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ABSTRACT
In this paper, we address the energy efficiency analysis of
the relay channel under ergodic fading. The study considers
full duplex and half duplex terminals. Since the capacity of
general relay channels is unknown, we investigate achievable
rates with decode and forward and capacity upper bounds
with the cut-set bound. The maximum rate per energy and
the slope of the spectral efficiency with the energy per bit are
computed to asses the impact of the duplexing capabilities,
the resource allocation and the channel fading distribution.

1. INTRODUCTION

In wireless networks, cooperation among users brings
high data rates [1] and energy savings [2]. We consider the
single relay channel (RC) under ergodic fading and additive
white Gaussian noise (AWGN). For this channel, we study
the spectral efficiency in the energy efficient regime. If the
energy efficient regime is the low power regime any com-
munication scheme is well characterized by computing its
maximum rate per energy (RPE) or, equivalently, the mini-
mum energy per bit ( Eb

N0
|min) and the slope (S) of the spectral

efficiency with respect to the Eb
N0

[3].
The low power analysis of several communication

schemes over ergodic fading can be found in the literature.
For instance, the direct transmission with single or multiple
antennas was studied in [3]. The multiple access, broad-
cast and interference channels were conducted in [4]. For
the AWGN RC, the capacity remains still unknown and thus,
only the known bounds on the capacity can be investigated.
Over non-fading channels, the maximum RPE was first stud-
ied in [5]. There the cut-set bound (CB) and the decode and
forward (DF) lower bound [6] on the capacity were used to
derive upper and lower bounds on the maximum RPE. In par-
ticular, authors considered two scenarios: i) a relay in full
duplex (FD) mode with coherent transmissions and ii) a re-
lay in half duplex (HD) mode with orthogonal transmissions
(OT) from the source and the relay. The FD capability at the
relay allows to receive and transmit simultaneously in the
same band. If FD operation is not possible, the relay works
in HD mode. Then, the transmission and reception chan-
nels are orthogonal. These bounds were extended in [7] to
include side-information and linear relaying strategies. As
argued in [8], although in some scenarios these techniques
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Figure 1: The relay channel model

can offer a better maximum RPE, it is not reached in the low
power regime. In fact, in the low power regime these strate-
gies can never improve DF. In these works, the computation
of the maximum RPE is found useful to compare different
relaying strategies and to demonstrate the suboptimality of
orthogonal transmissions against simultaneous and coherent
transmissions, see also [9]. The relay channel under ergodic
fading was first considered in [10]. There, the ergodic rate
bounds with DF and the CB, with FD terminals or with or-
thogonal transmission (OT) were studied. The results were
extended in [11] to also include amplify and forward.

In this work, we provide more insight into those results
by studying the HD scenario. In the HD scenario, contrary to
the OT scenario, the source is allowed to transmit during the
relay transmission interval. Furthermore, we allow the re-
source allocation functions to be any differentiable function
of the total power. In all these previous works, the power al-
located to each node was restricted to be a linear function of
the total power. Whereas, in the low power regime, we show
that the HD mode does not provide any gain with respect
to OT, the linear power allocation assumption results on an
inefficient use of the bandwidth. We also discuss the band-
width inefficiency incurred by other simpler but suboptimal
resource allocation solutions.

The reminder of the paper is organized as follows. First,
the channel model is given in Section 2. Then, ergodic rate
lower bounds with DF and upper bounds with the CB for
relays in HD or FD mode are presented in Section 3. An
introduction to the low power analysis particularized to these
channels is given in Section 4. Sections 5 and 6 are devoted
to compute the maximum RPE and the slope, respectively.
In Section 7 numerical results are presented and finally, in
Section 8 conclusions are drawn.

2. CHANNEL MODEL

We consider the AWGN relay channel model depicted in Fig.
1. For the HD mode, the channel is divided into two intervals
(orthogonal channels) j ∈ {1,2}. The source transmits to the
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relay and destination in the first interval j = 1 and, in the
second interval j = 2, both nodes transmit to the destination.
In FD mode, there is only one channel and the index j is
dropped. The received signals during the interval j at the
relay Y2 j and at the destination Y0 j are given by

Y2 j =
√

α12X1 j +Z2 j,

Y0 j =
√

β1X1 j +
√

β2X2 j +Z0 j.
(1)

We assume, without claim of optimality, that the signals
transmitted by the source X1 j and the relay X2 j are Gaussian
with power P1 j, P2 j, respectively. The noise processes at the
relay Z2 j and at the destination Z0 j are complex independent
white Gaussian, each with unit variance E[

∣

∣Zi j
∣

∣

2
] = N0 = 1.

