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ABSTRACT for pattern recognition. LeN be a positive integer, and di-

A formula of approximating histograms is presented. Thevide the interval—1,1] into 2N + 1 equidistant subintervals
formula is an explicit function of data permitting the inclu- [én: én+1]. Here, &, represent, = (2n—1)/(2N+1),n =
sion of unknown parameters. The parameters in the formulgN: --::N + 1. The midpoint of[&n, &n4] is given byty =
are learned so as to classify training data to build a patterg?/(2N +1). Let us denote data byzn, m=0,....M — 1.
classifier. Recognition is performed by applying the classi-! N€ datasizév may be distinct per data. The daig are

fier to testing data. Our method is used for the recognition ofiormalized as-1 < zy < 1. Letzy, be a representative ah
vehicle-type. existing in the subintervggy, &,.1]. The histogrant, of zy,

is the number ok, appearing ifén, éni1).

1. INTRODUCTION The following theorem holds.

Histograms have been widely used in pattern recognitionthegrem 1 ([10]). The ratio of histogranf, to M can be
They are robust to noise and local image transformationgpproximated by

Histograms were initially applied to the identification of 3-

D objects [12]. Following that work, a recognition system - \

based on histograms was proposed [11]. These papers usg, 1 _

color effectively, therefore, their approaches seem to be in-?(t'z) - (2N+1)M Z 1+2 Z cosT(zn —1)
sufficient for the discrimination of greylevel images. We also m=0 k=1

have a problem that histograms do not capture spatial image 1 M1 sin(N + %)n(zm —t)
information. To remedy such a deficiency, Hadjidemetriou ~ 2N+ 1M 1 —

etal.[2, 3, 4] proposed a multiresolution histogram method. ( M o Sin37(zn—1)

Their approach constructs a feature vector of an image from -1<t<1, (1)

the difference histograms proportional to the discrete Fisher

in_formation measures, computed from the muItiresqu'gipnNherez = (20,..,2m-1)-

histograms of the image. They performed pattern recognition

by comparing these feature vectors. Recently, their method The outline of proof is described as follows: We apply
has been applied to the classification of mammographic derthe discrete Fourier transform to the histogrémand trans-
sities [6]. In that work, the feature vectors constructed fronform it using a moment relation betwedn and z,,. The
multiresolution histograms were classified using a multiclas§istogramf, is obtained by exploiting the inverse discrete
directed acyclic graph and a support vector machine. HowFourier transform. As a result, we hatig= Mf (t,;z) with
ever, satisfactory recognition results have not been obtained= (2....,zv—1). This means that (t;z) is an approxima-
yet. tion of f,/M.

In this paper, we present a formula of approximatin . . . . .
histograms',3 v€hich is gn explicit function of ggta permit9 Sincef(t;z) in Theorem 1 is a Dirichlet kernel function
ting the inclusion of unknown parameters. The data con?N€nzm = 0, we call it a Dirichlet kernel histogram (Dkh)
taining unknown parameters are constructed by applying thformula or a Dkh function. It is important to notice that the
lifting dyadic wavelet transform to an image. We producePkh formulaf (t; z) is an explicit function of the datg, m=
a histogram function corresponding to each of such dat _7...,Ml—1. Of coursezy may include unknown parameters.
The unknown parameters are learned so as to separate th#ce [~ f(t;z)dt =2/(2N + 1) does not depend ovl, we
constructed histogram functions to build a pattern classifie€an compare the Dkh functions with different datasizes.
Since our method controls the histogram functions actively, . , . .
the obtained classifier can be a powerful tool for pattern  USing the first equation of (1), we obtain
recognition. In simulation, the proposed method is used t€orollary 1. The L2-distance between two Dkh functions
solve a vehicle-type recongnition problem, and the results of (t;z") with z¥ = (z,...2. 1), v=1,2,is given by
recognition are compared with those of the multiresolution Y
histogram technique.

