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ABSTRACT 

This paper focuses on the estimation of a sine-wave normal-
ized frequency by the three-point interpolated discrete Fou-
rier transform (IpDFT) method with rectangular window. A 
constraint on the integer number of recorded sine-wave cy-
cles is derived to ensure that the spectral interferences from 
the image components of the spectrum on the normalized 
frequency estimation are practically neglected. The statisti-
cally efficiency of this method, which applies to a sine-wave 
corrupted by a stationary white noise is investigated with 
respect to the unbiased Cramer-Rao (CR) lower bound. 
Moreover, a constraint on the number of acquired samples 
which ensures accurate estimates with a high confidence 
level is derived. The derived expressions are validated by 
means of computer simulations.     

1. INTRODUCTION 

In many engineering applications the normalized frequency 
of a sine-wave must be estimated with high accuracy. Meth-
ods used for this purpose can be classified either in paramet-
ric or in nonparametric methods [1]. The latter are often used 
since they do not require a rigid signal model and can be 
easily implemented due to the availability of Fourier analysis 
package. 
In practice the sampling process is often noncoherent with 
the sine wave (noncoherent mode). One of the nonparametric 
methods often used in this case to estimate the normalized 
frequency of a sine-wave is the Interpolated Discrete Fourier 
transform (IpDFT) method [2]-[6]. Its most simple imple-
mentation is achieved when the rectangular window is used 
[2]. In this case the normalized frequency estimates are af-
fected by the spectral interferences from the image compo-
nents of the spectrum and by the wide band noise superim-
posed to the acquired sine-wave [7]. The influence of the 
spectral interferences depends on the integer number of re-
corded sine-wave cycles and the influence of the noise de-
pends on the number of acquired samples [7]. For the values 
of the integer number of recorded sine-wave cycles used in 
practice the accuracy of the normalized frequency estimates 
is mainly affected by the influence of the spectral interfer-
ences. To overcome this situation a higher number of inter-
polation points must be used [8]. The analytical formula for 

frequency estimation by the three-point IpDFT method with 
rectangular window is given in [8]. Unfortunately, in the 
scientific literature the influence of the spectral interferences 
and of the noise on the estimation of a sine-wave normalized 
frequency by the IpDFT method with rectangular window is 
not investigated. Therefore, this paper is focused on this task. 
A constraint on the integer number of recorded sine-wave 
cycles which ensures that the influence of the spectral inter-
ferences from the image components of the spectrum on the 
estimation of the normalized frequency is practically ne-
glected is derived. Then, for a sine-wave corrupted by a sta-
tionary white noise, the statistically efficiency of the method 
used with respect to the unbiased Cramer-Rao (CR) lower 
bound is determined. In addition, a constraint on the number 
of acquired samples which ensures accurate normalized fre-
quency estimates with a high confidence level is derived. The 
validity of the derived expressions is verified by means of 
computer simulations.  

2. NORMALIZED FREQUENCY ESTIMATION 

Let us consider a sine-wave sampled at a known frequency 
fs, i.e., 
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where A, fin, and  are the amplitude, frequency, and phase 
of the sine-wave; and M is the acquisition length. To satisfy 
the Nyquist criterion, fin is assumed to be smaller than fs/2. 
The ratio between fin and fs is given by: 
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where l and , respectively are the integer and the fractional 
parts of the number of recorded sine-wave cycles 0.  is 
related to the noncoherent sampling mode 0.5   < 0.5. 
This mode is very common in practical applications.  
From (1) it follows that x(m) can be written as following: 
         ,mwmxmxmx w               (3) 
where w(m) is the rectangular (uniform) window, defined as: 
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The discrete-time Fourier transform (DTFT) of xw() is given 
by: 
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where  is the normalized frequency expressed in bin, W() 
is the DTFT of w(), given by: 
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Noticed that the second term in (4) represents the image part 
of the spectrum Xw(). 
The value of l can be easily determined by means of (2) if 
enough accurate estimates for fin and fs are available or by 
using a maximum search routine applied to |Xw()| for  = 1, 
2,…, M/2  1, if the sine-wave frequency signal-to-noise 
ratio is above threshold [4]. Thus, for estimating the normal-
ized frequency 0, it is necessarily the estimation of .  
To estimate  by means of the three-point IpDFT method 
the following ratio  is firstly determined [8]: 
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where s = sgn(), in which sgn(·) is the sign function.  
From (4) the following equations hold: 
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For larger value of l the image parts of Xw(l – 1), Xw(l) and 
Xw(l + 1) are neglected and for (7)  becomes: 
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Using (5) it follows that  can be estimated by:  
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For small and relative small values of l the ̂ estimates are 
affected by the image parts of Xw(l – 1), Xw(l), and Xw(l + 1) 
noted in the following as Xwi(l – 1), Xwi(l), and Xwi(l + 1)  