The channel gain from the source to the relay is denoted by
α12, from the source to destination by β1, and from the relay
to destination by β2. Each orthogonal channel uses a fraction
τ j out of the total channel available. The power allocated to
node l ∈ {1,2} during the interval j is denoted as El j = τ jPl j.

Let us consider that the channel coefficients α1,2, β1, β2
are independent random variables. Each time slot is assumed
to be large enough so that the channel fading processes are
ergodic. The receiver has perfect channel information while
transmitters (source and relay) only have statistical informa-
tion of the channel; namely, the mean E [α1,2] , E [β1] , E [β2]

and the variance E

[

(α1,2)
2
]

, E

[

(β1)
2
]

, E

[

(β2)
2
]

.

3. ERGODIC RATE BOUNDS

The optimal relaying strategy is still unknown and only rate
lower and upper bounds on the capacity exist. The energy
efficiency analysis conducted in this work considers DF for
rate lower bounds and the CB for rate upper bounds.

The rate bounds for HD and FD modes under some fixed
resource allocation vectors τττ , E can be found in [6] and [12],
respectively. We write them in a unified manner as

RF(τττ ,E) = min
i∈{1,2}

Ci (τττ ,E) (2)

with

Ci (τττ ,E) = E

[

2

∑
j=1

τ j log(1+
g ji (E)

τ j
)

]

. (3)

For the FD mode, the power allocation vector is
E =[E1,E2], the vector of channel fractions is τττ = [1,0] and
the functions gi, i ∈ {1,2} are given by

g1 (E) = α̂12E1, (4a)
g2 (E) = β1E1 +β2E2. (4b)

with α̂12 = α12 for DF and α̂12 = α12 +β1 for the CB.
For the HD mode, the power allocation vector is

E =[E11,E12,E22] and the vector of channel fractions is
τττ = [τ1,τ2]. In this case, g ji (E) i, j ∈ {1,2} are given by

g11 (E) = α̂12E11, g21 (E) = β1E12, (5a)
g12 (E) = β1E11, g22 (E) = β1E12 +β2E22. (5b)

4. THE ENERGY EFFICIENCY ANALYSIS

To study the energy efficiency of a communication system
we are interested in determining the minimum energy we
need to dedicate to each transmitted bit normalized by the
noise spectral level N0

(

Eb
N0

)

to obtain a certain spectral ef-

ficiency C( Eb
N0

) [bit/s/Hz]. In this work, we consider that
the energy belongs to the “network” and is optimally allo-
cated among nodes. Then, the network energy per bit is
defined as Eb , E

R(E)
, where E is the total network energy

E = ∑
l∈{1,2}

∑
j∈{1,2}

El j and R(E) is the spectral efficiency in

bits1. We define the rate per total network energy normalized
by the noise spectral level as

RPE , N0 loge 2
R(E)

E
. (6)

If the energy efficient regime is the low power regime, it was
shown in [3] that the minimum energy per bit normalized by
the noise spectral level is given by

Eb

N0 min
=

loge 2
Ṙ(0)

(7)

where Ṙ(0) is computed in nats. Then, the maximum RPE
can be obtained as

η̄ =
loge 2
Eb
N0 min

= Ṙ(0) (8)

The slope of the spectral efficiency as a function of the Eb
N0

was shown in [3] to be

S̄ =
2
[

Ṙ(0)
]2

−R̈(0)
. (9)

To obtain the low power metrics η̄ and S̄, we need to
compute the first and second order derivatives at E = 0 of
the rate as a function of the total power R∗(E). However, the
rate R∗(E) is only available as the solution to the following
problem for all E

R∗ (E) = max
τττ,E

min
i∈{1,2}

Ci (τττ ,E) (10a)

τ1 + τ2 = 1, τ1,τ2 ≥ 0, (10b)

∑
∀ j

[E] j = E, [E] j ≥ 0,∀ j. (10c)

where [x] j denotes the j-th element in the vector x.

We are unable to find, explicitly, the pair (τττ ,E) that maxi-
mizes the rate in (10) for all E. Therefore, we can not directly
compute the derivatives of R∗ (E) at E = 0.

