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ABSTRACT

We demonstrate that minimum-energy (ME) band-limited
prediction shows the same robust performance for vehicu-
lar channel measurements as well as for the numeric Clarke
channel model. By contrast, channel prediction based on si-
nusoidal modelling presented by Chen et al., 2007, shows
poor performance for a small percentage of measured chan-
nel realizations. This increases the mean square error dra-
matically, hence outlier removal is required. The ME
band-limited predictor introduced by Zemen et al., 2007,
is based on a subspace spanned by time-concentrated and
band-limited sequences. The time-concentration of these se-
quences is matched to the length of the observation inter-
val and the band-limitation is determined by the support of
the Doppler power spectral density of the fading process.
The low-complexity time-variant flat-fading channel predic-
tor dynamically selects a predefined subspace from a small
set such that the prediction error is minimized. We vali-
date the ME band-limited predictor using channel measure-
ments from an alpine region. The predictor performance
with measured channels is comparable to the one obtained
with Clarke’s channel model for non line-of-sight situations.
For line-of-sight situations the performance is better than for
Clarke’s model. We present results in terms of mean square
error averaged over all measured snapshots.

1. INTRODUCTION

In mobile communication systems channel state informa-
tion at the transmitter proves to be beneficial for increasing
the system capacity. In a time-division duplex (TDD) sys-
tem channel state information can be obtained by exploiting
channel reciprocity: While a data block is received, chan-
nel state information is obtained. This information can be
utilized in the following transmission period. However, for
moving users at vehicular speed the channel state informa-
tion gets outdated rapidly. Thus, appropriate channel predic-
tion is necessary.

In [1] Zemen et al. present a new minimum-energy (ME)
band-limited prediction algorithm. This algorithm allows for
low-complexity prediction of a fading process from noisy
channel observations that are obtained while receiving a sin-
gle data block. The symbol rate, or equivalently the sam-
pling rate of the fading process, in wireless communication
systems is much higher than the Doppler bandwidth. Thus,
time-limited snapshots of the sampled fading process span a
subspace with small dimension [2].

In [1] it is shown that a time-concentrated and band-
limited sequence can be defined for generalized band-limits
consisting of disjoint intervalls matching the support of the
Doppler power spectral density of the time-selective fading
process. The energy of these sequences is most concentrated
in an interval equal to the length of the observed data block.
Thus, they allow to calculate the ME band-limited contin-
uation of a finite sequence [2], hence predict future sam-
ples. In [1] the algorithm is validated by the numeric Clarke
model, only.

In [3] a prediction algorithm based on sinusoidal mod-
eling is presented by Chen et al. It is shown that channel
prediction based on sinusoidal modelling performs poor for
a small number of measured channel realizations [3, Sect.
6]. This increases the mean square error (MSE) dramati-
cally. Hence, [3] performs outlier removal and results are
presented in terms of MSE with a given level of confidence.
An enhanced approach utilizing multicomponent polynomial
phase signals is presented in [4], however outlier removal is
still required.

Contribution of this paper: In this paper the ME band-
limited prediction algorithm with dynamic subspace selec-
tion is validated with vehicular channel measurements. We
demonstrate the robustness of our algorithm. No outlier re-
moval or other preprocessing is necessary for consistent per-
formance on a large number of measured vehicular channel
samples for line-of-sight (LOS) and non-LOS scenarios.

Organization of the paper: In Section 2 we introduce
the signal model for time-variant flat-fading channels. The
ME band-limited prediction algorithm [1] is shortly reviewed
in Section 3 and the dynamic subspace selection in Section 4,
respectively. Section 5 decribes the vehicular measurement
scenario and the post-processing is discussed in Section 6.
We present the simulation results in Section 7 and draw con-
clusions in Section 8.

