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ABSTRACT
For a given partial covariance sequence(C0,C1, . . . ,Cn) and

for each MA part of the ARMA modeling filter of degreen, an AR
part of the ARMA modeling filter of degreen for the solution to
the rational covariance extension problem is obtained by solving
a nonlinear equation, which is homotopic to a nonlinear equation
determining the maximum entropy AR filter.

Index Terms-Covariance extension, ARMA modeling filter,
McMillan degree constraint.

1. INTRODUCTION

It is well-known that the spectral densityΦ(z) of a second-order,
m-dimensional stationary stochastic process{y(t)} with zero mean
is given by the Fourier expansion

Φ(eiθ ) =
∞

∑
k=−∞

Cke−ikθ

on the unit circle, where the covariance matrices are given by

Ck = E{y(t)y(t −k)T}, k = 0,1,2, . . . .

For each spectral density, there exists a unique modeling filter,
which shapes a white noise process into the stochastic process.

For a given partial covariance sequence(C0,C1, . . . ,Cn), we
want to determine the spectral density, which is consistentwith the
given partial covariance sequence [7, 4, 5, 16, 11, 3, 1, 6, 14, 10].
This is known as the covariance extension problem and it is com-
mon that the estimated spectral density is a rational function, and
that the modeling filter is also a rational model, i.e., autoregressive
moving average (ARMA) type [13, 9].

It is well-known that there exists a solution to the covariance
extension problem, so-called maximum entropy solution [13]. The
spectral density maximizes the entropy rate of the spectraldensity,
and its firstn+1 covariance matrices matches the given partial co-
variance sequence. The modeling filter of the maximum entropy
spectral density is an autoregressive (AR) type [13].

In this paper, we show that, for a given partial covariance se-
quence(C0,C1, . . . ,Cn) and for each MA part of the ARMA mod-
eling filter of degreen, an AR part of the ARMA modeling filter of
degreen for the solution to the covariance extension problem is de-
termined by solving a nonlinear equation, which is homotopic to a
nonlinear equation to determine the maximum entropy filter of AR
type.

Notations

Real numbers are represented byR and complex numbers are rep-
resented byC. c̄ denotes the conjugate of the complex numberc.
Denote byR j×k j × k real matrices.I denotesm×m identity ma-
trix, and 0 denotesm×m zero matrix.AT denotes the transpose of
a matrixA. detA denotes the determinant of a matrixA. We use the
notationsA > 0 to denote that a matrixA is positive definite.

Let us define

f (z)∗ := f (z̄−1)T .

We denote the unit disc byD := {z∈ C : |z|< 1}. An m×mmatrix-
valued rational functionf (z) is called strictly positive real if it is
analytic in the outside of the unit discDc := {z∈ C : |z| ≥ 1} and

f (z)+ f (z)∗ > 0.

is positive definite onT. The functionf (z) is strictly positive real if
and only if f (z)−1 is strictly positive real. Thus, it is necessary that
all zeros of strictly positive real function lie inD.

The state-space realization of transfer functionG(z) = C(zI−
A)−1B+D is denoted by

G(z) =

[

A B
C D

]

.

2. PRELIMINARY

2.1 Covariance Extension Problem

For a given partial covariance sequence(C0,Cn, . . . ,Cn), which is
positive in the sense that the Toeplitz matrix

T =













C0 C1 · · · Cn

CT
1

. . . · · ·
...

...
...

. . .
...

CT
n · · · · · · C0













(1)

is positive definite, we want to parameterizem×m strictly positive
real functionsf (z) such that the Fourier expansion off (z) begins
with

1
2

C0 +C1z−1 + · · ·+Cnz−n. (2)

The solvability condition of this covariance extension problem is
given by the positive definiteness ofT, given by (1).

For a strictly positive real functionf (z), the spectral density is
defined by

Φ(z) := f (z)+ f (z)∗. (3)

It is well-known that there exists a unique outer spectral factorW(z)
such that

Φ(z) = W(z)W(z)∗.

W(z) is called a modeling filter of stochastic process, and it is as-
sumed that it is an ARMA type

W(z) = A(z)−1Σ(z), (4)

where

A(z) := A0 +A1z−1 + · · ·+Anz−n

Σ(z) := Σ0 +Σ1z−1 + · · ·+Σnz−n,
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Ak ∈ Rm×m andΣk ∈ Rm×m, k = 0, . . . ,n. We observe that

W(z)W(z)∗ = f (z)+ f (z)∗.

