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ABSTRACT does not impair the performance of some blind equalization

Despite the widespread use of forward-error coding (FEC)techniques [5]. Using FEC incurs extra calculations, how-
most MIMO blind channel estimation techniques ignore itsever, with powerful digital processors, contributions &
presence, and instead make the simplifying assumption th4ith reasonable and affordable complexity were explored
the transmitted symbols are uncoded. However, FEC inl? [6]. Looking from a broader angle, we can take blind
duces code structure in the transmitted sequence that c§qualization as part of a decoding process to FEC codes.
put (MIMO) channel estimates. In this work we exploit the iNg scheme that together approximate the Shannon bound.
iterative channel estimation and decoding performance fopuch methods combine the blind iterative channel estimatio

blind MIMO equalization. Experiments show the attractive@nd turbo equalization. As illustrated in figure(1), the agu
improvements by exp|oiting the existence of Coding strucJZ€r uses the channel estimates to compute soft information

tures. of the transmitted symbols. The channel estimator then ap-
plies these soft symbols to improve the channel estimates,
1. INTRODUCTION which in turn yields better symbol estimates, and so forth.
In contrast, the FEC aware channel estimator based on the
In wireless MIMO systems, all practical receivers are de-soft symbols, which take them aspriori information, feeds
signed based on requirements of acquiring channel state ifhis information into the decoder in order to get more reli-
formation (CSI) and the channel needs to be estimated in adble soft bit information. Next, this posterior informaiics
vance before decoding operations. However, obtaining apack to the channel estimator, and so on. Such a scheme
accurate estimation can be difficult mission in some environexplores FEC benefits in blind equalization. Some previous
ments. For example, if the channel response varies rapidiesearch has explored the FEC property on blind channel es-
with time, if the channel is very singular and the signal totimation [7].However, this was only employed in single in-
noise (SNR) is low. Moreover, with the ever-growing de- put single output channels and small constellations, where
mands of increasing data rate and requirements of savin@e convergence space is rather smooth and are less likely to
the limited bandwidth, several blind or semi-blind systemspecome trapped in undesirable stationary points of the iter
have been studied in the last decade. The typical subspag@ve scheme. These techniques do not simply extend to the
method described in [1] utilizes the orthogonality betweerigh dimension (MIMO) systems since the high dimension-
the channel matrix and the noise subspace in order to conaity of the MIMO channel make the convergence difficult.
pensate for extra degrees of freedom in the noise subspagg.the recent work [8], an efficient hybrid system for blind
The main drawback of subspace-based MIMO channel estequalization of large constellation MIMO systems was pro-
mation is that it needs the number of received antennas to Rgysed, in which the scheme used Expectation Maximization
larger than the the number of transmit antennas, otherwisggM) algorithm for the large multi-dimensional channeliest
it requires pre-coding precessing. Other schemes [2] usingate and enjoyed a fast convergence with low computational
singular value decomposition (SVD) employ a simple blockcomplexity. However, it still suffered a loss of performanc

pre-coding structure. The advantage is that the CSI can-be rgshen the channel was close to singular or the noise was large.
covered without ambiguity when applying a proper modula-

tion. Nevertheless, this advantage is implemented at the co me l .
of the decreasing the number of transmitting antennas.ewast

of bandwidth. The most popular equalizers using Godard’s Channel Estimator e s
method [3] or the constant modulus algorithm (CMA) [4]

essentially employ a linear equalization and these methods

encounter difficulty if the channel matrix is not well condi- ~ Rr H Rr H

tioned, in which case the maximum likelihood (ML) receiver * -

is much more robust. Symbol Estimator Soft Decoder Symbol Estimator
On the other hand, FEC coding, which restricts the trans- Ri,m

mitted sequence to a limited coding space so as to increase

the minimum distance, can correct the potentially wrong de- Figure 1: Joint channel estimation and symbol detection.
coding due to noise contamination. Nevertheless, there is