To compute these derivatives, we assume that the re-
sources allocation solution for all E are any differentiable
function τττ(E) and E(E) and define ė , Ė(0), ë , Ė(0)

and t , τττ(0). Then, the first and second order derivatives

1We replace the SNR= E
N0

by the total power E, since we consider that the
noise has unit variance N0 = 1.
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of the rate constraints in (3) as a function total power E,
CEi(E) = Ci(τττ(E),E(E)) evaluated at E = 0 are

ĊEi(E)|E=0 =
2
∑
j=1

E
[

ġE ji (ė)
]

, (11a)

C̈Ei(E)|E=0 =
2
∑
j=1

E
[

g̈E ji (ė, ë)
]

−
E

[

(

ġE ji (ė)
)2

]

t j
(11b)

with gE ji (E) = g ji (E(E)). Notice that given (11) it is clear
that ĊEi(E)|E=0 = ĊEi(ė) and ġE ji (0) = ġE ji (ė) only de-
pend on ė whereas g̈E ji (0) = g̈E ji (ė, ë) and C̈Ei(E)|E=0 =

C̈Ei(ė, ë,t) only depends on ė, ë and t. To find Ṙ∗(0) we just
need to solve the following problem w.r.t ė

Ṙ∗(0) = max
ė

min
i∈{1,2}

ĊEi(ė) (12a)

∑
∀ j

[ė] j = 1, [ė] j ≥ 0,∀ j (12b)

where the constraints (12b) on ė are obtained computing the
first order derivative of the constraints in (10c) at E = 0.

After solving (12) we know ė
∗, thus C̈El (0) = C̈El (t, ë)

only depends on ë and t. The second derivative R̈∗(0) can be
obtained solving the following problem w.r.t ë and t

R̈∗(0) = max
ë,t

min
i∈{1,2}

C̈Ei(ë,t) (13a)

t1 + t2 = 1, t1, t2 ≥ 0, (13b)

∑
∀ j

[ë] j = 0, [ë] j ≥ 0 if [ė] j = 0. (13c)

where the constraints (13b) on t are found computing the
first order derivative of the constraints in (10b) at E = 0 and
the constraints on ë (13c) are found by computing the second
order derivative of the constraints in (10c) at E = 0.

5. MAXIMUM RATE PER ENERGY

To obtain η̄ = Ṙ∗(0), we need to solve the problem in (12).
For a relay in FD mode, substituting the functions gEi in

(4) into (11a), the first order derivative of the rate constraints
at E = 0 read

ĊE1(ė) = E [ġE1 (ė)] = E [α̂12] ė1, (14a)

ĊE2(ė) = E [ġE2 (ė)] = E [β1] ė1 +E [β2] ė2. (14b)

By substituting (14) into (12), and solving the resultant prob-
lem w.r.t ė1, ė2, we obtain

ė∗1 =
E [β2]

E [β2]+E [α̂12]−E [β1]
, (15a)

ė∗2 =
E [α̂12]−E [β1]

E [β2]+E [α̂12]−E [β1]
(15b)

if E [α̂12] ,E [β2] > E [β1], otherwise the relay is not used ė∗1 =
1 and ė∗2 = 0.

For a relay in HD mode, substituting the functions gEi in
(5) into (11a), the first order derivative of the rate constraints
at E = 0 read

ĊE1(ė) = E [α̂12] ė11 +E [β1] ė12, (16a)

ĊE2(ė) = E [β1] ė11 +E [β1] ė12 +E

[

β̂2

]

ė22. (16b)

Substituting (16) into (12), and solving the resultant problem
w.r.t ė11, ė12 and ė22, we obtain

ė∗11 =
E [β2]

E [β2]+E [α̂12]−E [β1]
, (17a)

ė∗12 = 0, (17b)

ė∗22 =
E [α̂12]−E [β1]

E [β2]+E [α̂12]−E [β1]
, (17c)

if E [α̂12] ,E [β2] > E [β1] , otherwise the relay is not used
ė∗12 = 1, ė∗11 = 0, and ė∗22 = 0.