Thus, we can formulate the covariance extension problem in terms
of W(z). Namely, we seek modeling filtersW(z) such that

W(z)W(z)∗ = Ĉ0 +
∞

∑
k=1

Ĉk(z
k +z−k)

Ĉk = Ck for k = 0,1, . . . ,n.

Let us introduce notations,

A(z) = AG, Σ(z) = ΣG,

where

A := [ A0 A1 · · · An ]

Σ := [ Σ0 Σ1 · · · Σn ]

G :=
[

I z−1I · · · z−nI
]T

.

Let us define

A :=
{

A∈ R
m×m(n+1) : A(z)−1 is analytic inDc

}

. (5)

Note thatA(∞) = A0 is invertible. A is identified with the set of
m×mouter matricial pseudopolynomials of degree at mostn. With
a slight abuse of notations, we denote byA∈ A andA(z) ∈ A that
A(z) is outer.

The minimal state-space realizations ofA(z) andΣ(z) are given
by

A(z) =

[

Z Av
1

eT
1 A0

]

, Σ(z) =

[

Z Σv
1

eT
1 Σ0

]

,

where

Z :=













0 I · · · 0

0
... · · ·

...
...

...
. . . I

0 · · · · · · 0













e1 := [ I 0 . . . 0 ]T

Av
1 :=







A1
...

An






, Σv

1 :=







Σ1
...

Σn






.

The minimal state-space realization of (4) is given by

W(z) =

[

Z−Av
1A−1

0 eT
1 Σv

1−Av
1A−1

0 Σ0

A−1
0 eT

1 A−1
0 Σ0

]

. (6)

2.2 Maximum Entropy Solution

It is well-known that there exists a unique spectral density, which is
a solution to the covariance extension problem and maximizes the
entropy rate of spectral density [13], defined by

I(Φ) :=
1

2π

∫ π

−π
logdetΦ(eiθ )dθ . (7)

It is well-known that the modeling filter of the maximum entropy
spectral density is an AR type

Φ(z) = A(z)−1A(z)−∗. (8)

It turns out that the maximum entropy filter of AR type is obtained
by solving a nonlinear equation [8],G(A) = 0, where

G(A) := AT−
1

2π

∫ π

−π
A(eiθ )−∗G∗dθ . (9)

We shall show that the solution to the covariance extension prob-
lem is obtained by solving a nonlinear equationF(A) = 0, defined
by (11) below, where the nonlinear mapF(A) is homotopic to the
nonlinear mapG(A).

2.3 Topological Degree Theory

The AR part of the ARMA modeling filter is determined by solving
the nonlinear equationF(A) = 0. The existence of the solutions
to the nonlinear equation is shown in terms of topological degree
theory. We briefly review the topological degree theory [12,2].

Suppose thatU , V ⊂ Rn are open subsets, and thatU is not
necessarily bounded andV is connected. Let

F : U →V

be a continuously differentiable map onU , which is also proper,
i.e., the property that the inverse imageF−1(K) is compact for all
compactK [17]. It is frequently of considerable interest to know in
advance the number of solutions of the nonlinear equation

y = F(x)

in some specified sets.
Denote by∂U the boundary of the setU . For a given

y /∈ F(∂U),

denote by degy(F,U) the topological degree of the mapf at the

point y relative to the setU . SinceF is proper,F−1(y) is compact.
Suppose that the Jacobian matrix ofF atx, denoted by Jacx(F),

is nonsingular for all

x∈Us := {x∈U |y = F(x)}.

Then, the degree of degy(F,U) is given by

degy(F,U) = ∑
Us

signdetJacx(F).

The definition of the topological degree for the singular Jacobian is
found in [12, 2].

A consequence of the topological degree theory is that the
nonzero degree of the mapF with respect to zero guarantees the
existence of the solutions to the nonlinear equationF(x) = 0. This
is known as the Kronecker Theorem [12].

One of the important property of the degree of map is the ho-
motopy invariance of the degree. LetH be a jointly continuous map
from U × [0,1] → V such thatH(x,0) = G(x) andH(x,1) = F(x).
Suppose thaty satisfiesH(x,λ ) 6= y for all (x,λ ) ∈ ∂U × [0,1].
Then,

degy(F,U) = degy(G,U)

holds.
We only consider the topological degree of mapF at the point

zero relative to the setA . Thus, we simply denote deg0(F,A ) as
deg(F).