Notation: We denote a column vector by aaa and its i-th
element with a[i]. Similarly, we denote a matrix by AAA and its
(i, `)-th element by [AAA]i,`. The transpose of AAA is given by AAAT

and its conjugate transpose by AAAH. The absolute value of a is
denoted by |a| and its complex conjugate by a∗. The largest
(smallest) integer that is lower (greater) or equal than a ∈ R
is denoted by bac (dae). We denote the set of all integers
by Z, the set of real numbers by R and the set of complex
numbers by C.
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2. SIGNAL MODEL FOR TIME-VARIANT
FLAT-FADING CHANNELS

We consider a time division duplex (TDD) communication
system transmitting data in blocks of length M over a time-
variant channel. The symbol duration TS is much longer than
the delay spread TD of the channel, i.e., TS � TD. Hence
we assume the channel as frequency-flat. Discrete time at
rate RS = 1/TS is denoted by m. The channel incorporates
the transmit filter, the transmit antenna, the physical channel,
the receive antenna, and the receive matched filter. The data
symbols b[m] are randomly and evenly drawn from a symbol
alphabet with constant modulus. Without loss of generality
|b[m]|= 1. The discrete-time signal at the matched filter out-
put h[m]b[m]+ n′[m] is the superposition of the data symbol
multiplied by the sampled time-variant channel weight h[m]
and complex white Gaussian noise n′[m] with variance σ2

n .
Without loss of generality {h[m]} is a circularly symmetric,
unit-variance (due to power control) process.

We assume an error-free decision feedback structure [5].
Thus, we are able to obtain noisy channel observations [6]
using the error-free data symbol estimates b̂[m] = b[m]:

y[m] = h[m]+n[m] . (1)

Note that n[m] has the same statistical properties as n′[m].
The signal-to-noise ratio (SNR) is SNR = 1/σ2

n .
The transmission is block oriented. A data block spans

the time interval IM = {0, . . . ,M− 1}. The noisy channel
observations y[m], m ∈ IM obtained during a single data
block are used to predict the channel weight up to N sym-
bols into the future.

For a user moving with velocity v the time-variant fading
process {h[m]} is band-limited by the one-sided normalized
Doppler bandwidth

νD =
v fC

c0
TS�

1
2

(2)

where fC is the carrier frequency and c0 stands for the speed
of light. As indicated with the inequality in (2) the sampling
rate 1/TS is much higher than the Nyquist sampling rate.

We assume a time-variant block-fading channel model.
Hence the fading process {h[m]} is wide-sense stationary
over the limited time interval IM+N with covariance func-
tion

Rh[k] = E{h∗[m]h[m+ k]} . (3)

3. MINIMUM-ENERGY (ME) BAND-LIMITED
PREDICTION

The samples of the channel weights in a single block IM are
collected in the vector

hhh = [h[0],h[1], . . . ,h[M−1]]T . (4)

We consider a subspace-based approximation which ex-
pands the vector hhh in terms of D orthonormal basis vectors
uuui = [ui[0],ui[1], . . . ,ui[M−1]]T, i ∈ {0, . . . ,D−1}:

hhh≈UUUγγγ =
D−1

∑
i=0

γiuuui . (5)

In this expression UUU = [uuu0, . . . ,uuuD−1] contains the orthonor-
mal basis vectors and γγγ = [γ0, . . . ,γD−1]T collects the basis

expansion coefficients. The least square estimate of γγγ sim-
plifies to

γ̂̂γ̂γ =UUUHyyy (6)

due to the orthogonality of the basis functions. The recon-
struction error per data block is defined as

z =
1
M
‖hhh−UUU γ̂̂γ̂γ‖2 . (7)

We define the mean square reconstruction error per sample

MSE[m] = E
{
|h[m]− ĥ[m]|2

}
, (8)

and the mean square reconstruction error per data block,

MSE =
D
M

σ
2
n +

1
M

E{‖VVV Hhhh‖2} , (9)

where VVV = [uuuD, . . . ,uuuM−1] contains the basis vectors span-
ning the subspace orthogonal to the signal subspace spanned
by the columns of UUU . The noise samples are collected in
the vector nnn = [n[0], . . . ,n[M− 1]]T. We seek basis vectors
uuu0, . . . ,uuuD−1 and the subspace dimension D which minimize
the reconstruction error per data block.

