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ABSTRACT
Despite the widespread use of forward-error coding (FEC),
most MIMO blind channel estimation techniques ignore its
presence, and instead make the simplifying assumption that
the transmitted symbols are uncoded. However, FEC in-
duces code structure in the transmitted sequence that can
be exploited to improve blind multiple input multiple out-
put (MIMO) channel estimates. In this work we exploit the
iterative channel estimation and decoding performance for
blind MIMO equalization. Experiments show the attractive
improvements by exploiting the existence of coding struc-
tures.

1. INTRODUCTION

In wireless MIMO systems, all practical receivers are de-
signed based on requirements of acquiring channel state in-
formation (CSI) and the channel needs to be estimated in ad-
vance before decoding operations. However, obtaining an
accurate estimation can be difficult mission in some environ-
ments. For example, if the channel response varies rapidly
with time, if the channel is very singular and the signal to
noise (SNR) is low. Moreover, with the ever-growing de-
mands of increasing data rate and requirements of saving
the limited bandwidth, several blind or semi-blind systems
have been studied in the last decade. The typical subspace
method described in [1] utilizes the orthogonality between
the channel matrix and the noise subspace in order to com-
pensate for extra degrees of freedom in the noise subspace.
The main drawback of subspace-based MIMO channel esti-
mation is that it needs the number of received antennas to be
larger than the the number of transmit antennas, otherwise,
it requires pre-coding precessing. Other schemes [2] using
singular value decomposition (SVD) employ a simple block
pre-coding structure. The advantage is that the CSI can be re-
covered without ambiguity when applying a proper modula-
tion. Nevertheless, this advantage is implemented at the cost
of the decreasing the number of transmitting antennas. waste
of bandwidth. The most popular equalizers using Godard’s
method [3] or the constant modulus algorithm (CMA) [4]
essentially employ a linear equalization and these methods
encounter difficulty if the channel matrix is not well condi-
tioned, in which case the maximum likelihood (ML) receiver
is much more robust.

On the other hand, FEC coding, which restricts the trans-
mitted sequence to a limited coding space so as to increase
the minimum distance, can correct the potentially wrong de-
coding due to noise contamination. Nevertheless, there is
little work relating FEC to MIMO channel estimations. Al-
though the independent, identically distributed (i.i.d.)as-
sumption is not kept any more, it has been shown that FEC

does not impair the performance of some blind equalization
techniques [5]. Using FEC incurs extra calculations, how-
ever, with powerful digital processors, contributions of FEC
with reasonable and affordable complexity were explored
in [6]. Looking from a broader angle, we can take blind
equalization as part of a decoding process to FEC codes.
Thus, there exist a blind equalization and channel correct-
ing scheme that together approximate the Shannon bound.
Such methods combine the blind iterative channel estimation
and turbo equalization. As illustrated in figure(1), the equal-
izer uses the channel estimates to compute soft information
of the transmitted symbols. The channel estimator then ap-
plies these soft symbols to improve the channel estimates,
which in turn yields better symbol estimates, and so forth.
In contrast, the FEC aware channel estimator based on the
soft symbols, which take them asa priori information, feeds
this information into the decoder in order to get more reli-
able soft bit information. Next, this posterior information is
back to the channel estimator, and so on. Such a scheme
explores FEC benefits in blind equalization. Some previous
research has explored the FEC property on blind channel es-
timation [7].However, this was only employed in single in-
put single output channels and small constellations, where
the convergence space is rather smooth and are less likely to
become trapped in undesirable stationary points of the iter-
ative scheme. These techniques do not simply extend to the
high dimension (MIMO) systems since the high dimension-
ality of the MIMO channel make the convergence difficult.
In the recent work [8], an efficient hybrid system for blind
equalization of large constellation MIMO systems was pro-
posed, in which the scheme used Expectation Maximization
(EM) algorithm for the large multi-dimensional channel esti-
mate and enjoyed a fast convergence with low computational
complexity. However, it still suffered a loss of performance
when the channel was close to singular or the noise was large.
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Figure 1: Joint channel estimation and symbol detection.

