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ABSTRACT

We consider a zero padding OFDM system to which we
apply channel shortening to cope with channel responses
larger than the guard interval (GI) redundancy. In this ar-
ticle, we propose a blind channel shortening algorithm based
on the restoration of zero padding (ZP) redundancy. A main
contribution consists in the introduction of a new optimiza-
tion constraint that allows us to control the target impulsere-
sponse (TIR) quality and to improve significantly the system
performance. Finally, we present a performance comparison
between this new technique and similar existing techniques
from the literature: MERRY and FRODO algorithms.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) sys-
tem uses the guard interval (GI) to combat the inter symbol
interference (ISI) and the intercarrier interference (ICI). The
presence of the GI and Fourier transform in OFDM system
ensures a low equalization complexity compared to single
carrier systems. For this reason, many digital communica-
tion standards adopt OFDM system such that DVB, DAB,
ADSL, etc. In OFDM system, the GI length must be higher
than the channel size, otherwise, the ISI and ICI persist. To
preserve a high effective flow and to eliminate the ICI and
ISI, we must reduce the channel length by using channel
shortening techniques. From the literature, different algo-
rithms of blind channel shortening are known: the second
order statistics based methods in [1, 2], Multicarrier Equal-
ization by Restoration of Redundancy (MERRY) [3, 4], the
Carrier Nulling Algorithm (CNA) [5] and the hybrid short-
ening method in [6]. In this paper, we consider the OFDM
system where the GI is formed by zero padding (ZP). We
start by proving that the restoration of the ZP redundancy al-
lows us to achieve the desired channel shortening. However,
our key result is that, considering the structure of ZP-OFDM
symbols, we are able to choose an appropriate constraint that
guarantees a good TIR quality. Simulation results are pro-
vided to illustrate the gain we obtain with the new optimiza-
tion constraint.

We use in this paper the following notations:T , ∗ and
H stand for transpose, conjugate and transconjugate, respec-
tively. 0a,b and Ia are thea× b zero matrix and thea× a
identity matrix. E(.) denotes the mathematical expectation
and∗ represents the convolution operator.
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Figure 1: System model.

2. SYSTEM MODEL

In OFDM systems, the transmitted signals(k) is segmented
into blocks of lengthN (N is the number of frequency bins):

sn = [s(nN),s(nN +1), · · · ,s(nN +N −1)]T . (1)

The blocksn is transformed into vectorxn by Inverse Fast
Fourier Transform (IFFT), as shown in Fig. 1.

xn = FHsn (2)

whereF represents aN×N normalized Fourier matrix. Then,
the GI redundancy (here, we consider zero padding) is added
to xn to form a vector

x̄n =
[
xT

n ,01,ν
]T

, ν being the size of the GI.

Due to channel and noise effects, the received signal is given
by :

y(i) =
L

∑
l=0

h(l)x̄(i− l)+b(i) (3)

whereh = [h(0),h(1), · · · ,h(L)]T represents a finite impulse
response channel, ¯x(i) is the transmitted symbol andb(i) is
the observation noise. In this work, the channel memory
is larger than the GI (i.e,L > ν) and hence a shortening is
needed to reduce the size of the channel and eliminate the
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ISI. Thereafter, the received data is filtered by time domain
equalizer (TEQ)w = [w(0),w(1), · · · ,w(q− 1)]T of degree
q−1 to obtain the following equalized data:

z(i) =
q−1

∑
l=0

w(l)y(i− l). (4)

We assume that:
• h is unknown.
• the datas(k) and noiseb(k) are uncorrelated, zero mean

and i.i.d. processes with varianceσ2
s and σ2

b , respec-
tively.

• q does not exceedN −L.
The combined equalizer-channel impulse response is de-
noted byc(n) = h(n) ∗w(n). The goal of the channel short-
ening is to approximately obtain:

c = [01,d ,v
T
,01,(L+q−ν−d)]

T

where
c = [c(0),c(1), · · · ,c(L+q

︸ ︷︷ ︸

Lc

−1)]T

v = [v(0),v(1), · · · ,v(ν −1)]T

is the target impulse response (TIR) andd is the equalizer
delay. Before introducing our shortening method, we recall
first its counterpart for CP-based OFDM systems.