Finally, provided that if E [α̂12] ,E [β2] > E [β1], we have
η̄ = ĊE1(ė

∗) = ĊE2(ė
∗), the maximum RPE with a relay in

HD or FD mode is given by

η̄ =

{

E[α̂12]E[β2]
E[β2]+E[α̂12]−E[β1] if E [α̂12] ,E [β2] > E [β1] ,

E [β1] otherwise
(18)

with α̂12 = α12 +β1 for the CB and α̂12 = α12 for DF.

6. SLOPE OF THE SPECTRAL EFFICIENCY

The maximum RPE has not revealed the potential gain of the
FD capability at the relay nor the impact of the distribution of
the channel coefficients. Moreover, obtaining the maximum
RPE is possible even without optimizing the fraction of the
channel dedicated to each transmission (τ1,τ2) and assuming
a linear dependence of the power allocation with respect to
the total power E(E) = ė

∗E. Thus, we turn our attention to
the analysis of the slope. This metric allows us to compare
transmission schemes that have the same maximum RPE and
determines the use made of the bandwidth.

The slope of the spectral efficiency can be computed as
(9). The first order derivative Ṙ∗ (0) was already computed in
the previous section and thus, we just need to obtain R̈∗ (0).
To obtain R̈∗ (0), we solve the problem in (13).

For a relay in FD mode, substituting the functions gEi in
(4) into (11b), the second order derivative of the rate con-
straints at E = 0 read

C̈E1(ë) = E [α̂12] ë1 −E

[

(ġE1 (ė∗))2
]

, (19a)

C̈E2(ë) = E [β1] ë1 +E [β2] ë2 −E

[

(ġE2 (ė∗))2
]

(19b)

with, after substituting the solution to ė
∗ found in (15)

E

[

(ġE1 (ė∗))2
]

= E

[

(α̂12ė∗1)
2
]

= κ12η̄2
, (20a)

E

[

(ġE2 (ė∗))2
]

= E

[

(β1ė∗1 +β2ė∗2)
2
]

,

=
[

1+(κ1 −1)Θ2 +(κ2 −1)(1−Θ)2
]

η̄2

(20b)

with Θ = E[β1]
E[α̂12]

and κ12 =
E[(α̂12)

2]
(E[α̂12])

2 ,κ1 =
E[(β1)2]
(E[β1])2 and κ2 =

E[(β2)2]
(E[β2])2 are the kurtosis of the channel coefficients.

By substituting (19) into (13), and solving the resultant
problem w.r.t ë1, ë2, we obtain

ë∗1 =
E

[

(ġE1 (ė∗))2
]

−E

[

(ġE2 (ė∗))2
]

E [α̂12]−E [β1]+E [β2]
, (21)

ë∗2 = −ë∗1 (22)
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if E [α̂12] ,E [β2] > E [β1] (the relay is used) and ë∗1 = 1, ë∗2 =
0 otherwise. Substituting, this solution into (19) we have
R̈∗(0) = C̈E1(0) = C̈E2(0) and the slope (9) reads

2
S̄FD

= 1+(κ12 −1)(1−Γ)

+(κ1 −1)ΓΘ2 +(κ2 −1)Γ(1−Θ)2
. (23)

with Γ = η̄
E[β2]

.
Instead, if the power allocation is restricted to be linear

in E, E1 = ė∗1E, E2 = ė∗2E, then substituting ë∗2 = ë∗1 = 0 into
(19), we have

R̈∗(0) = − max
i∈{1,2}

E

[

(ġEi (ė
∗))2

]

(24)

with E

[

(ġEi (ė
∗))2

]

in (20). Substituting (24) into the slope
definition (9), we obtain

2
S̄FDe

= max
(

κ12,
[

1+(κ1 −1)Θ2 +(κ2 −1)(1−Θ)2
])

.

(25)
This last result was first found in [10, eq. 33].

For a relay in HD mode, substituting the functions gEi in
(5) into (11b), the second order derivative of the rate con-
straints at E = 0 read

C̈E1(ë,t) = E [α̂12] ë11 +E [β1] ë12

−
E

[

(

ġ∗E11
(ė∗)

)2
]

t1
−

E

[

(

ġ∗E21
(ė∗)

)2
]

t2
, (26a)

C̈E2(ë,t) = E [β1] ë11 +E [β1] ë12 +E [β2] ë22

−
E

[

(

ġ∗E12
(ė∗)

)2
]

t1
−

E

[

(

ġ∗E22
(ė∗)

