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ABSTRACT

For a given partial covariance sequeng®,C,...,Cn) and
for each MA part of the ARMA modeling filter of degrag an AR
part of the ARMA modeling filter of degrer for the solution to
the rational covariance extension problem is obtained Wyirgp
a nonlinear equation, which is homotopic to a nonlinear gqna
determining the maximum entropy AR filter.

Index TermsCovariance extension, ARMA modeling filter,
McMillan degree constraint.

1. INTRODUCTION

It is well-known that the spectral densith(z) of a second-order,
m-dimensional stationary stochastic procggd)} with zero mean
is given by the Fourier expansion

(D(e;e) _ i Ckefike

k=—o00

on the unit circle, where the covariance matrices are given b

Ce=E{ytyt -k},

For each spectral density, there exists a unique modelitey, fil
which shapes a white noise process into the stochasticgsoce

For a given partial covariance sequen¢®,C;,...,Cn), we
want to determine the spectral density, which is consistéifit the
given partial covariance sequence [7, 4, 5, 16, 11, 3, 1, 510}
This is known as the covariance extension problem and itis-co
mon that the estimated spectral density is a rational fangtand
that the modeling filter is also a rational model, i.e., aegpessive
moving average (ARMA) type [13, 9].

It is well-known that there exists a solution to the covacian
extension problem, so-called maximum entropy solutiori.[TBe
spectral density maximizes the entropy rate of the spedemasity,

k=0,1,2,....

and its firstn+ 1 covariance matrices matches the given partial co
variance sequence. The modeling filter of the maximum eptrop

spectral density is an autoregressive (AR) type [13].

In this paper, we show that, for a given partial covariance se

quence(Cy,Cy,...,Cpn) and for each MA part of the ARMA mod-
eling filter of degreen, an AR part of the ARMA modeling filter of

degreen for the solution to the covariance extension problem is de

termined by solving a nonlinear equation, which is homatdpia
nonlinear equation to determine the maximum entropy filfekR
type.

Notations

We denote the unit disc iy := {ze C: |z < 1}. An mx mmatrix-
valued rational functiorf (z) is called strictly positive real if it is
analytic in the outside of the unit dig®:= {z€ C: |7 > 1} and

f(z2+f(2* >0.

is positive definite off. The functionf (z) is strictly positive real if

and only if f (z)*l is strictly positive real. Thus, it is necessary that
all zeros of strictly positive real function lie ib.

The state-space realization of transfer functi@f) = C(zl —
A)~1B+Dis denoted by

co-[218]

2. PRELIMINARY

2.1 Covariance Extension Problem

For a given partial covariance sequer(&,Cy,...,Cy), which is
positive in the sense that the Toeplitz matrix

C C Cn
L @
el Co

is positive definite, we want to parameterime< m strictly positive
real functionsf (z) such that the Fourier expansion bfz) begins
with

1
Eco+c1z—1+~-~+cnz—”. 2

The solvability condition of this covariance extension lgemm is

given by the positive definiteness of given by (1).
For a strictly positive real functiorfi(z), the spectral density is
defined by
P(z):=f(2)+f(2)". 3)
It is well-known that there exists a unique outer spectraldeW (z)
such that

W(2) is called a modeling filter of stochastic process, and it is as

Real numbers are representedlibyand complex numbers are rep- gymed that it is an ARMA type

resented byC. ¢ denotes the conjugate of the complex number
Denote byRI*K j x k real matrices. denotesm x midentity ma-

trix, and 0 denotesn x m zero matrix.AT denotes the transpose of

a matrixA. detA denotes the determinant of a matéixWe use the

W(z2) = A@2) '2(2), 4)

h
notationsA > 0 to denote that a matriis positive definite. where
Let us define AZ) = Ag+AZ 14+ A"
f(2":=f(zHT 3(2) = So+Ziz 443z,
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A € R™Mands, € R™M k=0,...,n. We observe that
W(ZW(2)* = f(2+f(2)".

Thus, we can formulate the covariance extension probleraring
of W(z). Namely, we seek modeling filtev¥(z) such that

WeW@* =Co+ § C(Z+27%)
K=1
C=Cc for k=0,1,....n.
Let us introduce notations,

A(2) =AG, 3(2)=3G,

where
A= [A A An ]
I = [2 2 2n |
= [z zn |
Let us define
o = {A e R™M+D) - A7)~ is analytic in]D)C}. (5)

Note thatA(») = Ag is invertible. <7 is identified with the set of
mx mouter matricial pseudopolynomials of degree at nmo&tith
a slight abuse of notations, we denotefy <7 andA(z) € .« that
A(z) is outer.

