = 2) to make the theoretical study.
Now, it will be shown that vectorsdl , ∀l ∈ {1. . .2}, which
minimize the function∑2

l=1dT
l Cdl under the hypotheses

dl = t̃ l ⊗ t̃ l and
∥

∥d̃l
∥

∥ = R, are in the minor subspace of
C spanned by a linear combination of eigenvectors ofC
associated to smallest eigenvalues different of 0.

First, we use properties ofC to reformulate the optimiza-
tion problem:

Theorem 1 The matrix16× 16 C is symmetric and semi-
define positive.

Lemma 1 dT
l Cdl ≥ 0, ∀l ∈ {1. . .2} and so the optimization

problem becomes:

t̃(k) = arg min
dl (k)=t̃l (k)⊗t̃l (k)
‖d̃l (k)‖=R

2

∑
l=1

dT
l (k)C(k)dl (k)

⇔

t̃(k) = arg min
dl (k)=t̃l (k)⊗t̃l (k)
‖d̃l (k)‖=R

dT
l (k)C(k)dl (k),

∀l ∈ {1. . .2}

Proof 1 By constructionccT is symmetric and semi-define
positive and by using the equation 1, we deduce thatC(k)
is symmetric and semi-define positive too.

Afterward, the nullspace and image ofC(k) will be used,
they are defined as:

ker(C) =
{

y ∈ R
16/Cy = 0R16

}

image(C) =
{

z∈ R
16/z = Cy, y ∈ R

16
}

ker(C) andimage(C) are subspaces ofR
16.

Property 1 ker(C)⊕ image(C) = R
16 where⊕ denotes the

direct sum, i.e.,ker(C)∩ image(C) = {0} and ker(C) and
image(C) are subspace ofR16.

Definition 1 By construction, the only dependence obtained
on columns ofC are: C2 = C5, C3 = C9, C4 = C13, C7 = C10,
C8 =C14, C12 =C15, where Cn represents the nth column ofC.
So, dim[ker(C)] = 6. A basis Bker of the nullspace is defined
as:

Bker =
{

e′1,e
′
2,e

′
3,e

′
4,e

′
5,e

′
6

}

= {e2−e5,e3−e9,e4−e13,e7−e10,e8−e14,e12−e15}

where ei , i ∈ {1, . . . ,16} are vectors in the standard basis of
R

16.
The e′i are linearly independent and verifyCe′i = 0.
Thanks to the rank-nullity theorem:

rank(C)+dim(ker(C)) = dim(R16),

and since the dimension ofker(C) is equal to 6, the dimension
of Image(C) is equal to 10. And Bim is a basis of image:

Bim =
{

e′′1,e
′′
2,e

′′
3,e

′′
4,e

′′
5,e

′′
6,e

′′
7,e

′′
8,e

′′
9,e

′′
10

}

= {e1,e6,e11,e16,e2 +e5,e3 +e9,e4 +e13,

e7 +e10,e8 +e14,e12+e15}

The e′′i are linearly independent, verifyCe′′i 6= 0 and we can
verify the property 1: the e′i and the e′′i are linearly indepen-
dent, then

{

e′1, . . . ,e
′
6,e

′′
1, . . . ,e

′′
10

}

is a basis forR16.

By using the nullspace basis ofC, we deduce the following
theorem (the proof of this theorem is shown in appendix 6):

Theorem 2 In the nullspace ofC, only vector0
R16 has a Kro-

necker structure.

By using the properties 1, we deduce the following lemma:

Lemma 2 Let E, the set of vectors inR16 having a Kro-
necker structure: E=

{

p ∈ R
16/p = t⊗ t, t ∈ R

4
}

, then E⊂
Image(C).

Finally, we search to minimize the cost function:
{

J(t̃ l ) = dT
l Cdl , ∀l ∈ {1. . .2}

underdl = t̃ l ⊗ t̃ l ,
∥

∥d̃l
∥

∥ = R

Vectors which minimizeJ(t̃ l ) are eigenvectorsvn corre-
sponding to the smallest eigenvalues different of zero of
C, and vectors which minimizeJ(t̃ l ) under the hypotheses
dl = t̃ l ⊗ t̃ l and

∥

∥t̃ l
∥

∥ = R are spanned by the eigenvectorsvn:
dl = span(v1, . . . ,vn).