)2
]

t2
(26b)

with, after substituting the solution to ė
∗ found in (17)

E

[

(

ġ∗E11
(ė∗)

)2
]

= E

[

(α̂12)
2
]

(ė∗11)
2 = κ12η̄2

, (27a)

E

[

(

ġ∗E21
(ė∗)

)2
]

= E

[

(β1)
2
]

(ė∗12)
2 = 0, (27b)

E

[

(

ġ∗E12
(ė∗)

)2
]

= E

[

(β1)
2
]

(ė∗11)
2 = κ1Θ2η̄2

, (27c)

E

[

(

ġ∗E22
(ė∗)

)2
]

= E

[

(β2)
2
]

(ė∗22)
2 = κ2 (1−Θ)2 η̄2

.

(27d)

Substituting (26) into (13) and solving the resultant problem,
first w.r.t ë11, ë12, ë22 assuming constant t, we obtain

R̈∗(t) = C̈E1(ë
∗
,t) = C̈E1(ë

∗
,t)

= −
(

Ψ̄1
)2

t1
−

(

Ψ̄2
)2

t2
(28)

with
(

Ψ̄1
)2

= (1−Γ)κ12η̄2 +Γκ1Θ2η̄2
, (29a)

(

Ψ̄2
)2

= Γκ2 (1−Θ)2 η̄2
. (29b)

Maximizing (28) w.r.t t we get 1
t∗1

= 1+ Ψ2
Ψ1

which substituted

into (28) yields R̈∗(0) = −(Ψ1 +Ψ2)
2 and the slope is

2
S̄HD

=

(

√

κ12 (1−Γ)+κ1ΓΘ2 +

√

κ2Γ(1−Θ)2
)2

.

(30)
Instead, if the power allocation is restricted to be linear in
E, E11 = ė∗11E, E12 = 0, and E22 = ė∗22E then, substituting
ë∗11 = ë∗12 = ë∗22 = 0 into (26), we have

C̈E1(0,t) = −κ12η̄2

t1
, (31a)

C̈E2(0,t) = −κ1Θ2η̄2

t1
− κ2 (1−Θ)2 η̄2

t2
. (31b)

Now, we substitute (31) into (13), and solve the resultant
problem only w.r.t t. By substituting t = [t1,1−t1] into (31b)
it is easy to show that −C̈E2(0,t) has a unique minimum over
t1 ∈ (0,1) at t1 = tc2

1

1
tc2
1

= 1+
1−Θ

Θ

√

κ2

κ1
(32)

at this point, we have

C̈E2(0,t
c2) = −

(

√

κ1Θ2 +

√

(1−Θ)2 κ2

)2

η̄2 (33)

if C̈E1(0,tc2) > C̈E2(0,tc2) or equivalently

κ12−κ1Θ2
< (1−Θ)Θ

√
κ1κ2 (34)

then R̈(0) = C̈E2(0,t
c2), otherwise R̈(0) = C̈E1(0,t

c1) where
t

c1 is found by setting C̈E1(0,t) = C̈E2(0,t) at

1
tc1
1

= 1+
κ2 (1−Θ)2

κ12−κ1Θ2 . (35)

Finally, substituting R̈(0) into the slope definition, we obtain

2
S̄HDe

=











(

√

κ1Θ2 +

√

(1−Θ)2 κ2

)2

if κ12−κ1Θ2

(1−Θ)Θ
√

κ1κ2
< 1,

κ12

(

1+ κ2(1−Θ)2

κ12−κ1Θ2

)

otherwise
.

(36)
This last result was first found in [10, Proposition 4].

Consider, now, that the channel fractions are fixed (inde-
pendent of the channel gains) t0= [ 1

2 ,
1
2 ] but the energies ë

are optimally allocated. It is direct from (28) that

R̈∗(t0) = −2(Ψ1)
2 −2(Ψ2)

2 (37)

and the slope is

1
S̄HDτ

= κ12 (1−Γ)+κ1ΓΘ2 +κ2Γ(1−Θ)2
. (38)

Finally, consider that, the power allocation is linear and the
channel fractions are fixed t = t0. In this case, we have

C̈E1(0,t0) = −2κ12η̄2
, (39a)

C̈E2(0,t0) = −2κ1Θ2η̄2 −2κ2 (1−Θ)2 η̄2 (39b)
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Figure 2: Maximum slope versus source to relay distance
over Rayleigh fading κ = 2.

