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ABSTRACT

We introduce a method to determine the quantitative intensity
values and sub-pixel locations of closely located small tar-
gets from noisy fluorescence microscope images. We model
the microscope image with a mixture of point spread func-
tions and the image noise with a stochastic process contain-
ing Poisson distribution. Maximum likelihood estimation
is used to find the optimal parameters for the model. Nu-
merical ML estimation is performed with differential evolu-
tion optimization algorithm. To evaluate the methods, noisy
simulated images were created with closely located targets.
Methods were compared to conventional methods based on
low-pass filtering and Gaussian mixture fitting, and the sim-
ulations show better accuracy for the new method. A real
microscope image is also quantified to show that the model
is applicable in practice.

1. INTRODUCTION

Fluorescence microscopy is used to examine various biologi-
cal structures such as plasma membrane of a living cell. Tar-
get of interest is labelled with a fluorescent tag and excitated
with a powerful light source of specific wavelength. When
the excitation state of a fluorophore is released, photons are
emitted. Due to energy loss during the excitation state, the
emission wavelength is slightly longer than the excitation
wavelength and they can be separated from each other with a
filter (e.g. stained glass). The emission light is then detected
with a digital CCD camera and a digital image of locations
and quantities of excitated fluorophores is formed.

By determining the locations and intensities of fluores-
cent targets, the properties of the specimen (e.g. cell mem-
brane) can be analysed. The information contained in the
acquired image is constrained not only by the sampling fre-
quency (image resolution) of the camera but also by the op-
tical diffraction limit of the microscope system and image
noise. The optical resolution is dependent on the numerical
aperture of the used lens and the emitted light wavelength of
the fluorophore. Both the light wavelength and the numerical
aperture are limited, and thus the optical resolution is limited
as well.

Due to limited optical resolution sub-resolution fluores-
cent targets, i.e. fluorescent concentrations smaller than the
image pixel size, appear as spots in the image covering sev-
eral pixels wider area than the corresponding true fluorescent
target. These spots are commonly quantified by smoothing
the image with a low-pass filter and fitting a Gaussian mix-
ture model to the filtered image (e.g. in [1] and [9]). The mo-
tivation in such approaches is to exclude the high-frequency

© EURASIP, 2009

noise component, but inevitably also a portion of the quanti-
tative information is lost in the process. The smoothed image
is usually more appealing to the human eye, but automatic
quantification would be more accurate if performed on the
raw image. In addition, the Gaussian surface is not the true
shape produced by the subresolution target but merely an ap-
proximation (see [2]). The weaknesses in the conventional
method are most crucial in cases, where two or more tar-
gets are located close to each other. Targets closer than the
Rayleigh limit appear as a single spot in the image and the
individual sub-pixel locations and quantitative intensities of
targets within these clusters are challenging to determine.

In this study, we describe a new method to overcome the
inaccuracies caused by the above mentioned issues by mod-
elling the raw microscope image with a stochastic model and
using maximum likelihood estimation to determine the opti-
mal model parameters. We model a fluorescent target with
an appropriate point spread function, which can be calcu-
lated accordind to the microscope settings. Targets, which
are located close to each other, are modelled with a mixture
of point spread functions. The noise in a microscope image
is modelled as a process related to Poisson distribution. The
noise strength and the background level of the image are es-
timated in the ML optimization process. Because the noise
magnitude is estimated, the noise throughout the image can
be utilized to obtain more accurate parameter estimates. The
multimodal numerical estimation is performed with differen-
tial evolution search algorithm, to find the global optimum of
ML criterion.

Noisy simulated images with closely located targets were
created to evaluate the developed method with the conven-
tional ones. An application to cell membrane caveolae quan-
tification is presented to test the capability to cope with a real
microscope image.

2. METHODS
2.1 Model description

The microscope image is a transformed and noisy representa-
tion of the true distribution of fluorophores. The transforma-
tion is determined by the point-spread function (PSF) of the
microscope and is commonly modelled as a convolution be-
tween the PSF and the true distribution of fluorophores. The
image noise is assumed to be a Poisson type process, which
contains several acquisition error sources such as shot noise.
(4]

In this paper we consider only fluorescent targets smaller
than the diffraction limit of the microscope, and thereby all
the targets appear in the transformed image as spots shaped
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as the point spread function of the microscope. As in [3, 9]
we define the PSF as

2
sz(ymm) with azgg )

r

where r is the distance from the centroid, J; is the Bessel
function of first kind, A stands for the numerical aperture of
the used solvent (e.g. water, oil) and A for the emission wave-
length of the used fluorophore. The equation is not properly
defined in case of r = 0, and the limit

lim P(r)

r—0

is then used instead.