The minimal state-space realizationsAd¥) andZ(z) are given

by
Z | AY Z |y
A(2) = S(7) =
o-[aa ] -]
where
o |1 0
z = 0
o
|0 -~ . 0
e = [I O o]’
[ Ay 2
A = o, D=
L An Zn

The minimal state-space realization of (4) is given by

—14T -1
wio - [ | m o
€ 0

2.2 Maximum Entropy Solution

It is well-known that there exists a unique spectral densityich is
a solution to the covariance extension problem and maxsriize
entropy rate of spectral density [13], defined by

(6)

I(®) = %T/;mgdetm(ée)de. @)

It is well-known that the modeling filter of the maximum ergyo
spectral density is an AR type

®(2) = A2) A2~ 8)

It turns out that the maximum entropy filter of AR type is obied
by solving a nonlinear equation [8K(A) = 0, where

. 7i m 10\ —* ~*
G(A) = AT Zn/_nA(e' ) *G*d6. ©)

We shall show that the solution to the covariance extensiob-p
lem is obtained by solving a nonlinear equatl®() = 0, defined
by (11) below, where the nonlinear m&gA) is homotopic to the
nonlinear mags(A).

2.3 Topological Degree Theory

The AR part of the ARMA modeling filter is determined by solgin
the nonlinear equatiofr (A) = 0. The existence of the solutions
to the nonlinear equation is shown in terms of topologicarde
theory. We briefly review the topological degree theory 2R,

Suppose that), V c R" are open subsets, and thatis not
necessarily bounded aMtis connected. Let

F:U—-V

be a continuously differentiable map &h which is also proper,
i.e., the property that the inverse imaaél(K) is compact for all
compact [17]. Itis frequently of considerable interest to know in
advance the number of solutions of the nonlinear equation

y=F(x)

in some specified sets.
Denote byodU the boundary of the sét. For a given

y¢F(aV),

denote by deg[F,U) the topological degree of the mapat the

pointy relative to the selt). SinceF is proper,F‘l(y) is compact.
Suppose that the Jacobian matriXoétx, denoted by Ja¢F ),
is nonsingular for all

xeUs:={xeUly=F(x)}.

Then, the degree of deg-,U) is given by

deg,(F.U) = gsign detJagF).

s

The definition of the topological degree for the singularolaan is
foundin [12, 2].

A consequence of the topological degree theory is that the
nonzero degree of the mdp with respect to zero guarantees the
existence of the solutions to the nonlinear equakdr) = 0. This
is known as the Kronecker Theorem [12].

One of the important property of the degree of map is the ho-
motopy invariance of the degree. Lidtbe a jointly continuous map
fromU x [0,1] — V such thatH (x,0) = G(x) andH(x,1) = F(x).
Suppose thay satisfiesH(x,A) # y for all (x,A) € dU x [0,1].
Then,

deg,(F,U) = deg,(G,U)

holds.

We only consider the topological degree of nfagat the point
zero relative to the set. Thus, we simply denote dggd~, &) as
degF).

3. MAINRESULT

3.1 ARMA Filter Design via A Nonlinear Equation

We present the nonlinear equation to determine the ARMA rrode
ing filter for the solution to the covariance extension peobl
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Theorem 1. Suppose that the Toeplitz matrix T is positive definite.Let w(z) be an analytic function if>¢, which satisfies
Then, for a given partial covariance sequer(@,Cy,...,Cn) and 1

for each MA partz € &7 of the ARMA modeling filter, there exists - / iko i0 i6x _ K=

an AR part Ac 7 of the ARMA modeling filter such that 2m. 7nel [w(e™) +w(e")7]do =G O,-.m

W(2) = A2)15(2) Then, the Toeplitz matriX of the first term ofF (A) is written by
1 m ; :
satisfies T— ZT/_HG[W(e'e)+W(e'9)*]G*d6.

WEW(D)* =Co+ % G 7% Let us define an analytic functidvl(z) in D by
X k=1 M(€%)+M(€9)* = w(e®) +w(E?)* —w(®)w(ef)".
C=C¢ for k=0,1,...,n. (20) ) )
Denote the Fourier expansion lf(€?) +M(€?)* by
The solution A is determined by solving the nonlinear equati

F(A) = 0, where the nonlinear map@) : & — R™™M*1) is de- M(E0) +M(df)* = i Mye ke
fined by e
rr ) ) ) —MmT
F(A) = AT — %T/ 5(d9)z(d%)AE®) *Grde. (1) MereMo=Mg. Then,
—TT

1 ) )
_ _ _ _ F(A) A—/ GIM(e9)+Mm(€?9)"1G*de
Proof. First, we show the existence of the solution to the nonlinear 21 ) -n
equatior (A) = 0. We observe that the solutionEgA) = 0 cannot = Alu,
be on the boundary af/. This is a corollary oLemmal.

where
Lemma 1. The nonlinear map E & — R™ ™MD defined by Mo My - My
(12), is proper, i.e., the inverse image‘lq-'(K) is compact for all )
compact K. M]

Tv =
If A(z) has a zero off, then,F (A) = o since the integral term : : R
of F(A) diverges. MoreoverZ(z) € </ implies that the zeros of MT . o Mo
2(2) lie in D. Thus, there is no possible cancellation of the zero of "
A(2) onT by a zero of(z). Note that_emmal implies thafF ~1(0) The Toeplitz matrixTy has nothing to do with the positivity, and

is compact. Tm = 0 implies that (10) holds. We shall s&g = 0 by using the
We use topological degree theory to prove the existenceeof thstructure of the Toeplitz matrix andle <.
solution to the nonlinear equatidh(A) = 0. Denote byd.«/ the We write the matrixA as

boundary ofe/. It turned out that h
A = [ Ao A ]