Now, we will show how to track the solutiondl .

3.3. Tracking of the solution dl

To track vectordl , we use, like in [7] the NOOJA (Normalized
Orthogonal Oja) algorithm [8]. This algorithm extracts adap-
tively the minor subspaceD = (d1, . . . ,dNt ), spanned by the
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eigenvectors corresponding to the smallest eigenvalues differ-
ent of zero, of the autocorrelation matrixC of the signalc(k)
(C = E

[

ccH
]

) by maximizing the following cost function:

J(D) = E
∥

∥c(k)−DDTc(k)
∥

∥

2

= tr(C)−2tr(DTCD)+ tr(DTCDDTD)

The vectorsdl (k) obtained by the NOOJA must satisfy the
constraintdl (k) = t̃ l (k)⊗ t̃ l (k). To do that we use, like Van
Der Veen [7], the following method:
First, T̃(k− 1) ◦ T̃(k− 1) is computed and regarded as the
current estimate of the subspace basis (D(k−1) = T̃(k−1)◦
T̃(k−1)). Then, by using this basis, the subspace update is
performed thanks to the NOOJA, givingD(k). The last step
of this algorithm is the mapping of the columnsdl (k) of D(k)
to a Kronecker-product:

dl (k) = t̃ l (k)⊗ t̃ l (k) = vec(t̃ l (k)t̃
T
l (k))

vec−1(dl (k)) = Dl (k) = t̃ l (k)t̃
T
l (k)

Then, a power iteration [9] is applied, which takes the form:

t̃ l (k) = Dl (k)t̃ l (k−1)

3.4. Estimated symbols

To obtain the transmitted symbols, the complex matrixT is
rebuilt fromT̃:

t lm = t̃ lm + j t̃ l(m+Nt ), l ,m∈ 1, . . . ,Nt

To guarantee that outputs BSS converge to independent so-
lutions, T must be orthogonal [10]. This can be formulated
as:

T’ = arg min
T’ HT’ =I

‖T −T’ ‖2
F

The solution of this optimization problem is done in [9].
First a singular value decomposition ofT asT = ∑σ ju jvH

j is
computed. Then, the singular values ofT are replaced by 1:

T’ = reorth(T) = ∑u jvH
j

Finally, the matrixT’ is applied on the pre-whitened received
signals:

ŝ(k) = T’ H(k)y(k)

4. SIMULATION RESULTS

In this section we present simulation results illustratingthe
performances of the adaptive-ASCMA. Each transmitted
signal is drawn from 4-QAM constellation and undergoes
a time-varying MIMO channel. The considered channel
Doppler shift (fdTs) is equal to 3,3.10−3. A two-transmit
four-receive type of scenario is considered. We run the
adaptive-ASCMA and the adaptive-ACMA with a forget
factorλ = 0.99 and the SCMA with a stepsizeµ = 5.10−2.

First, to examine the performance of joint source separa-
tion and carrier phase recovery, we compare the output con-
stellation of the adaptive-ASCMA, the adaptive-ACMA and
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Fig. 2. Constellations of a 4-QAM with a carrier frequency
offset. SNR=30dB,Nt = 2, Nr = 4, δ f Ts = 10−4, fdTs =
0.0033

the SCMA (figure 2). We considered the case of a carrier fre-
quency offsetδ f Ts = 10−4 with SNR=30dB. Here only the
adaptive-ASCMA can remove the offset without the use of
a carrier tracking loop. The equalizer output of adaptive-
ACMA and SCMA is spinning due to the carrier frequency
offset and the time-varying channel, so a carrier recovery is
necessary after them. Normally, the SCMA allows to track
the carrier phase, but in this case the carrier phase is too high
to obtain a good tracking. Then, we use the signal to interfer-
ence and noise ratio (SINR) criterion defined as:

SINRm =
|gmm|

2

∑l ,l 6=m|glm|
2 +TmCbTH

m

SINR=
1
Nt

Nt

∑
m=1

SINRm

whereSINRm is the SNR at themth output, glm = HH
mW l ,

whereW l andHm are thel th and themth column vector of the
matricesW andH respectively. The figure 3 represents the
SINR with a SNR of 15 dB. The adaptive-ASCMA achieves
higher SINR than adaptive-ACMA and SCMA.