A spot in the noise-free image model is formed by de-
termining the spot pixel intensities according to the distance
from the pixel centre to the true centre of the correspond-
ing target. If we denote the true centre point of a target n as

n

(t7,1)) and the intensity (brightness) of this target as t, the

pixel intensity at location (x,y) due to spot n is

$"(6,3) = P 1 —x)2 + (1 = )?),

where P is the point spread function in Equation (1). Note
that the true target locations f, and ¢, are not bound to pixel
coordinates, but can have any value in the limits of numerical
accuracy. A sub-pixel accuracy for the locations can thereby
be achieved. In addition, we include a background intensity
B in the image model, representing the background autofluo-
rescence. Because we study quite small areas of the image at
a time, we assume that background is constant within that re-
gion. Thus, the model for the pixel intensity of the noise-free
image C(x,y) at pixel location (x,y) becomes

Cx,y)=B+Y.5"(x,y).

We assume that the shot noise is dominating the other er-
ror sources and the microscope image is thus contaminated
by Poisson type noise[2, 4]. We form a stochastic model for
the image by assuming that the image pixel intensities are
realizations of a certain stochastic process related to Pois-
son distribution of parameter A dependent on square root of
the noise-free pixel intensity C(x,y). Because the true image
noise is never a pure Poisson process (with variance equal
to mean), we include a noise magnitude factor p, and the
stochastic process at pixel (x,y) is stated as

N(x,y) ~ Poiss (py/C(x,y) ) = V/C(xy) (p = /C(x.))

The mean of N(x,y) is thus

P/ C(x,y).

Now, we can search for the most likely model parameters

C(x,y) and the variance

1 1 1
0 ={t,,....t5, 15, 1y g st B,P}

for the observed image I through the Poisson probability
function
AReA

Q!

p(QIA) =

by setting
A(x,y) = p/C(x,y)

and

Cxy)(p = VC(x,y)).

In practice, in order to get numerically useful likelihood val-
ues for a model, we maximize the sum of the logarithms of
the pixel-wise likelihoods

£(6) =YY logp(Q(x,y)|A(x,y)). 2
Xy

Qx,y) =1(x,y) +

The ML estimate 6 is then defined as

A

0= argmeaxf(e).

2.2 Implementation

The overlapping spots generated by closely located targets,
are the most challenging to quantify and we concentrate on
these cases instead of single, separate spots. The whole im-
age is divided into regions so that each region contains one
group of (two or more) mutually overlapping spots, and each
region is quantified separately. The noise magnitude mul-
tiplier p and the background intensity 3 are assumed to be
constant within a region, but vary from region to another.
A separate model with its unique parameters is searched for
each region.

In practice spot detection is a major problem, i.e. deter-
mining the number of spots within a group of overlapping
spots. In this study, however, we concentrate on the quan-
tification of spot intensity and location and omit spot detec-
tion related issues. Therefore the correct number of spots is
assumed to be known in simulations. With real microscope
data the spots are detected by finding the local intensity max-
ima from low-pass filtered image as in [5]. The number of
overlapping spots within a group was determined according
to the group area. This simple spot detection method turned
out to be sufficient to show the model applicability with real
microscope images.

Due to the large number of simulations, we performed
the estimations on a computer grid. On average we had about
400 modern computer cores in use and distributed each esti-
mation problem, i.e. finding a model for a group of overlap-
ping spots, to an individual core. This way the calculations
could be performed with reasonable time cost.

2.3 Differential evolution algorithm

In previous experiments we found out that commonly used
local estimation algorithms such as Levenberg-Marquardt
were unable to find the global optimum for the problem,
probably due to the multimodal nature of the estimation
problem. Therefore a stochastic search algorithm is used to
find the optimum parameters.