1
Hf(izl)—f(-:Zz)IIZ:/ (f(t;2") — f(t:2))%dt

2. DIRICHLET KERNEL HISTOGRAM FORMULA J-1

. . . . . N
We derive a formula of approximating histograms, which _ 4 1] 2102 1] 2012
is called a Dirichlet kernel histogram formula, to utilize it (2N +1)2 k;((a (K =)+ (0K ~b7K)%)
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Here,a"[k] andb” [k] denote In this paper, the components; of (6) are normalized to
construct a Dkh function. Although the maximumgf can-

1 My-1 1 Mv-1 not be calculated in advance, because (6) include unknown
a’lk] = — z cogknzy), b'[K=— sin(krzy,),  parameters, they can formally be normalized as
My & My o
. W= Vij V. @)
respectively. . . o i, maX; e Vi v
Corollary 1 will be used to derive a classification algo-
rithm. whereQ denotes an image region afj, andv an average of
vi.j in Q. The Dkh function fow j takes the following form.
3. LIFTING SCHEME
. . . 1 N
To obtain image data including free prameters, we use a seft:w) = —~ 14+2YS cosmk(wi i —t
of lifting dyadic wavelet filters: ttw) (2N + 1)#Q (igeg k; (Whi =)
hn = h2, ) B 1 Sin(NwL%)]T(Wi‘j —1)
= — ,
gnzgﬁ—zf\mﬁ,h 3) (2N+1)#Q ifea sin5(wi j —t)
F‘n:ﬁg_kzl\"ggflv G = Gn, -lsts<1l (8)
Herew = (w; j), (i, j) € Q, where # denotes the number of
pixels ofw .

where\’s are free parameters. Herg2, g2, h2, 62} denotes
i 1 i i 0

a set of old dygdlc wavelet fllte_rs,_ in whidtf ant_j gs are 4. CLASSIFIER

low-pass and high-pass analysis filters, respectively,hgnd .

andd? low-pass and high-pass synthesis filters, respectivelyt.1 Learning of free parameters

It can be shown that the above lifting wavelet filters also beSuppose that there agclasses of images. Theclass con-
come dyadic wavelet filters ([S]). In this paper, only (2) andgists ofT training images™™”, 7 = 1, ..., T. We construct the
(3) will be exploited. Images are not subsampled by these ")

T,V [ RV
analysis filters. From now on, a sequence of free parametefoMPonentsy, ;- of the form (7) fromu; j going through the
is restricted to a finite sequence. lifting (6) and the normalization (7). Furthermore, we con-

Let u;; denote an original image. Applying the filter (2) Struct the Dkh functiong (t;w"™") having the form (8) from
to u;j in vertical direction, and the lifting filter (3) to the W;j . The next task is to calculate the average of the Dkh

resulting components in horizontal direction, we obtain functions inv-class as

L _ 1T
Dij— ¥ A 4 ') =25 fw™),
= 3 MG (4) T2
Here, G j = Simhhoui i jm represent low-pass compo- and the total average of the Dkh functions as
nents, Dij = 3k mOihmUi+kj+m high-pass components in s
horizontal direction, andld’s free parameters in horizontal f_(t) = 1 fu (t).
direction. Next, we apply the filter (2) iq j in horizontal di- SH
rection, and the lifting filter (3) to the resulting components
in vertical direction to get Notice that the free parameters are included also in these av-

erages. We use the discriminant analysis method to learn the
Lo parameters. The method in the present case is described as
Eij— > ACiju, (5)  follows: Determine the parameteds' = (A9, ,...,A%) and
I=-L A®=(A%,...,Af) so as to minimize the functional
whereE; j = ¥ mhRgmUi 1k j+m are high-pass components in

o " vortieal d S5 STl f(sw) - )2
vertical direction, and\®'s free parameters in vertical direc- JATAG) = ev=Ler il o o , 9)
tion. Adding (4) and (5) yields the components So_q IV —f|?