In mobile radio-communication channels, the most sig-
nificant part of the power in the estimated Doppler spectrum
of the fading process is usually localized on the union of
disjoint intervals in the frequency range (−1/2,+1/2). A
region W ⊆ (−1/2,1/2) consisting of I disjoint intervals
Bi = (νi1,νi2), i ∈ {1, . . . , I} can be defined as

W =
I⋃

i=1

Bi = B1∪B2∪ . . .∪BI , (10)

with ν11 ≤ ν12 ≤ . . .≤ νI1 ≤ νI2, see [1, Fig. 1].
The sequences {ui[m,W ]}, i ∈ {0, . . . ,M − 1} band-

limited to the region W and with most concentrated energy
in the interval IM are the solutions to

M−1

∑
`=0

C[`−m,W ]ui[`,W ] = λi(W )ui[m,W ] , m ∈ Z (11)

where
C[k,W ] =

∫
W

ej2πkν dν . (12)

Note that C[k,W ] is proportional to the covariance function
of a process exhibiting a constant spectrum with support W .
For more details please refer to [1].

The ME band-limited prediction of a time-variant chan-
nel for any m ∈ Z can be expressed as [1]

ĥ[m] = fff [m,W ]Tγ̂̂γ̂γ =
D(W )−1

∑
i=0

γ̂iui[m,W ] , (13)

where fff [m,W ] = [u0[m,W ], . . . ,uD(W )−1[m,W ]T.

4. SUBSPACE DEFINITION AND DYNAMIC
SELECTION

In practical systems information about the Doppler band-
width must be obtained from channel observations. We de-
fine a finite number of hypotheses about the actual Doppler
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Figure 1: The alpine measurement scenario.

bandwidth. Each hypothesis is represented by a subspace
spanned by time-concentrated and band-limited sequences.
The orthogonal basis vectors spanning each subspace are cal-
culated once and then stored. A subspace selection method
based on a probabilistic bound on the reconstruction error
z (7) is used to select the subspace with the smallest re-
construction error based on the observation of a single data
block. This subspace is used for ME band-limited prediction.

4.1 Subspace Definition
We define the maximum Doppler bandwidth

νDmax =
vmax fCTS

c0
(14)

as system parameter given by the maximum (supported) user
velocity vmax. Furthermore, we define a set of Q subspaces
with spectral support

Wq =
(
− q

Q
νDmax,+

q
Q

νDmax

)
(15)

for q ∈ {1, . . . ,Q} as shown in [1, Fig. 3].
In mobile communication channels, fading processes fre-

quently arise whose spectral support is the union of disjoint
intervals. Hence we define an additional set of subspaces by
partitioning the region (−νDmax,νDmax) into Q′ spectral bins
with equal length as depicted in [1, Fig. 4].

The spectral bin i ∈ {1, . . . ,Q′} spans the interval

Bi =
[
−νDmax +(i−1)

νDmax

Q′
,−νDmax + i

νDmax

Q′

]
. (16)

Using all possible binary combinations of Bi we can define
2Q′ −1 band-limiting regions W ′

q′ , q′ ∈ {1, . . . ,2Q′ −1}.
We combine the set of symmetric subspace UUUq with

Q = 10 and the set of asymmetric subspaces UUU ′q′ , q′ ∈
{1, . . . ,2Q′ −1} with Q′ = 4 leaving out duplicates.

4.2 Subspace Selection
In [7] an information theoretic subspace selection scheme is
proposed. This method uses the observable data error

xq =
1
M
‖yyy−UUUqUUUH

q yyy‖2 (17)

to obtain an upper bound zq(xq) on the reconstruction error

zq =
1
M
‖hhh− ĥ̂ĥhq‖2 ≤ zq(xq) (18)

which cannot be observed directly. For the subspace selec-
tion hhh is considered deterministic. The results in [7] are de-
rived for real valued signals. They are adapted for complex
valued signals and noise in [1].