In this paper, we propose a blind MIMO receiver that
combines a soft channel estimation and a soft MIMO equal-
izer and decoder. A similar idea appears in [9], where the au-
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thor used pilot sequence and a Wiener filter to initial and up-
date the channel respectively. This Minimum Mean Square
Error (MMSE) based iterative channel estimators uses soft
information from the output of the decoder to improve the
mean square error of the channel estimates. However, taking
the mean values of the data symbols calculated by the poste-
riori probabilities, is not an efficient way to improve channel
estimates. In our hybrid design, we improve the receiver’s
performance through efficiently incorporating the soft bitin-
formation from the decoder into the EM channel estimator
since it is a suitable choice to exploit the a priori knowl-
edge. Our system includes an efficient independent compo-
nent analysis (ICA) method which is extremely suitable for
QAM modulation, a selective sphere decoder (SD) process
that computes the likelihood values (soft information) and
a simple error correcting operation. This scheme has low
complexity and improved convergence, being more likely to
converge to desirable stationary point. Moreover, through
sending the bit interleaved coded modulation (BICM) bits
on differently fast fadding channels, we further make use of
the temporal diversity. Combining this with the spatial di-
versity caused by the statistical independencies of transmit-
ted sequences, blind estimate and adjustment of the channel
matrix can be operated simultaneously. Then this provide
us outstanding performance of MIMO blind equalization and
decoding,as we will see.

We consider aM×M system,

Y = HS+N. (1)

Where Y ∈ CM×T is the matrix containing observed sig-
nals from the receiver antennas, andS∈ CM×T is the com-
plex discrete source signals.N ∈ CM×T is the matrix of
the noise with covariance,Σ, which is assumed uncorrelated
with source signals andT is the sampled points of obser-
vations. H ∈ CM×M is the unknown linear square chan-
nel matrix whose elements are drawn independently from
a Rayleigh distribution and we assume that it is invertible.
Note that,H is instantaneous but we do not guarantee it is
orthogonal. For the transmission of a frame ofKb bits, the
transmitter encodes theKu information bits using a convo-
lutional code of rater, whereKu = Kb × r. The coded bits
are interleaved and mapped intoQAM symbols, forming a
sequence ofKs = Kb/log2P symbols. Then theQAM se-
quence of symbols is split into M substreams corresponding
to one Rayleigh fading channel, and is transmitted in parallel
from each one of the M antennas. The problem arises above
not only in MIMO systems, but also in multiuser DS/CDMA
systems [10]. It further reduces to SIMO blind equalization
when there is only one source signal or when fractionally
spaced equalization is employed in single antenna communi-
cation systems.

2. SOFT MIMO EQUALIZER AND DECODER

The optimal ML receiver has the exponential complexity
with the signal modulation size and number of transmit an-
tennas, thus limiting real time applications. The SD, on the
other hand, is capable of achieving near ML performance
and can be designed to provide the soft (likelihood) output
information. and a simple error correcting operator. Such
a low-complexity structure could enable iterative equaliza-
tion for fast wireless Rayleigh channels. An important re-
quirement of this blind MIMO equalization is to calculate

the soft information both for the channel estimation and the
soft MIMO detector and decoder. Given that the study of the
channel coding has been extensively researched in the liter-
ature, we introduce the techniques used in this paper briefly.
The Bahl−Cocke−Jelinek−Raviv (BCJR) algorithm [11] is
used to compute a posterior probability (APP) of inputs to a
finite state machine with noisy received signals. It has been
applied to many channel correcting codes such as, turbo and
LDPC codes. For a BPSK modulation scheme, it takes the
form of the log-likelihood ratio (LLR):

L(bk) = ln
p(bk = 1|Y,H̃)

p(bk = 0|Y,H̃)
. (2)

Where H̃ is the channel estimate. This LLR value shows
the reliability of the information bit. Given the convolutional
code at transmitters, the well known BCJR algorithm calcu-
lates the APP exactly if we know the channel state informa-
tion. While a full complexity BCJR soft decoder is used in
this work, an efficient sliding window type scheme [12] can
be applied in practical applications, which leads to subopti-
mal performance with a much lower complexity.

3. EM CHANNEL ESTIMATION

Most prior work in blind iterative channel identification can
be tied to the EM algorithm of [13]. It is a general method-
ology for maximum likelihood or maximum a posteriori es-
timation. The first use of EM with soft symbol estimates
was proposed in [14]. An adaptive version of EM was ap-
plied to the identification problem in [15]. Some modified
EM algorithms were proposed in [16] [17]. The EM algo-
rithm updates are analytically simple and numerically stable
for distributions that belong to the exponential family.