0¢F(0). Al = A AV

Thus, the degree df with respect to zero is computed. It is shown Similarly, we write the Toeplitz matrix
that there is the uniqgue maximum entropy solution, whichds d

termined by solving the nonlinear equati@{A) = 0, defined by Ty =| Mo s
(9). The unigueness of the maximum entropy solution imghes S & |’
degG = 1. We construct a homotopy froi®(A) to F(A). Con- ) )

sider a jointly continuous mall : Ax [0,1] — R™Mn+1) \hich  Itis clear that (A) =0 gives

is defined by

Mo = —AjlAls
H(AA):=(1-A)G(A)+AF(A), A0, s = AT (12)
This map satisfiedl (A,0) = G(A), H(A,1) = F(A), and The structure of the Toeplitz matriy and (12) imply that
0¢ H(0,A) Ti=ATAl (13)
. holds, where
since
-1 -1 -1
B, i —Ag A1 o AgTA1 —AgTAq
1-M1+A2d%zE%* >0, A€o, A? Aoo Aoo
Aci= 0 0 0
on T. The homotopy invariance of the degree of map guarantees ’ . . .
that ded= = 1. The nonzero degree implies the existence of the : : :
solution toF (A) = 0. 0 e | 0
We show that the ARMA modeling filt&V(z), which is deter-
mined byF (A) = 0, satisfies (10). The second termFofA) is detz”AalA(z) is the characteristic polynomial d&.. Moreover,
detz’A;YA(2) has all zeros ifD sinceA(z) is outer, which implies
i /" Z(eie)z(eie)*A(eiQ)‘*G*de that all eigenvalues of lie in . Hence, we obtaifi; = 0 for
2/ the unique solution to the Lyapunov equation (13), and itliesp
1 . . Mo = 0 due to the Toeplitz structure @f,. We also obtairs= 0 by
:AET/ Gw(e?w(ef)*G*de. (12). ThusTy = O. 0
J—=TT
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3.2 A Uniquenessof Ato f(2)

For a given solution to the nonlinear equati®(A) = 0, we obtain
an ARMA modeling filter, and we also obtain a strictly positieal
function f (z) by

WEW@)" =12+ (2" (14)

where the Fourier expansion 6fz) begins with (2). For eacli(z),

Remark 1. We showed the existence of an AR partin Theorem 1in
terms of the nonlinear map(R). This existence of an AR part for
the solution to the covariance extension problem was alswehn

[4], while a different map is used in [4]. We discussed a ueigess

of f(2) in Theorem 2, and an alternative approach to the uniqueness
in terms of a different map was discussed in [15].

Acknowledgment: The author thanks to Prof. T. T. Georgiou

there exists a unique outer spectral factor. However, thigueness
of the outer spectral factor df(z) does not imply the uniqueness of
A, for whichW(z) of (14) is outer. LetA, k = 1,2 be solutions
to F(A) = 0. Denote by\(z), k= 1,2, the corresponding ARMA
modeling filters. Then, for the fixei(z), we consider whether

W(@W(2)" = () +f(2)",

is possible or not.

(1]
k=12

(2]
(3]

Theorem 2. Let A be a solution to the nonlinear equatio( = 0.
Then, it determines(f) via (14), and there is no other A to give the
same {z).

Proof. Suppose that there exist two solutions to the nonlinear-equa [4]
tion F(A) = 0. They are denoted by

(5]

Ao = [ Aco Akh.l ]
Al = [ A Acn ], k=12 [6]
Let us define
A1
A= : k=12 [7]
Agn

(8]

EachAy determines(z),k = 1,2, of which minimal state-space
realizations are given by

_ Z*AﬁlAk‘.éeI | Zl*AkletzéZO ] (o]
e [ AL | Adw 0
_ Awk | Bwk _
- { Cwk | Dwk }’ k=12, (15)
[11]
see (6).
Consider
[12]

Wi (W (2)" =Wa (W (2)"

Ax(2) € 7, k= 1,2, implies that all poles dM\(2), k=1,2, lieinD,
andX(z) € «7 implies that all zeros of\(z),k=1,2 lieinD. Thus,
Wk(z),k = 1,2, are outer. Then, modulo constant unitary matrix [14]
multiplication from the right, we obtain

(13]

Wi(2) = Wa(2). [15]
However, this does not imply the two state-space realinatio
are identical since there exists a freedom of similar tramsé- [16]
tions of the state-space realizationd\¢fz),k = 1,2. By evaluating
Wk(z),k= 1,2 ateo, we obtain
-1 -1
Ar020 = Ay 520 = A0 = A2, [17]

where X is invertible sinceX(z) € <. It implies Gy 1 = Cy2
due to the state-space realizations (15). Thus, there iseiedldm
of similar transformations of the state-space realizatiorlence,
Aw1=Aw2 andBy 1 = Bw 2. Bw,1 = Bw implies

Vv V
Al1=Ar1.
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