The upper bound on the reconstruction error is used to
select the appropriate subspace q spanned by the columns of
UUUq,

q̂ = argmin
q

zq(xq) . (19)

The chosen subspace UUU q̂ and the associated sequences
{ui[m,Wq]} are used for ME band-limited prediction [1].

5. VEHICULAR CHANNEL MEASUREMENTS

To validate the prediction algorithm we use outdoor vehicu-
lar channel measurements carried out in the alpine Drautal
valley in Austria. The basic set-up of the Vienna MIMO
Testbed [8] is as follows:
• A base station is set up at one side of the Drautal valley

right next to already existing base stations. Exactly every
500 ms it transmits a frame with the following parame-
ters:
– 100 ms duration
– 4-quadrature amplitude modulated (QAM) single

carrier signal (511 training symbols and S = 1000
data symbols), root-raiced-cosine (RRC) filtered with
a roll-off factor of 0.5

– 15 kHz bandwidth1, resulting in TS = 66.7 µs.
– fC = 2.5 GHz center frequency (the wavelength is ap-

prox. 12 cm)
– 37 dBm TX power

We employ a Kathrein 800 10543 base station antenna
[9] with +45 ◦ polarization, half-power beam width
58 ◦/6.2 ◦ and down tilt 6 ◦.

• The corresponding receiver is placed in a “VW-Sprinter”
van that follows a route through the valley. Four receive
antennas were placed in front of the passenger seat as
depicted in Figure 1. For the analysis in this paper only
one antenna is used.

Prior to the actual measurement, the TX and RX-unit were
synchronized relative to each other (see [10] for more de-
tails). This initial synchronization was then maintained
throughout the whole measurement to ensure perfect tim-
ing and frequency synchronization of the received frame (see
Figure 2).

1chosen similar to the orthogonal frequency division multiplexing
(OFDM) subcarrier bandwidth in UMTS long term evolution (LTE)
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Figure 2: Timing diagram.
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Figure 3: Histogram of Rice K-factor (in dB) for all mea-
sured frames.

During the actual measurement, the receiver captured the
frames transmitted by the base-station and stores them on a
hard-disk. These stored complex baseband-data samples are
the input to all off-line evaluations carried out later.

6. POST-PROCESSING

For post-processing the received signal baseband samples are
RRC filtered and synchronized in time by correlating with
the training symbol sequence.

During the measurement drive with a duration of approx-
imately half an hour a total number of F = 3171 frames
were received. The propagation condition varied from line-
of-sight (LOS) on a rural road to non-LOS within villages.
In Figure 3 we plot a histogram showing the histogram of
the Rice K-factor in dB. For the Rice K-factor estimation we
used the method of moments [11] as initial guess for a least
squares fit of the Rice probability density function (pdf). The
Kolmogorov-Smirnov goodness of fit [12, pp. 392–394] is
depicted in Figure 4. Hence, the largest distance between the
Rice cumulative distribution function (cdf) and the empirical
cdf is smaller than 0.1 for 90% of all measurement frames.

The histogram of SNR is depicted in Figure 5. The SNR
of 95% of all snapshots is above 25dB. Due to the high SNR
for all frames we can treat the obtained channel sample as
perfect channel knowledge h f [m] where 0 ≤ f ≤ F − 1 and
0≤ m≤ S−1. The frame index is denoted by f .