3. CP-BASED CHANNEL SHORTENING

3.1 MERRY and FRODO algorithms

These algorithms are dedicated for OFDM system where the
GI is formed by Cyclic Prefix (CP). So, in this case, vector
x̄n is given by:

x̄n = [xn(N −ν), · · · ,xn(N −1),xn(0), · · · ,xn(N −1)]T .

MERRY algorithm consists in minimizing the square of the
difference between one sample in the CP and its counterpart
at the end of the equalized symbol. This allows us to achieve
the channel shortening by restoring the CP-redundancy. In
[3], the authors propose the following cost function:

Jmerry = E
[

|z(nP+d +ν −1)− z(nP+d +P−1)|2
]

. (5)

whereP = N +ν . Jmerry can be rewritten as:

Jmerry = wHE
[
y̌∗

ny̌
T
n

]
w (6)

where

y̌n =








y(nP+d +ν −1)− y((n+1)P+d −1)
y(nP+d +ν −2)− y((n+1)P+d −2)

...
y(nP+d +ν −q)− y((n+1)P+d −q)








. (7)

Equation (6) is minimized subject to the unit norm constraint,
i.e. ‖w‖= 1 or to the unit energy constraint on the combined
channel‖c‖ = 1 [4] to avoid the trivial solutionw = 0q,1.

An extension of MERRY algorithm called FRODO
(Forced Redundancy with Optional Data Omission) was pro-
posed recently in [4]. The main idea of this algorithm is to

compare more than one sample in the CP to their counter-
parts at the end of the symbol. The cost function associated
to FRODO algorithm is given by:

J f rodo = ∑
i∈S f

E
[

|z(nP+d + i)− z(nP+d + i+N)|2
]

(8)

whereS f ⊂ {0, · · · ,ν −1} is appropriate an index set. In [4]
, the authors prove that minimizing (8) allows to reduce the
channel at lengthκ = ν − card(S f ) + 1 wherecard means
the cardinal function.

4. ZP-BASED CHANNEL SHORTENING
(ZP-MERRY)

We consider here the OFDM system described in section 2
where the GI is formed by ZP. The proposed technique is
a trivial extension of MERRY algorithm, consisting of the
restoration of the ”zero energy” of the last sample in each
block. We refer to this method as Zero Padding Multicarrier
Equalization by Restoration of Redundancy (ZP-MERRY)
algorithm. Hence, we define the following cost function:

J1
zp = E

[

|z(nP+d +P−1)|2
]

. (9)

We start first by proving theoretically that minimizing crite-
rion (9) leads to the desired channel shortening.
Lemma 1: Assume that the assumptions made in section 2
are verified . Then, in noiseless case, criterionJ1

zp satisfies:

J1
zp = 0 ⇔ c = [01,d ,v

T
,01,(Lc−ν−d)]

T (10)

wherev = [c(d),c(d +1), · · · ,c(d +ν −1)]T .
Proof: In the noiseless case, the equalized signal after

filtering by TEQw can be written as:

z(n) = w
T






y(n)
...

y(n−q+1)




 = c

T






x̄(n)
...

x̄(n−Lc +1)




 (11)

Let x̄n(i) = x̄(nP + P + i). Then, the last equalized sample
z(nP + d + P−1) in the n−th block preceded by a delayd
can be written as:

z(nP+d +P−1) = cT




















x̄n(d −1)
...

x̄n(0)
x̄n(−1)

...
x̄n(−ν)

x̄n(−ν −1)
...

x̄n(d −Lc)




















= cT




















x̄n(d −1)
...

x̄n(0)
0
...
0

x̄n(−ν −1)
...

x̄n(d −Lc)




















. (12)