Ly L where|| - || denotes thé.2-norm. The norms included in (9)
Vij=Dij+Ej— > ACiuj— Y ACiju. (6)  canbe computed using Corollary 1 as
1L 1L

. . o [ (- whY)— V)

Note thatv;j has the information of original image; | 4 N

around(i, j), becaus€;, ; andC; j; in (6) have it. _ TV 3V (112 TV _ RV(L])2
The lifted components (6) have been used for develop- (2N +1)2 kzl((a (K —a"[k)" +(™" K~ b"[K])7)

ing facial parts detection systems [7, 8, 13]. They have also 47 N

been exploited for the development of person authentlcanowfv _ f”2 _ . Z ((év[k] _ é[k])2+ (0’[K — b[k])z) _

systems [9, 14]. (2N+1)2 &
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Here,a™"[k] andb™V K] indicate 5. RECOGNITION METHOD

v 1 TV Recognition is performed by comparing a Dkh function for
av’[k = o5 > cogkmw i), a testing image with the Dkh average functions for training
BV (i.)EQry images. First, we compute Dkh functions for training images
- 1 . Ty and their average functions per class by using the learned
b**[k] = 50, . sin(krw; j7), parameters. Next, a Dkh function for a testing image is com-

(1)eQry pgte_d by exploiting the same parameters. We measure the

respectively, where @, denotes the number of pix- L -distances between the Dkh function and the Dkh average
s of u Also. we but K = T ar vk /T fun_ct|ons for training images. T_he testing image is judged to

€ i ' P = 2r=1 ' beinv-class, if its Dkh function is nearest to the Dkh average

bk = 57 ,b™[K/T, &K = 55_,8[K/S and bl =  function ofv-class.
Sv_1b'[K/S
To apply a minimization method (A9, A€), we have to 6. RECOGNITION OF VEHICLE-TYPE

differentiate it with respect tdld andAf, and thus with re- We consider a problem of recognizing vehicle-type. The
spectton ;. However, since the denominatongf;’ is non-  types of vehicles are bus, truck, van, mini-car, and sedan.
differentiable, differentiation is done only for the numerator.Using a webcamera, we took the pictures of vehicles going
at a speed of about 40km/h on a road, and cut off only mov-
4.2 Inverse problems ing objects. The values of background areas are almost zero.

The present minimization problem is considered as a diss@ch image has a size of 6464. The object is not always
crete inverse problem of elliptic-type of partial differential C€Ntered in an image, and is lacked partly in many examples.
operators. To explain this, we return to (6). If choosing the! "€ captured images contain the shadow of a vehicle and, in
high-pass filtegd asgl = —0.25, g2 = 0.5, g3 = —0.25, and ~ SOMe cases, walking people as noise. We captured 40 vehi-
g = 0.0 otherwise, which is a kind of dyadic wavelet filters, /€S per type, therefore, the total number of samples is 200.
the filterg® becomes the discrete Laplacian operator. Theref\Pout half of vehicles in each type is facing to the left, and

fore, a continuous version of (6) can be written as the remaining to the right. From eagh type of vehicles, 10 ve-
hicles are chosen for the use of training images, T.e=, 10,

92 02 and the remaining 30 images to use as testing images. Fig-
V(X,Y) = — W(lyU)(X,y) + Tyg(lxu)(xa)’) ure 1 shows a part of training images, and Fig. 2 a part of

testing images.
S10929uxy).  (10) 719

Herely, Iy andl (A9,18) represent the integral operators de- .
fined by

(y)(ey) = [P )ulxy+Y)dy.
(Ixu)(x,y) = /ho(x’)u(x+ X,y)dX,

(1A% A8 u)(xy) = i (ACtxt1,y) +AFC(xy+1)),
I=—L

respectively, wherk®(x) is a continuous version of low-pass
filter hY, andC(x,y) = | [h°(X)h°(Y)u(x+X,y+Yy)dXdy.
LearningA® andA®© by our method is regarded as solving a
discrete inverse problem of the elliptic-type of partial differ-
ential operator (10).

Such inverse problems generally become ill-posed.
Therefore, stabilization is needed, and is often executed b
using the Tikhonov’s regularization method. The method is

to add the penalty term Figure 1: A part of training images; from the top of each line,
L bus, truck, van, mini-car, and sedan are arranged.

S (AD2+ ()

I=-L 6.1 Our method
to J(A9,A®) of (9), and to minimize By the use of dichotomy, we separate 50 training images,
L each type of vehicles consists of 10 images. The free param-
d e dy2 €2 etersA®’s andA®’s included in (7) are learned by our method
JATAT + Plzz_l_(()" )7+ (A0, S0 as to distinguish, first, bus and the other types of vehicles,

second, truck and the other types of vehicles except for bus,
whereP denotes a penalty constant. This fact was pointedhirdly, van and the remaining two types of vehicles, and last,
out also in [7]. mini-car and sedan. That is, we construct four classifiers,
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Figure 4: The averages of Dkh functions learned for training
images of truck, van, mini-car, and sedan.