little work relating FEC to MIMO channel estimations. Al- In this paper, we propose a blind MIMO receiver that
though the independent, identically distributed (i.i.das- combines a soft channel estimation and a soft MIMO equal-
sumption is not kept any more, it has been shown that FE@er and decoder. A similar idea appears in [9], where the au-
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thor used pilot sequence and a Wiener filter to initial and upthe soft information both for the channel estimation and the
date the channel respectively. This Minimum Mean Squarsoft MIMO detector and decoder. Given that the study of the
Error (MMSE) based iterative channel estimators uses softhannel coding has been extensively researched in the liter
information from the output of the decoder to improve theature, we introduce the techniques used in this paper hriefly
mean square error of the channel estimates. However, takirithe Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [11] is

the mean values of the data symbols calculated by the postased to compute a posterior probability (APP) of inputs to a
riori probabilities, is not an efficient way to improve chahn finite state machine with noisy received signals. It has been
estimates. In our hybrid design, we improve the receiver'applied to many channel correcting codes such as, turbo and
performance through efficiently incorporating the softibit LDPC codes. For a BPSK modulation scheme, it takes the
formation from the decoder into the EM channel estimatofform of the log-likelihood ratio (LLR):

since it is a suitable choice to exploit the a priori knowl-
edge. Our system includes an efficient independent compo-
nent analysis (ICA) method which is extremely suitable for
QAM modulation, a selective sphere decoder (SD) process

that computes the likelihood values (soft information) andwhereH is the channel estimate. This LLR value shows
a simple error correcting operation. This scheme has lowhe reliability of the information bit. Given the convolatial
complexity and improved convergence, being more likely tocode at transmitters, the well known BCJR algorithm calcu-
converge to desirable stationary point. Moreover, throughates the APP exactly if we know the channel state informa-
sending the bit interleaved coded modulation (BICM) bitstion. While a full complexity BCJR soft decoder is used in
on differently fast fadding channels, we further make use othjs work, an efficient sliding window type scheme [12] can

the temporal diversity. Combining this with the spatial di- pe applied in practical applications, which leads to subopt
versity caused by the statistical independencies of tr&nsm ma| performance with a much lower complexity.

ted sequences, blind estimate and adjustment of the channel

L(by) = In Pe=1Y.H)

=N b= oY) @)

matrix can be operated simultaneously. Then this provide 3. EM CHANNEL ESTIMATION
us outstanding performance of MIMO blind equalization and . o ) ) o
decoding,as we will see. Most prior work in blind iterative channel identificationrca
We consider M x M system, be tied to the EM algorithm of [13]. It is a general method-
ology for maximum likelihood or maximum a posteriori es-
Y =HS+N. (1) timation. The first use of EM with soft symbol estimates

was proposed in [14]. An adaptive version of EM was ap-
WhereY € CM*T is the matrix containing observed sig- plied to the identification problem in [15]. Some modified
nals from the receiver antennas, 8®d CM*T is the com- EM algorithms were proposed in [16] [17]. The EM algo-
plex discrete source signalsN € CM*T is the matrix of rithm updates are analytically simple and numerically lstab
the noise with covarianc&, which is assumed uncorrelated for distributions that belong to the exponential family.
with source signals and is the sampled points of obser- Consider the system model, equation (1). The EM al-
vations. H € CM*M is the unknown linear square chan- gorithm estimates the channtdl based on received signals
nel matrix whose elements are drawn independently frony = {y}1. It minimizes the log likelihood;-log P(Y|H), by
a Rayleigh distribution and we assume that it is invertibleiteratively minimizing,
Note that,H is instantaneous but we do not guarantee it is
orthogonal. For the transmission of a framekgf bits, the H*1 = argminE{—log P(Y|HX,S)P(SY,HX)}, (3)
transmitter encodes th€, information bits using a convo- H

gjrt;}o%?leﬁgg\(/ee%f é%tde ’mvgggreedK}’rgAKl\k/’l zyrmg—(?l(se (i‘(())(rjri(ijngltg whereHX is thekth estimates of channels. This EM iteration

sequence oKs = K/l0g,P symbols. Then th€QAM se- in (3) guarantees to converge to a local minimuniP¢f |H)
guence of symbols is split into M substreams corresponding-~% . . .
to one Rayleigh fading channel, and is transmitted in pairall Thelu$datelgf thefeﬁuatlon (3) can be written in a closed-
from each one of the M antennas. The problem arises aboJ8'm solution [19] as follows,
not only in MIMO systems, but also in multiuser DS/CDMA T
systems [10]. It further reduces to SIMO blind equalization r="YS wE{s|Y,H"} (4)
when there is only one source signal or when fractionally =
spaced equalization is employed in single antenna communi- .
cation systems. .