Consider the system model, equation (1). The EM al-
gorithm estimates the channelH based on received signals
Y = {yt}

T
1 . It minimizes the log likelihood,−log P(Y|H), by

iteratively minimizing,

Hk+1 = argmin
H

E{−log P(Y|Hk,S)P(S|Y,Hk)}, (3)

whereHk is thekthestimates of channels. This EM iteration
in (3) guarantees to converge to a local minimum ofP(Y|H)
[18].

The update of the equation (3) can be written in a closed-
form solution [19] as follows,

r =
T

∑
t=1

ytE{st |Y,Hk} (4)

R=
T

∑
t=1

E{sts
∗
t |Y,Hk} (5)

Hk+1 = R−1r (6)

Equations (4) and (5) depend on first-order statistics and
the second-order statistics of the symbols respectively. Note
that the computation of (4) and (5) also requires the poste-
rior probabilitiesP(st |Y,H) andP(sts∗t |Y,H), which can be
produced by the BCJR algorithm instead of from the symbol
estimators directly when using an error correcting code. We
emphasize that posterior probabilities exploiting the coding
structure can improve the channel estimation significantly.
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Figure 2: Receiver architecture of the proposed coding assisted system.

An important problem in the performance of the EM al-
gorithm is the appropriate selection of the initial estimate. If
the starting point is far away the desired point and the likeli-
hood surface is complicated, the EM is liable to convergence
to the local minimum. Its convergence has been studied by
many researchers [20] and references therein. The recent
work [21] demonstrated in digital modulation systems, that
the EM algorithm shows Newton-like convergence. Thus the
EM algorithm guarantees fast convergence and is suitable for
real time applications in wireless communications. However,
there is still the important but unsolved problem of whether
the EM algorithm can converge to the correct solution, i.e.,
the consistent solution of the true channel parameters.

4. ITERATIVE PROCEDURE

In this work, a blind MIMO channel equalization algorithm is
proposed in which the BCJR and EM algorithms are iterated.
Given initial estimatesHini from an efficient ICA method [8],
the SD-BCJR algorithm computes the signal posterior proba-
bilities P(sn|Y,Hk,Σ) by utilizing the code structure and then
feeds these to the EM algorithm. The EM algorithm uses
these posterior probabilities to evaluate the conditionalex-
pectations in (4) and (5). Thus we update new channel state
information by (6) and pass this back to the SD-BCJR al-
gorithm again. As the iterations proceed, estimates become
more accurate and the posterior symbol probabilities become
more precise.

Figure (2) shows the receiver structure using iterative
equalization, whereby a soft equalizer interacts with a soft
input soft output error control decoder.

In multiple-input multiple-output (MIMO) channels, this
soft decoding strategy is given below:

Algorithm 1 Coding sssisted blind MIMO equalization
1. Blindly estimate the MIMO channel state information

with the statistic properties of received signals.
2. Estimate the soft bits, i.e., the LLR of each transmitted

bit, using the list version of sphere decoding or its vari-
ants.

3. Make the soft bits information more reliable through a
simple BCJR soft decoder.

4. Update the channel state information by the EM algo-
rithm with the soft bit information input and feed it back
to the channel estimator for further improvement.

Usually, a good MIMO decoder is required to produce re-

liable soft-bit estimates at the first stage before soft decoding
is performed. In our simulation, an efficient nonlinear ICA
approach [8] is used to get an initial channel estimate. Note
that this nonlinearity can partly solve the phase ambiguityof
ICA since the exploration of the independence between real
and imaginary parts in QAM modulations. There is still a
kπ/2 phase ambiguity. Such problem can be solved by futher
differential encoding techniques.