3. MAIN RESULT

3.1 ARMA Filter Design via A Nonlinear Equation

We present the nonlinear equation to determine the ARMA model-
ing filter for the solution to the covariance extension problem.

414



Theorem 1. Suppose that the Toeplitz matrix T is positive definite.
Then, for a given partial covariance sequence(C0,C1, . . . ,Cn) and
for each MA partΣ ∈ A of the ARMA modeling filter, there exists
an AR part A∈ A of the ARMA modeling filter such that

W(z) = A(z)−1Σ(z)

satisfies

W(z)W(z)∗ = Ĉ0 +
∞

∑
k=1

Ĉk(z
k +z−k)

Ĉk = Ck for k = 0,1, . . . ,n. (10)

The solution A is determined by solving the nonlinear equation
F(A) = 0, where the nonlinear map F(A) : A → Rm×m(n+1) is de-
fined by

F(A) := AT−
1

2π

∫ π

−π
Σ(eiθ )Σ(eiθ )∗A(eiθ )−∗G∗dθ . (11)

Proof. First, we show the existence of the solution to the nonlinear
equationF(A) = 0. We observe that the solution toF(A) = 0 cannot
be on the boundary ofA . This is a corollary ofLemma1.

Lemma 1. The nonlinear map F: A → Rm×m(n+1), defined by
(11), is proper, i.e., the inverse image F−1(K) is compact for all
compact K.

If A(z) has a zero onT, then,F(A) = ∞ since the integral term
of F(A) diverges. Moreover,Σ(z) ∈ A implies that the zeros of
Σ(z) lie in D. Thus, there is no possible cancellation of the zero of
A(z) onT by a zero ofΣ(z). Note thatLemma1 implies thatF−1(0)
is compact.

We use topological degree theory to prove the existence of the
solution to the nonlinear equationF(A) = 0. Denote by∂A the
boundary ofA . It turned out that

0 /∈ F(∂A ).

Thus, the degree ofF with respect to zero is computed. It is shown
that there is the unique maximum entropy solution, which is de-
termined by solving the nonlinear equationG(A) = 0, defined by
(9). The uniqueness of the maximum entropy solution impliesthat
degG = 1. We construct a homotopy fromG(A) to F(A). Con-
sider a jointly continuous mapH : A× [0,1] → Rm×m(n+1), which
is defined by

H(A,λ ) := (1−λ )G(A)+λF(A), λ ∈ [0,1].

This map satisfiesH(A,0) = G(A), H(A,1) = F(A), and

0 /∈ H(∂A ,λ )

since

(1−λ )I +λΣ(eiθ )Σ(eiθ )∗ > 0, λ ∈ [0,1],

on T. The homotopy invariance of the degree of map guarantees
that degF = 1. The nonzero degree implies the existence of the
solution toF(A) = 0.

We show that the ARMA modeling filterW(z), which is deter-
mined byF(A) = 0, satisfies (10). The second term ofF(A) is

1
2π

∫ π

−π
Σ(eiθ )Σ(eiθ )∗A(eiθ )−∗G∗dθ

= A
1

2π

∫ π

−π
GW(eiθ )W(eiθ )∗G∗dθ .

Let w(z) be an analytic function inDc, which satisfies

1
2π

∫ π

−π
eikθ [w(eiθ )+w(eiθ )∗]dθ = Ck, k = 0, . . . ,n.

Then, the Toeplitz matrixT of the first term ofF(A) is written by

T =
1

2π

∫ π

−π
G[w(eiθ )+w(eiθ )∗]G∗dθ .

Let us define an analytic functionM(z) in Dc by

M(eiθ )+M(eiθ )∗ = w(eiθ )+w(eiθ )∗−W(eiθ )W(eiθ )∗.

Denote the Fourier expansion ofM(eiθ )+M(eiθ )∗ by

M(eiθ )+M(eiθ )∗ =
∞

∑
k=−∞

Mke−ikθ ,

whereM0 = MT
0 . Then,

F(A) = A
1

2π

∫ π

−π
G[M(eiθ )+M(eiθ )∗]G∗dθ

= ATM ,

where

TM :=













M0 M1 · · · Mn

MT
1

. . . · · ·
...

...
...

. . .
...

MT
n · · · · · · M0













.

The Toeplitz matrixTM has nothing to do with the positivity, and
TM = 0 implies that (10) holds. We shall seeTM = 0 by using the
structure of the Toeplitz matrix andA∈ A .