g R= 3 Efas IV HY) (5)
2. SOFT MIMO EQUALIZER AND DECODER =

] ) ) ) Hk+l _ Rflr (6)

The optimal ML receiver has the exponential complexity

with the signal modulation size and number of transmit an-  Equations (4) and (5) depend on first-order statistics and
tennas, thus limiting real time applications. The SD, on theéhe second-order statistics of the symbols respectivedyeN
other hand, is capable of achieving near ML performancé¢hat the computation of (4) and (5) also requires the poste-
and can be designed to provide the soft (likelihood) outputior probabilitiesP(s|Y,H) andP(ss|Y,H), which can be
information. and a simple error correcting operator. Suctproduced by the BCJR algorithm instead of from the symbol
a low-complexity structure could enable iterative equaliz estimators directly when using an error correcting code. We
tion for fast wireless Rayleigh channels. An important re-emphasize that posterior probabilities exploiting theiegd
quirement of this blind MIMO equalization is to calculate structure can improve the channel estimation significantly
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Figure 2: Receiver architecture of the proposed codingtssisystem.

An important problem in the performance of the EM al- liable soft-bit estimates at the first stage before soft dawp
gorithm is the appropriate selection of the initial estimmdf  is performed. In our simulation, an efficient nonlinear ICA
the starting point is far away the desired point and theilikel approach [8] is used to get an initial channel estimate. Note
hood surface is complicated, the EM is liable to convergencthat this nonlinearity can partly solve the phase ambigofity
to the local minimum. Its convergence has been studied biCA since the exploration of the independence between real
many researchers [20] and references therein. The receahd imaginary parts in QAM modulations. There is still a
work [21] demonstrated in digital modulation systems, thakr/2 phase ambiguity. Such problem can be solved by futher
the EM algorithm shows Newton-like convergence. Thus thalifferential encoding techniques.

EM algorithm guarantees fast convergence and is suitable fo
real time applications in wireless communications. Howeve 5. SIMULATIONS

there is still the important but unsolved problem of whethenye consider a MIMO system with four transmitters, four re-
the EM algorithm can converge to the correct solution, i.e.givers and QAM16 modulation are employed. The channel

the consistent solution of the true channel parameters. H is a 4x 4 complex instantaneous matrix, which is con-
stant for each block interval (256 symbols), and it follows a
4. ITERATIVE PROCEDURE Rayleigh Fading distribution. N follows the complex addi-

In this work, a blind MIMO channel equalization algorithm is tive white Gaussian distribution. The results have been ob-

proposed in which the BCJR and EM algorithms are iterated@ined fgr(‘jtr?nsmit_}ing blotc)k? oKy :|403ﬁ bits. Each_ an- d
Given initial estimatest;,; from an efficient ICA method [8], tehnna a E our pi otbfym ?scto solve t e”p_erm(lj.ltatlgngn
the SD-BCJR algorithm computes the signal posterior proba2Nase ambiguity problem of ICA, as we call it ordered ICA

bilities P(sn|Y,H¥, Z) by utilizing the code structure and then In lflg_ure I(Z).dA r?te ofr = é/z_%arallel concatenated con-
feeds these to the EM algorithm. The EM algorithm use volutional code of memory 3 with two nonsystematic convo-

these posterior probabilities to evaluate the conditianal Tutional (NSC) code has been used. The generator polyno-

/ ; ials areG;(D) =1+ D+ D3+ D4,G,(D) =14+ D3+ D4
pectations in (4) and (5). Thus we update new channel sta ' . .
information by (6) and pass this back to the SD-BCJR al__[agnd the interleaver is set to pseudo random. The soft symbol

gorithm again. As the iterations proceed, estimates becon{gformanon_was calculateq at each antenna. The_ SD [22] IS
employed first to get soft information. Only two iterations