and R̈∗(0) = min
i∈{1,2}

C̈Ei(0,t0). Then, the slope decreases to

1
S̄HDτ,e

= max(κ12,κ1 (Θ)2 +κ2 (1−Θ)2). (40)

From this result, we can state the following conclusions:
• The optimal power allocation is not linear in the total

power E.
• For a relay in HD mode, regardless of the channel distrib-

ution, the source never transmits in the second in interval
E12(E) =

E→0
ė∗12E + ë∗12

E2

2 + o(E3) = o(E3). Therefore,

orthogonal transmission are optimal in the low power
regime in terms of maximum RPE and maximum slope.

7. NUMERICAL RESULTS

In this section, we present numerical results to show the per-
formances losses incurred by the HD transmission mode and
the suboptimal resource allocation solutions.

The slope of the spectral efficiency depends on the mean
of the channel fading and the kurtosis of the fading coeffi-
cients. We consider Rayleigh fading channels; i.e. α12,β1,β2
are exponential distributed random variables. Thus, the kur-
tosis of the channel coefficients is κ = 2. The relay is placed
on the line connecting the source and the transmitters, and
the path-loss exponent is ν = 2. The mean of β1 is normal-
ized to E[β1] =1, then E [α12] = d−ν and E [β2] = (1−d)−ν

where d is the distance from the source to the relay. In Fig. 2,
we depict the slope of the spectral efficiency as a function of
the distance from the source to the relay. The figure includes
all the scenarios under analysis: the relay in FD or HD modes
and the optimal or the approximated resource allocation solu-
tions. For a relay in FD mode, the slope obtained with the lin-
ear power allocation approximation does not depend on the
distance d, note that substituting κ = κ12 = κ1 = κ2 into (25),
we obtain 2

S̄FDe
= k12 if E [β1] < E [α̂12], which is always the

case if the relay cooperates. Although, an efficient use of
the bandwidth is done if the relay is near to the source or
the destination, if the relay is located in the middle the linear

approximation requires 10% more the minimum bandwidth.
Compared to the FD mode, a relay in HD mode, requires up
to 75% more the minimum bandwidth, when the relay is in
the middle point between the source and the destination. For
a relay in HD mode, the bandwidth losses incurred by sub-
optimal resource allocation solutions depend strongly on the
distance (d). If the relay is near to the destination, the best
suboptimal solution is to only allocate the channel fraction.
However, if the relay is in the middle point, the best option
is to consider fixed channel fractions but optimal power allo-
cation. If both approximation are taken the system requires
35% more the minimum possible bandwidth with a HD relay.

8. CONCLUSIONS

We studied the spectral efficiency of relayed transmissions
over fading channels in the power efficient regime. The study
includes DF relaying and the CB upper bound on the relay
channel capacity with relays in full duplex or in half duplex
mode. We found the optimal resource allocation that maxi-
mizes the spectral efficiency at E = 0 and computed the max-
imum RPE and the slope of the spectral efficiency with the
Eb
N0

. We showed that a linear power allocation, as assumed in
previous works [10] is not sufficient to characterize the slope
of the spectral efficiency. It is found that while the maximum
RPE does not depend on the duplexing capability. The slope
reveals that the HD mode requires up to 75% more the min-
imum bandwidth under Rayleigh fading channels. Besides,
we showed that for a relay in HD mode, orthogonal transmis-
sions are optimal in the low power regime.
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tirelay channel: capacity and optimal power allocation.” IEEE Trans.
Inform. Theory, vol. 50, no. 12, pp. 3037–3046, Dec. 2004.

[10] X. Cai, Y. Yao, and G. Giannakis, “Achievable rates in low-power
relay links over fading channels,” IEEE Trans. Commun., vol. 53,
no. 1, pp. 184–194, Jan. 2005.

[11] Y. Yao, X. Cai, and G. B. Giannakis, “On energy efficiency and
optimum resource allocation in wireless relay transmissions,” IEEE
Trans. Wireless Commun., vol. 4, no. 6, pp. 2917–2927, Nov. 2005.

[12] A. Høst-Madsen and J. Zhang, “Capacity bounds and power allo-
cation for the wireless relay channel,” IEEE Trans. Inform. Theory,
vol. 51, no. 6, pp. 2020–2040, June 2005.

134