5. SIMULATIONS

We consider a MIMO system with four transmitters, four re-
ceivers and QAM16 modulation are employed. The channel
H is a 4× 4 complex instantaneous matrix, which is con-
stant for each block interval (256 symbols), and it follows a
Rayleigh Fading distribution. N follows the complex addi-
tive white Gaussian distribution. The results have been ob-
tained for transmitting blocks ofKb = 4032 bits. Each an-
tenna adds four pilot symbols to solve the permutation and
phase ambiguity problem of ICA, as we call it ordered ICA
in figure (2). A rate ofr = 1/2 parallel concatenated con-
volutional code of memory 3 with two nonsystematic convo-
lutional (NSC) code has been used. The generator polyno-
mials areG1(D) = 1+D+D3+D4, G2(D) = 1+D3+D4
and the interleaver is set to pseudo random. The soft symbol
information was calculated at each antenna. The SD [22] is
employed first to get soft information. Only two iterations
of the channel estimation are employed in EM updates. In
order to explore the full contribution provided by FEC, this
work computes the symbol likelihood based on 16 points on
each dimension. This calculation could be simplified by a list
sphere decoder (LSD) [23] or list-fixed-complexity sphere
decoder (LFSD) [24] but with a performance degradation.

In comparison with other effective methods of blind
MIMO equalization, such as theSplit Threshold nonlinear
function and the SD-EM approach [8], our scheme shows
promising performance for this type of problem. The former
used an efficient score function which is specified for QAM
signals to obtain a good separability. The later proposed
an efficient hybrid blind MIMO equalization and decoding
scheme. It directly applied soft information into EM channel
update, despite the spacial diversity caused by FEC. Figure
(3) illustrates this significant separability improvements with
the aid of channel code. This performance is measured by
the distance of the estimated channel from the true value. We
defineP = H−1

est Hreal

ICI(P) =
1
n ∑

i
∑

j

[( |Pi j |

max|Pi j |

)2
−1

]

, (7)
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Figure 3: Channel separability of the split threshold nonlin-
ear ICA, the SD-EM and the coding assisted SD-EM algo-
rithm with a rater = 1/2 convolutional code over different
SNR.

where ICI stands for inter component interference.
Figure (4) shows the BER performance. Comparations

were set up with a pilot assisted transmission scheme and
two blind methods methoded above. Training based V-blast
[25] scheme used 24 symbols per block as pilot sequence
and applied a Least squares algorithm into channel estimate
and followed by MMSE detection, nulling, cancellation and
ordering. The BER was measured before the error correcting
operations. Obviously, the coding assisted iterative structure
improves the system performance significantly since it can
help avoid the EM algorithm from becoming trapped in a
local minimum.
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For a setup similar to the system above but which pro-
vides an increased time diversity, we apply a codeword to
four and eight channel realizations in which the channel real-
izations are independent. The BER performance is measured
after the BCJR algorithm. Figure (5a) and figure (5b), in the
next page, show us that the performance is also improved by
the time diversity. Through the interleaving operation, poor
channel estimates can be set right with high quality infor-
mation from the well conditioned channel estimate, then the
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Figure 6: Iterative improvements of the coding assisted SD-
EM algorithm in a 4×4 system with 16-QAM modulation.

channel estimate can be changed to be more reliable with
further iterations. Obviously, we can see the joint contribu-
tion of time diversity and channel coding to the blind MIMO
equalization and decoding.

Our final simulation indicates the iterative gain of the
coded soft channel estimation measured over 500 Monte
Carlo runs. Similar to the setup above with 4 fixed chan-
nel realizations. One channel matrix is very singular with a
condition number over 26 and it is difficult to estimate with a
linear estimator blindly. Other channels are good in terms of
the channel condition number. Clearly, from figure (6), we
can see that the performance progresses towards the optimal
curve with CSI known at the receiver. This shows us that the
BER of this blind algorithm is almost identical to that for a
BCJR equlizer with perfect channel information.

6. CONCLUSION

We have proposed a coding assisted MIMO blind equaliza-
tion and decoding scheme. By utilizing posteriori informa-
tion, it provides substantial gain over the uncoded system.
The existence of coding structures partly solves the prob-
lems of the EM getting trapped in a local minimum when the
channel is close to singular or SNR is low. This happens fre-
quently when the number of receiver antennas, the size and
the dimension of the data are large. The new scheme appears
to avoid local minimum and converge to the global minimum
or at least a good approximation of it. Moreover, this system
uses an efficient ICA approach and a simple BCJR decoding
without any extra computation load. This low complexity
should make it suitable for tracking fast channel variations in
real time applications.
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