mg:g g(r:ggirsi[.e and the posterior symbol probabilities becomof(;hetchanr}el etsrgim?ﬁilon a{e_bertrjployed .ig EI\[A) ugg%tefh- In
. . L . order to explore the full contribution provided by , this
e ), o he eier Sl g et ok comptes he symbalikeliood based on 16 ot o
input soft ou,tput error control decoder each dimension. This calculation could be simplified byta lis
L : . . sphere decoder (LSD) [23] or list-fixed-complexity sphere
In multiple-input multiple-output (MIMO) channels, this decoder (LFSD) [24] but with a performance degradation.
soft decoding strategy is given below: In comparison with other effective methods of blind
MIMO equalization, such as th8plit Threshold nonlinear
Algorithm 1 Coding sssisted blind MIMO equalization functionand the SD-EM approach [8], our scheme shows
1. Blindly estimate the MIMO channel state information promising performance for this type of problem. The former
with the statistic properties of received signals. used an efficient score function which is specified for QAM
2. Estimate the soft bits, i.e., the LLR of each transmittecfignals to obtain a good separability. The later proposed
bit, using the list version of sphere decoding or its vari-an efficient hybrid blind MIMO equalization and decoding
ants. scheme. It directly applied soft information into EM chahne

3. Make the soft bits information more reliable through auPdate, despite the spacial diversity caused by FEC. Figure
simple BCJR soft decoder. (3) illustrates this significant separability improvenmsewith

4. Update the channel state information by the EM algo;me g‘.idt of cha{]tr;]el cotde. tTQishperfo:rpanc; istmeaSLljreth\)/y
rithm with the soft bit information input and feed it back € distance of the estimated channél from the frue vaiue. We

] -1
to the channel estimator for further improvement. defineP = HegtHreal

ICI(P) =

) =1, @

Usually, a good MIMO decoder is required to produce re-
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Figure 3: Channel separability of the split threshold nenli Figure 6: Iterative improvements of the coding assisted SD-
ear ICA, the SD-EM and the coding assisted SD-EM algoEM algorithm in a 4x 4 system with 16-QAM modulation.
rithm with a rater = 1/2 convolutional code over different
SNR.
channel estimate can be changed to be more reliable with
] . further iterations. Obviously, we can see the joint conkrib
where ICI stands for inter component interference. _tion of time diversity and channel coding to the blind MIMO
Figure (4) shows the BER performance. Comparationgqualization and decoding.
were set up with a pilot assisted transmission scheme and  oyr final simulation indicates the iterative gain of the
two blind methods methoded above. Training based V-blagtoded soft channel estimation measured over 500 Monte
[25] scheme used 24 symbols per block as pilot sequencgario runs. Similar to the setup above with 4 fixed chan-
and applied a Least squares algorithm into channel estimajgy| realizations. One channel matrix is very singular with a
and followed by MMSE detection, nulling, cancellation andcondition number over 26 and it is difficult to estimate with a
ordering. The BER was measured before the error correctinghear estimator blindly. Other channels are good in terfns o
operations. Obviously, the coding assisted iterativecstine  the channel condition number. Clearly, from figure (6), we
improves the system performance significantly since it caran see that the performance progresses towards the optimal
help avoid the EM algorithm from becoming trapped in acyrve with CSI known at the receiver. This shows us that the
local minimum. BER of this blind algorithm is almost identical to that for a
BCJR equlizer with perfect channel information.

o M=4,N=4, QAM -16
10 T T T

6. CONCLUSION

We have proposed a coding assisted MIMO blind equaliza-
tion and decoding scheme. By utilizing posteriori informa-
tion, it provides substantial gain over the uncoded system.
The existence of coding structures partly solves the prob-
lems of the EM getting trapped in a local minimum when the
channel s close to singular or SNR is low. This happens fre-
quently when the number of receiver antennas, the size and
the dimension of the data are large. The new scheme appears
to avoid local minimum and converge to the global minimum
w— or at least a good approximation of it. Moreover, this system
SR Tl 3000 Framclengh 256 Eereion =2 uses an efficient ICA approach and a simple BCJR decoding
without any extra computation load. This low complexity
Figure 4: BER performance of the pilot assisted V-blastshould make it suitable for tracking fast channel variation
scheme, the split threshold nonlinear ICA, the SD-EM, theeal time applications.
coding assisted SD-EM algorithm and known CSI SD with a
rater = 1/2 convolutional code. REFERENCES
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