Figure 2: A part of testing images; from the top of each line,
bus, truck, van, mini-car, and sedan are arranged.

which are tools for recognizing bus, truck, van, mini-car, and=igure 5: The averages of Dkh functions learned for training

sedan. In all the cases, the number of free parameters in eaighages of van, mini-car, and sedan.

direction is chosen ad 21 =25, i.e.,L = 12, and the num-

ber of mesh points of a Dkh function adl2-1 =11, i.e.,

N = 5. To ignore the background area in an original image, ] o o . )

we use only the values of image exceeding some threshold#inction of mini-car is distinct from that of sedan in the in-
For recognition, we compute the Dkh functions havingterval[—0.3,0.1], which hints the separability of them.

the form (8) for training images by using the parameters _We examlne the recognition abl'lty_ of our method for 50

learned for the bus classifier, the truck classifier, the van clagtaining images already used for learning, and for 150 testing

sifier, and the mini-car classifier. Furthermore, the averagegages. The proposed method is evaluated by comparing the

of these Dkh functions are calculated per vehicle-type. Figl>-distances between a Dkh function for a training or test-

ures through 3 to 6 illustrate the averages of Dkh functiongd image and the Dkh average functions obtained for the

for four classifiers. training images. If a Dkh function for an input image has

the shortest distance from the bus Dkh average function in

the bus classifier, the image is judged as bus. If not so, it is

checked for the remaining classifiers. The results of recog-

nition by our method are shown in Table 1 for the training

and testing images. The agreement based on our method was

100% for the training images, and agreement obtained for the

testing images was 90%.

6.2 Multiresolution histogram technique

For comparison, the experiments of vehicle-type recognition
are performed by the use of the multiresolution histogram
g{echnique [4]. Although the method employs a Gaussian

Figure 3: The averages of Dkh functions learned for trainin
images of bus, truck, van, mini-car, and sedan.

In Fig. 3, the bus average function behaves like a Gaus-
sian distribution witht = 0.0 as a center, while the other
ones have valleys nedr= 0.0. This suggests that bus
is separable from the other types of vehicles. Figure 4
shows that the truck average function has a minimum around
t = —0.2, however, the remaining average functions present
sharp peaks there. Therefore, it is expected that only truck
will be distinguishable from the remaining types of vehicles
except for bus. Figure 5 presents a nortable difference be-
tween the van average function and the other ones in the ifFigure 6: The averages of Dkh functions learned for training
terval [-0.7,0.0]. This expects that van will be separatedimages of mini-car and sedan.
from mini-car and sedan. Figure 6 shows that the average
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Table 1: Results of recognition by our method. b: bus
t: truck, v: van, m: mini-car, s: sedan.

Training images Testing images
bt v m s]|b t v m s REFERENCES
b|10 0 O O 0}24 2 4 0 O )
tT0 10 0 0 00 28 0 2 0 [1] A.M. Bruckstein, D.L. Donoho, and M. Elad, "From
vi0o O 10 0 00 0 30 0 0 sparse splutions of systems of equat_ions to sparse mod-
mlT 0 0 O 10 00 2 0 27 3 eling of signals and imagesSIAM Reviewvol.51, no.1,
S0 0 0 0 100 0 0 2 28 Pp.34-81, 2009.

[2] E. Hadjidemetriou, M.D. Grossberg, and S.K. Nayar,
“Histogram preserving image transformationdyit'l
Journ. Computer Visianvol.45, no.1, pp.5-23, 2001.

pyramid of subsampled type to obtain histogram informa{3] g, Hadjidemetriou, M.D. Grossberg, and S.K. Na-

tion, we use the dyadic wavelet transform not subsampled, " yar, “Spatial information in multiresolution histograms,”

because the size of images is small. Following the multireso-  proc. Computer Vision and Pattern Recognition Conf.
lution histogram method, histograms proportional to the dis-  yo.1, pp.702-709, 2001.

crete Fisher information measures are computed for the trair?le1
ing and testing images treated in Section 6. These histogral s]
are concatenated to form a feature vector. We compare the ..~ . : :
L!-distances between a feature vector for a training or test- tion, IEEIEZ'(IS'rans%PattegréfngAI};s|§818A<fj Machine Intelli-
ing image and the averages of the feature vectors for trainin gencevol.2o, no. 7, pp. B ' )
images, and judge a viehicle-type with the shortest distancé2] S. Mallat, A Wavelet Tour of Signal Processing§an
Table 2 shows the results of recognition. The matching rate Diego CA: Academic Press, 1998.