The figure 4 shows the average BER versus SNR where
the average is a time average. The lower BER is achieved
by the adaptive-ASCMA, followed by the adaptive-ACMA
and by the SCMA. The proposed adaptive-ASCMA allows
to obtain a gain of 2 dB in SNR terms compared with the
adaptive-ACMA for a BER equal to 10−3.

5. CONCLUSION

In this paper we have presented a new BSS algorithm for
time-varying environments. The proposed algorithm is called
adaptive-ASCMA and implements the SCM cost function
by using some analytical methods. Moreover, we have
shown which subspace contains the solution of our optimiza-
tion problem. This algorithm can accomplish blind sep-
aration and carrier phase recovery simultaneously contrary
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Fig. 4. BER of a 4-QAM without a carrier frequency offset
versusEb/N0. Nt = 2, Nr = 4, δ f Ts = 0, fdTs = 0.0033

to the adaptive-ACMA. Simulations results have shown that
the adaptive-ASCMA has better performances in SINR and
BER terms compared to the adaptive-ACMA with compara-
ble computational complexities.

6. APPENDIX

6.1. Proof of Theorem 2

Let x ∈ R
16, x = (x1, . . . ,x16)

T . By supposingx ∈ ker(C),

x =
6

∑
i=1

αie
′
i , αi ∈ R

We have

• x1 = x6 = x11 = x16 = 0
• x2 = −x5, x3 = −x9, x4 = −x13, x7 = −x10, x8 = −x14,

x12 = −x15

So,X = vec−1(x) is a(4×4) skew-symmetric matrix.
X andvec−1(t⊗ t), with t = (t1 t2 t3 t4)T ∈ R

4 are equal to:

X =







0 −x2 −x3 −x4
x2 0 −x7 −x8
x3 x7 0 −x12
x4 x8 x12 0







vec−1(t⊗ t) =









t2
1 t1t2 t1t3 t1t4

t1t2 t2
2 t2t3 t2t4

t1t3 t2t3 t2
3 t3t4

t1t4 t2t4 t3t4 t2
4









vec−1(t ⊗ t) is a (4×4) symmetric matrix and its values on
diagonal are positive whileX is a skew-symmetric matrix. So,
vectorsx don’t have a Kronecker structure, except 0

R16.

7. REFERENCES

[1] G. J. Foschini, “Layered space-time architecture for
wireless communication in a fading environment when
using multiple antennas,”Bell Labs Technical Journal,
vol. 1, no. 2, pp. 41–59, September 1996.

[2] S. Daumont and D. Le Guennec, “Blind tracking of
time-varying MIMO channel with Alamouti scheme in
interception context,” ISWCS ’08. IEEE International
Symposium on Wireless Communication Systems, pp.
443–447, October 2008.

[3] L. Castedo, C.J. Escudo, and A. Dapena, “A blind sig-
nal separation method for multiuser communications,”
IEEE Transactions on Signal Processing, vol. 45, pp.
1343–1348, May 1997.

[4] R. Gooch and J. Lundell, “The CM array: An adaptive
beamformer for constant modulus signals,”IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing, vol. 11, pp. 2523–2536, 1986.

[5] A. Ikhlef and D. Le Guennec, “A Simplified Constant
Modulus Algorithm for Blind Recovery of MIMO QAM
and PSK Signals : A Criterion with Convergence Anal-
ysis,” EURASIP Journal on Wireless Communications
and Networking, 2007.

[6] A. Van Der Veen and A. Paulraj, “An analytical con-
stant modulus algorithm,”IEEE Transactions on Signal
Processing, vol. 44, no. 5, pp. 1136–1157, May 1996.

[7] A.J. Van der Veen, “An adaptive version of the alge-
braic constant modulus algorithm,”IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing, vol. 4, pp. 873–876, 2005.

[8] S. Attallah and K. Abed-Meraim, “Fast algorithms for
subspace tracking,” IEEE Signal Processing Letters,
vol. 8, pp. 203–206, 2001.

[9] G. Golub and C. F. Van Loan,Matrix computations, The
Johns Hopkins University Press, 1996.

[10] C. B. Papadias, “Globally convergent blind source sepa-
ration based on a multiuser kurtosis maximization crite-
rion,” IEEE Journal on Selected Areas in Communica-
tions, vol. 48, no. 12, pp. 3508–3519, December 2000.

317