Differential evolution (DE) is a global stochastic opti-
mization method which is closely related to genetic algo-
rithms (GA)[7, 8]. DE is population-based, but unlike GA,
the DE population is improved one member at a time instead
of creating whole generations at once. In differential evolu-
tion a new parameter vector ¢ is constructed by subtracting
the difference of two randomly chosen parameter vectors, say
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6, and 63, from another randomly chosen parameter vector
0;. The formula can be written as

66191+K'(62793), 3)

where K €R is the weight for the subtracted difference.
Weight K can be seen also as a mutation length applied to
the parameter vector ;. If the likelihood of the new param-
eter vector O is better than the likelihood of yet another ran-
domly chosen parameter vector 84, the population is updated
by replacing 64 with O¢. This cycle is repeated until the stop-
ping criteria are met.

In this study we set the convergence rate parameter K
random, so that in each 6, creation a new value for K is
randomly drawn from a unifrom distribution on the interval
]0,2]. This removes the risk of stagnation (see [6]) of the es-
timation process because a different 6, is created each time
even with the same building components 0y, 6,, 63 in equa-
tion (3). Although the risk of stagnation is small with large
populations, it is worth avoiding in an automatic method such
as this. Additionally, varying K makes the algorithm both ex-
plorative and exploitative, being able to search the parameter
space widely but also converge once in a while. We also
omitted the commonly used crossover operation from the al-
gorithm as it turned out to have no significant effect on find-
ing the global optimum.

The algorithm was run until the difference between the
best and worst likelihood values of the population was nu-
merically negligible (a threshold 10 was used). Then
the algorithm was run again with a re-initialized population
which included the best parameter vector achieved in the pre-
vious run. These reruns were performed until two consecu-
tive runs produced the same results. The rerun cycle was
included in the process for the sake of automaticity and ro-
bustness, although in vast majority of the experiments the
second run didn’t offer any improvements to the best param-
eter vector.

We used population size 50 4 20n, where n is the num-
ber of components in the model i.e. the number of individual
point spread functions in the mixture model. Our empirical
tests showed that this population size was more than enough
to avoid the local optima and keeps the time cost still reason-
able (a few minutes per a group of overlapping spots). Initial
population was created by choosing random values for the
parameters from valid intervals. Locations (t,, #,) were ini-
tialized to be inside the image region, spot intensities () and
background (f) level were initialized between zero and the
sum of the region pixel values. The upper limit for the noise
strength p was initially 10, which has been experimentally
found to be sufficient. During the optimization the parame-
ters were constrained only to positive values.

2.4 Reference methods

As a reference method we chose to use Gaussian mixture
fitting to low-pass filtered image. Here we use two variations
of this approach to evaluate the developed new model.

REF A. The first reference method is described in [9].
In this approach the shape of the Gaussian components is
fixed, which leads to easier fitting with less parameters. The
shape of the Gaussian components was determined according
to microscope settings by setting the diagonal elements of the

SNR: 1.0

SNR: 2.0

SNR: 4.0

Figure 1: Overlapping pairs of simulated spots with different
signal-to-noise ratios(SNR).

covariance matrix as

A
Oy =021% (nm?).

The raw microscope image was filtered with a matched ker-
nel, i.e. the filtering kernel was exactly the same shape as the
Gaussian components in the model. Originally, this method
was developed for 3D case, but it is directly applicable to the
2D images. To find the parameter values, we used a nonlinear
least squares fitting as in [9].

REF B. Another reference method in this study was fit-
ting Gaussian mixture with free parameters to the filtered im-
age as in [2]. We used again nonlinear least squares fitting to
find the free parameters which are mean, covariance matrix
and intensity of each Gaussian component. Furthermore, we
defined the shape of Gaussians to be fairly symmetric. This
was done by limiting the values of diagonal elements of co-
variance matrix within 20 % from each other. Also back-
ground level was included as an estimable parameter in the
model to give more flexibility. We used a symmetric filter
with Gaussian kernel variance ¢ = 1 to reduce the noise from
the images.