[6] I. Muhimmah and R. Zwiggelaar, “Mammographic den-

sity classification using multiresolution histogram infor-

Table 2: Results of recognition by the multiresolution his-  mation,” Proc. of the Int'l Special Topic Conf. on In-
togram method. b: bus, t: truck, v: van, m: mini-car, s: sedan.  formation Technology in Biomedicinéammography,
2006.

E. Hadjidemetriou, M.D. Grossberg, and S.K. Nayar,
“Multiresolution histograms and their use for recogni-

bTre;mng |mr§gess b T?stmg\)/lmar%es 3 [7] K. l_\liijlima}, “Fast object_s . detection by variance-
bT8 0 0 2 016 242 1 3 6 maximization I(_aarnlr)g of I|ft|ng wavelet filtersProc.
Tt T1T 9 0 0 02 27 0 0 1 Signal Processing with Adaptive Sparse Structured Rep-
vIi0o 0 8 2 00 0 23 5 2 resentations (SPARS'QF)p.25-28, 2005.
mlo 0 0 10 0l 0 2 4 19 5 [8] K. Niijima, “"Facial parts recognition using lifting
S0 0 0 1T 90 2 1 1 26 wavelet filters learned by kurtosis-minimizatiorRtoc.

of Int’l Conf. on Computer Vision Theory and Applica-
tions (VISAPP’06)pp.41-47, 2006.

of the multiresolution histogram technique was 88% for thg9] K. Niijima, “Person authentication using learned param-

training images, while it was 74% for the testing images. eters of lifting wavelet filters,5th Int'l Workshop on In-
formation Optics (WIO'06), AIP Conf. Procvol.860,
7. CONCLUSION AND FUTURE WORKS pp.253-262, 2006.
We have proposed a pattern recognition method based on[#0] K. Niijima, “Recognition equipment, ~recognition
Dkh formula. This formula is an explicit function of dataper- ~ Meéthod, program, and storage mediumgplied to the

mitting the inclusion of unknown parameters. By learning ~ JaPanese Patent Office for a patemb.2007-186304,
the parameters, we can build histogram pattern classifiers. July 17, 2007.

Practically, free parameters in the Dkh functions constructefll1] M. Stricker and M. Orengo, “Similarity of color im-
from the vehicle training images were learned by using the ages,"Proc. SPIE Conf. Storage and Retrieval for Image
discriminant analysis method to produce a vehicle-type clas- and Video Databases |lvv0l.2420, pp.381-392, 1995.

sifier. The experimental results show the high recognitiorf12] M.J. Swain and D.H. Ballard, “Color Indexinglft’l
ability of our method. o Journ. of Computer Visigrvol.7, no.1, pp.11-32, 1991.
The proposed Dkh formula has many applications aswell; 31 g tapano, K. Nijjima and T. Abdukirim, “Fast face
as pattern recognition. One of important problems is to fin defection b’y Iiﬁing dyadic wévelet filteré Proc. of
out a relation between our Dkh formula and the zero-norm the IEEE Intl Conf. on Image Processing '(ICIP'2003)
investigated recently by Donoho’s group [1]. Our Dkh func- vol.Ill of Ill, pp 893-é96 2003
tion is considered as a generalization of Donoho’s zero-norm, ’ TR ’ ) . .
and differentiable with respect to data unlike the zero-norm[14] S. Takano, K. Niijima and K. Kuzume, “Personal iden-
The Dkh formula can also be utilized for the control of strat-  tification by multiresolution analysis of lifting dyadic
egy parameters included in solutions to evolution equations. Wavelets”,Proc. of the 12th European Signal Process-
These are future works. ing Conference (EUSIPCO 20Q4)p.2283-2286, 2004.
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