In the case wherec = [01,d ,vT ,01,(Lc−ν−d)]
T , using the pre-

vious equation, we have in noiseless case:

z(nP+d +P−1) = 0 (13)

and henceE
[

|z(nP+d +P−1)|2
]

= 0. This proves the first

part of the equivalence:

c = [01,d ,v
T
,01,(Lc−ν−d)]

T =⇒ J1
zp = 0.
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Sincexn is zero mean and i.i.d. with varianceσ2
s . We can

rewriteJ1
zp as:

J1
zp = E

[

|z(nP+d +P−1)|2
]

= σ2
s cHTc (14)

whereT is Lc ×Lc matrix defined as:

T =

[
Id 0 0
0 0ν 0
0 0 ILc−ν−d

]

, (15)

which shows clearly that:

J1
zp = 0 =⇒ c = [01,d ,v

T
,01,(Lc−ν−d)]

T
.

We conclude that the restoration of the ZP property is
equivalent to channel shortening at lengthν . �

Remark: Similarly to [4], ZP-MERRY can be extended
by forcing more than one sample of the GI to be zero. We
propose to refer to this method as ZP-FRODO algorithm. So,
we consider the following cost function:

J2
zp = ∑

i∈S f

E
[

|z(nP+d +P− i)|2
]

(16)

whereS f = {1,2, · · · ,κ}, with 1≤ κ ≤ ν .
Lemma 2: Using the same assumptions made in section 2,
in the noiseless case, criterionJ2

zp satisfies:

J2
zp = 0⇔ c = [01,d ,v

T
,01,(Lc−ν−d+κ−1)]

T (17)

wherev = [c(d),c(d +1), · · · ,c(d +ν −κ)]T .
Proof: the proof is similar to that of lemma 1.

5. OPTIMIZATION WITH CONTROLLED TIR
QUALITY

Using (11) and (12), the expression ofJ1
zp can be written in

function ofw as:

J1
zp = wHE

[

ŷd−1
n (d −1)ŷT

n (d −1)
]

w (18)

where

ŷn(i) = [y(nP+P+ i), · · · ,y(nP+P+ i−q+1)]T . (19)

As in [3, 4], to avoid the trivial solutionw = 0q,1, the pre-
vious quadratic criterion can be minimized subject to unit-
norm constraint‖w‖= 1 or the unit-energy constraint on the
combined channel,‖c‖ = 1. However, by doing so, we can-
not control the quality (i.e. flatness) of the TIR frequency
spectrum. It is known that the ideal case of a flat spectrum
corresponds to a filter with only one non-zero tap. Also, note
that after channel shortening and thanks to the ZP, the first
sample in OFDM symbol is proportional (in the noiseless
case) tov(0) (the first TIR tap), i.e.:

z(nP+d) = v(0)x(nP). (20)

Hence, by maximizing its averaged power, we maximize the
first tap amplitude, getting closer to the ideal filter. This con-
straint optimization problem is equivalent to solving the fol-
lowing Rayleigh quotient:

wopt = arg min
w

wHE
[
ŷ∗

n(d −1)ŷT
n (d −1)

]
w

E
[

|zn(d)|2
]

= arg min
w

wHE
[
ŷ∗

n(d −1)ŷT
n (d −1)

]
w

wHE [ŷ∗
n(d)ŷT

n (d)]w
. (21)

Solving (21) consists in estimating the least generalized
eigenvector of matricesR1 = E

[
ŷ∗

n(d −1)ŷT
n (d −1)

]
and

R2 = E
[
ŷ∗

n(d)ŷT
n (d)

]
. This estimation can be achieved in

a fast and effective way by using the algorithm in [7].
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Figure 2: Amplitude spectrum of shortened channel for pro-
posed and MERRY methods.

Remarks:
1. Note that equality (20) holds only in the ZP-OFDM case.

Hence, the proposed constraint cannot be used for CP-
OFDM systems. This is a main advantage, w.r.t. blind
channel shortening, for the ZP-OFDM as compared to
CP-OFDM.