3. EXPERIMENTS
3.1 Simulated data

We created simulated noisy images to evaluate the spot quan-
tification methods. Two equally bright sub-resolution tar-
gets were placed to have a mutual distance of corresponding
Rayleigh limit, the image was convolved with the appropri-
ate point spread function and a background was added. To
simulate the shot noise, a value for each pixel was randomly
drawn from a Poisson distribution with parameter A equal to
the pixel intensity multiplied by noise factor p. The noise
multiplier p was set separately with each image to produce
a specific signal-to-noise ratio to the image. Signal-to-noise
ratio is here defined as the mean intensity of the spot (bright-
est pixels) divided by the average noise deviation. Exam-
ples of simulated spots can be seen in Figure 1 with different
signal-to-noise ratios. Six images were created with different
signal-to-noise ratios and each image contained 1000 pairs of
overlapping spots.

3.2 Simulation results

The simulated images were quantified with the developed
method and the previously mentioned reference methods,
and the results can be seen in Tables 1 and 2. The per-
centual intensity error (Table 1) is obtained by first calcu-
lating the absolute difference between the true intensity and
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the estimated intensity, and then dividing it with the true in-
tensity. The location error (Table 2) is the distance (norm)
between the true location and the estimated location of each
spot. Both tables show average values of errors within each
image.

The most accurate results in both intensity and location
estimation were achieved with the developed method when
the signal-to-noise ratio is 1.5 or higher. Especially the in-
tensity could be estimated with the developed method more
accurately. The reference method B performed poorly in all
simulations. The almost equal results for intensity estimates
with Ref A regardless of the SNR can be explained by the
fact that the filtering averages most of the Poisson noise and
smears the targets as one. Thereby the filtered images looked
quite the same regardless of the SNR value. In the case with
highest noise level (signal-to-noise ratio 1.0), Ref A and the
developed method were almost equally accurate.

METHOD

SNR | Ref A | Ref B | New
4.0 20.9 15.3 4.3
3.0 20.5 16.9 5.6
2.5 21.1 17.2 7.1
2.0 21.0 20.1 8.6
1.5 21.3 232 | 11.7
1.0 21.3 31.0 | 20.8

Table 1: Average errors in intensity estimates (percent)

METHOD
SNR | Ref A | Ref B | New
4.0 15.8 294 | 13.9
3.0 21.5 34.5 18.2
2.5 25.1 38.0 | 23.7
2.0 33.5 449 | 29.1
1.5 46.9 59.8 | 41.2
1.0 93.8 103.4 | 89.8

Table 2: Average errors in location estimates (nanometers).

3.3 Microscopy data

The equipment used was total internal reflection fluorescence
(TIRF) microscopy Olympus IX-71 with Till imaging soft-
ware and objective PLAPON TIRFM 60x/1,45. Camera
sampling size was 87 x 87nm. HeLa cells stably express-
ing caveolin-1 with a C-terminal GFP tag were used. Micro-
scope images of caveolae with fluorescent caveolin-1 protein
were acquired by Institute of Biomedicine at University of
Helsinki. Parameters relevant for this article were: numerical
aperture A = 1.20, emission wavelength of the fluorophore
A =507 nm. The data has been described more in detail in
[5]. Examples of the spots from the microscope data can be
seen in Figure 2.

3.4 Results with microscopy data

The results from the estimation of caveolae microscopy data
can be seen in Figure 3. Based on previous studies ([1]), the
single caveolae have consistent number of proteins and there-
fore consistent intensities in the image. The single caveolae
fuse together as complexes with double or triple number of

Figure 2: Examples of spots from the microscopy data.
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Figure 3: Histogram of estimated intensities from mi-
croscopy data

proteins, which can be observed as spots with correspond-
ing intensities. The theoretically expected intensity distribu-
tion would thereby be such that the measured intensities form
three distinct clusters. Indeed, in Figure 3 the largest cluster
can be seen centred roughly at 8000, the second cluster at
about 16000 and the third one approximately at 23000.

4. CONCLUSION

We have introduced a fully automatic method to quantify
the spot intensities and locations from the raw microscopy
images using stochastic image model and maximum likeli-
hood estimation. In simulations the method was found to be
more accurate in both spot intensity and location estimation
in comparison to the reference methods. We also showed that
the method is applicable to real microscopy images.

Our method can be generalized to applications, in which
the target size is smaller than the camera resolution. This
is the most obvious limitation in the range of applications
as some prior information about the target size is required.
When such information is available, we suggest using the
introduced method in intensity and location determination.
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