We write the matrixA as

A =
[

A0 Ah
1

]

Ah
1 := [ A1 · · · An ] .

Similarly, we write the Toeplitz matrix

TM =

[

M0 ST

S T1

]

.

It is clear thatF(A) = 0 gives

M0 = −A−1
0 Ah

1S

ST = −A−1
0 Ah

1T1. (12)

The structure of the Toeplitz matrixTM and (12) imply that

T1 = AcT1AT
c (13)

holds, where

Ac :=













−A−1
0 A1 · · · −A−1

0 An−1 −A−1
0 An

I · · · 0 0
0 · · · 0 0
...

...
...

0 · · · I 0













.

detznA−1
0 A(z) is the characteristic polynomial ofAc. Moreover,

detznA−1
0 A(z) has all zeros inD sinceA(z) is outer, which implies

that all eigenvalues ofAc lie in D. Hence, we obtainT1 = 0 for
the unique solution to the Lyapunov equation (13), and it implies
M0 = 0 due to the Toeplitz structure ofTM . We also obtainS= 0 by
(12). Thus,TM = 0.
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3.2 A Uniqueness of A to f (z)

For a given solution to the nonlinear equationF(A) = 0, we obtain
an ARMA modeling filter, and we also obtain a strictly positive real
function f (z) by

W(z)W(z)∗ = f (z)+ f (z)∗, (14)

where the Fourier expansion off (z) begins with (2). For eachf (z),
there exists a unique outer spectral factor. However, this uniqueness
of the outer spectral factor off (z) does not imply the uniqueness of
A, for which W(z) of (14) is outer. LetAk, k = 1,2 be solutions
to F(A) = 0. Denote byWk(z), k = 1,2, the corresponding ARMA
modeling filters. Then, for the fixedf (z), we consider whether

Wk(z)Wk(z)
∗ = f (z)+ f (z)∗, k = 1,2

is possible or not.

Theorem 2. Let A be a solution to the nonlinear equation F(A) = 0.
Then, it determines f(z) via (14), and there is no other A to give the
same f(z).

Proof. Suppose that there exist two solutions to the nonlinear equa-
tion F(A) = 0. They are denoted by

Ak =
[

Ak,0 Ah
k,1

]

Ah
k,1 := [ Ak,1 · · · Ak,n ] , k = 1,2.

Let us define

Av
k,1 :=







Ak,1
...

Ak,n






, k = 1,2.

EachAk determinesWk(z),k = 1,2, of which minimal state-space
realizations are given by

Wk(z) =

[

Z−Av
k,1A−1

k,0eT
1 Σ1−Av

k,1A−1
k,0Σ0

A−1
k,0eT

1 A−1
k,0Σ0

]

=

[

AW,k BW,k
CW,k DW,k

]

, k = 1,2, (15)

see (6).
Consider

W1(z)W1(z)
∗ = W2(z)W2(z)

∗.

Ak(z)∈A ,k= 1,2, implies that all poles ofWk(z),k= 1,2, lie inD,
andΣ(z)∈A implies that all zeros ofWk(z),k = 1,2 lie in D. Thus,
Wk(z),k = 1,2, are outer. Then, modulo constant unitary matrix
multiplication from the right, we obtain

W1(z) = W2(z).

However, this does not imply the two state-space realizations
are identical since there exists a freedom of similar transforma-
tions of the state-space realizations ofWk(z),k = 1,2. By evaluating
Wk(z),k = 1,2 at∞, we obtain

A−1
1,0Σ0 = A−1

2,0Σ0 =⇒ A1,0 = A2,0,

where Σ0 is invertible sinceΣ(z) ∈ A . It implies CW,1 = CW,2
due to the state-space realizations (15). Thus, there is no freedom
of similar transformations of the state-space realizations. Hence,
AW,1 = AW,2 andBW,1 = BW,2. BW,1 = BW,2 implies

Av
1,1 = Av

2,1.

Remark 1. We showed the existence of an AR part in Theorem 1 in
terms of the nonlinear map F(A). This existence of an AR part for
the solution to the covariance extension problem was also shown in
[4], while a different map is used in [4]. We discussed a uniqueness
of f(z) in Theorem 2, and an alternative approach to the uniqueness
in terms of a different map was discussed in [15].

Acknowledgment: The author thanks to Prof. T. T. Georgiou
in University of Minnesota for suggestions and comments.
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