2. In the proposed criterion, we do not force the ”‘flatness”’
of the target channel shortening but simply improve it
via the use of the constraint. This is illustrated by Fig.
2. where we observe clearly that the frequency selective
strong channel fading are mitigated thanks to the new op-
timization criterion in (21).

6. SIMULATION

In this section, a series of simulations is conducted to study
and compare the performance of the considered algorithms.
We consider an OFDM system withN = 64 subcarriers.
ν = 8 represents either CP or ZP samples. A channel of
lengthL + 1 = 20, is generated randomly such that its taps
are zero-mean complex Gaussian variables with variances
σ2

l = λexp(−αl), l = 0· · ·L, whereα = 0.4 andλ ensures
the unit energy ofh. A TEQ with q = 24 taps is used.
Nb = 200 OFDM symbols are generated at each run using
a scalar differential phase-shift keying (DPSK) encoder. Fig.
3 illustrates the original channel and the combined equalizer-
channel impulse response obtained using ZP-MERRY and
ZP-FRODO, respectively at SNR= 20dB and with delay
d = 5. It is clear that ZP-FRODO algorithm reduces more
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ZP−FRODO ν=5
ZP−MERRY
original channel

Figure 3: Channel and Shortened channel at 20dB using ZP-
MERRY and ZP-FRODO with new constraint at delayd = 5.

the length of TIR than ZP-MERRY algorithm. Fig. 4 dis-
plays the overall BER performance corresponding to an SNR
range of[5,25] dB for scalar differential encoding using the
channel given in Fig. 3. At each SNR, the BER is aver-
aged using 200 realizations and the delayd = 0 is used. We
note that the proposed method with the new constraint has
a much lower BER as compared to the other methods. We
note also that the proposed method (ZP-MERRY) with unit
energy constraint||w|| = 1 offers the same performance as
MERRY algorithm.

In Fig. 5, the channel changes every 200 OFDM symbols
and the equalization delay isd = 0. At each SNR, the BER
is averaged over 200 random channel realizations. We note
again that ZP-MERRY with the new constraint has a lower
BER than the other techniques especially at high SNR. Fig.
6, compares the performance in terms of BER of MERRY
with unit-energy constraint of combined channel‖c‖= 1 and
MERRY with the constraint‖v(0)‖= 11. The later constraint
is considered here to illustrate its usefulness but is not prac-
tical in this context since it relies on the knowledge ofh. As
we can see, a significant performance gain is observed thanks
to the new considered constraint. In Fig. 7, we compare
FRODO and ZP-FRODO algorithms for different TIR sizes.
This figure presents the performance of these algorithms at
20 dB as function of the length of TIR when using the fixed
channel in Fig.2. We noted that ZP-FRODO with new con-
straint has almost the same performance as ZP-MERRY (i.e
ZP-FRODO withν = 8) for the range[4,8]. So, we can con-
clude in this context that using ZP-FRODO is not necessary
because this algorithm increases the computation complexity
without significant gain in terms of BER. Similarly, we can
observe that FRODO and ZP-FRODO algorithms with unit
energy constraint||w|| = 1 offer lower BER than MERRY
or ZP-MERRY with the same constraint.

1Minimizing criterion (6) under the quadratic constrain‖v(0)‖ = 1, is

equivalent to minimizing the Rayleigh quotient criterionJmerry

‖v(0)‖2 .
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Figure 4: BER vs. SNR using scalar differential encoding
with a fixed channel at delayd = 0.
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Figure 5: BER vs. SNR using scalar differential encoding
with 200 random channel realizations.
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7. CONCLUSION

In this article, we introduce a blind channel shortening tech-
nique for ZP-OFDM system with controlled TIR quality. We
first prove theoretically that the proposed method leads to the
desired channel shortening. Then, we introduce an appropri-
ate constraint that allows us to better control the TIR quality
in terms of frequency spectrum flatness. Simulation results
and comparison with MERRY and FRODO algorithms con-
firm the effectiveness of the new channel shortening method.
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