Finally, the velocity histogram is shown in Figure 6. The
velocity per frame is obtained from the collected GPS data
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Figure 4: Histogram of Kolmogorov-Smirnov goodness of fit
for Rice pdf for all measured frames.
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Figure 5: Histogram of SNR for all measured frames.
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Figure 6: Histogram of velocity for measured LOS frames
(K f ≤ 10) and non-LOS frames (K f > 10).

collected during the measurement. We show the number of
frames per velocity bin with non-LOS conditions for K f ≤ 10
(black) and LOS conditions with K f > 10 (light gray). We
take all snapshots into account with a velocity v ≤ 80km/h.
This is done to ensure a sufficiently large set of frames per
evaluated velocity bin for later statistical evaluations. For
easier comparison with [1] we keep vmax = 100km/h.

Each frame is normalized such that E{|h f [m]|2}= 1. Fi-
nally, we add complex white Gaussian noise noise n f [m] ∼
N (0,σ2

n ) with σ2
n = 0.1 resulting in a SNR = 10dB obtain-

ing noisy channel observations y f [m] according to (1) with
defined properties.

7. SIMULATION RESULTS

We are interested to investigate the performance of ME band-
limited prediction with dynamic subspace selection in realis-
tic channel conditions.

We need to adapt the results from [1] to the symbol dura-
tion TS = 66.67 µs of our vehicular measurements. In [1]
a symbol duration of 20.57µs is used. We keep the as-
sumption that the predictor is able to observe the channel
at most for the duration of two wavelengths at a velocity
of vmax = 100km/h resulting in a block length of M = 128.
We will analyze two prediction horizons, namely ` ∈ {8,24}
(equivalent to {λ/8,3λ/8} at vmax.).

As base-line performance we use Monte-Carlo simula-
tion with Clarke’s channel model [13]. The Clarke model
with P = 30 scatterers is representative for non-LOS sit-
uations with rich scattering. These results are compared
with the one for noisy channel observations y f [m] obtained
from vehicular channel measurements. We will distinguish
two cases, namely the quasi non-LOS case characterized by
K f ≤ 10 and the LOS case with K f > 10.

In Figure 7 we plot MSE[M− 1 + `] versus the normal-
ized Doppler bandwidth νD for a velocity range 0 ≤ v ≤
80km/h. The predictor performance with measured channels
is slightly worse in the non-LOS case (especially for small
velocities) compared to Clarke’s model. In the LOS case

2149



0 0.002 0.004 0.006 0.008 0.01
10

−3

10
−2

10
−1

10
0

νD

M
S
E

 

 

measured ch. , � = 24, K < 10 (non-LOS)

simulated ch. , �=24, P = 30

measured ch. , � = 24, K > 10 (LOS)

measured ch. , � = 8, K < 10 (non-LOS)

simulated ch. , �=8, P = 30

measured ch. , � = 8, K > 10 (LOS)

Figure 7: Mean square prediction error versus normalized
Doppler bandwidth. We compare the prediction performance
for measured vehicular channels with the one for the numeric
Clarke channel model. Two prediction horizons ` ∈ {8,24}
are evaluated (equivalent to {λ/8,3λ/8} at vmax).

the performance is better than the one obtained with Clarke’s
model. We emphasize that this result clearly shows the ro-
bustness of ME band-limited prediction with dynamic sub-
space selection. No outlier removal is required (compared to
the results in [3]).

8. CONCLUSIONS

In this paper we validated the minimum-energy (ME) band-
limited prediction method [1] comparing performance results
for vehicular channel measurements with the one obtained
for the numeric Clarke channel model with P = 30 paths.
This comparison is important because e.g. channel predic-
tion based on sinusoidal modelling [3] shows poor perfor-
mance for a small percentage of measured channel realiza-
tions, thus requiring outlier removal.

We demonstrate the robustness of ME band-limited pre-
diction for LOS and non-LOS scenarios for a large number of
measured vehicular channel realizations. No outlier removal
was required. For non-LOS scenarios the predictor performs
slightly worse than for Clarke’s channel model measured in
terms of the mean square prediction error at a prediction hori-
zon of λ/8 and 3λ/8. For LOS scenarios the ME energy
band-limited predictor is able to take advantage of the re-
duced number of propagation paths and shows better perfor-
mance than for Clarke’s model.
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