3. CONSTRAINT ON THE INTEGER PART l 

For a sine-wave, the influence of the spectral interferences 
from the image components of the spectrum on the esti-
mates obtained by the IpDFT with rectangular window are 
practically neglected if the following constraint on the l, is 
fulfilled [7]: 
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where A is sine-wave amplitude, n is the resolution of the 
used Analog-to-Digital Converter (ADC) and FSR is its full-
scale range.  
The previously condition cannot be fulfilled for the value of 
l used in practice. For example if A = 1, n = 8 bits, and    
FSR = 5, the minimum value of l which satisfy (10) is equal 

to 2561, which is a very high value. For higher value of n, it 
is obvious that higher values of l are required. Therefore, in 
practice always the estimation of  by the IpDFT method 
with rectangular window is affected by the spectral interfer-
ences.  
The aim of this section is to derive a constraint on the l 
which ensures that the spectral interferences from the image 
components of the spectrum practically not affect the ̂ es-
timates obtained by the three-point IpDFT method with rec-
tangular window, given by (9). Afterthen, the minimum 
values required for l are compared with those required by 
the IpDFT method.  
It can be established that:  
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where: 
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and ai, bi, i = 1, 2, are the coefficients of the best line-fit 
corresponding to the dependences err1 = f(e1) and err2 = 
f(e2). They have the following characteristics: 

  1max
,

ia


and bi  0. 

Fig. 1 shows the coefficients ai and bi, i = 1, 2, as a function 
of  and . The sine wave has the amplitude A = 1 and the 
phase  variable in the range [0, 2) rad with a step of /50 
rad. M is set to 1024.  varies in the range [0.5, 0.5) with a 
step of 1/33 and l varies in the range [3, 50) with an step of 
1. Fig. 2 shows the coefficients ai and bi, i = 1, 2 as a func-
tion of  for  =  1/6 (Fig. 2(a)) and as a function of   for 
 = 2/5 rad (Fig. 2(b)).  
It is obvious that the errors due to the spectral interference 
decrease as |e1| decreases as well |e2|. Using (5) and (7) it can 
be obtained: 
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Due to the fact that |e1| > |e2|, it follows that very small errors 
due to the spectral interferences are obtained when |e1| is 
very small.   
The magnitude |Xwi(l  1)| can be considered equal to the 
magnitude corresponding to a sine-wave of amplitude A1, 
phase 1, and frequency fin sampled at fs frequency. Thus, 
the following equality holds on: 
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(a) (b) 

  
(c) (d) 

Fig. 1. Coefficients ai and bi, i = 1, 2 as a function of  and . 

  
(a) (b) 

Fig. 2. Coefficients ai and bi, i = 1, 2 as a function of: (a)   for  =  1/6, (b)   for  = 2/5 rad. 

For large enough l from (5) it follows that |W(2l + )| is very 
small compared with |W()|. Thus, we have: 
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Similar the magnitude |Xwi(l + 1)| can be considered equal to 
the magnitude corresponding to a sine-wave of amplitude A2, 
phase 2, and frequency fin sampled at fs frequency: 
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and  
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The error |e1| is proportional to the difference between A1 
and A2, A. The maximum of A, and also of the error |e1|, is 
obtained for  = 0.5, and is equal to: 
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Due to the digitized process the quantization noise is always 
present in sampled sine-waves. To obtain very small errors 
due to the spectral interferences A1 and A2 should be smaller 
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than the amplitude of the quantization errors, which is equal 
to q/2, in which q is the quantization step of the used ADC, 
for all values of . This condition imply that (A)max must be 
-times smaller than q/2, where  > 1, i.e., 
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If the quantization noise is generated by an n-bit ADC, with 
full-scale range FSR (FSR  2A), then q = FSR/2n, and the 
following constraint on the l can be established: 
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To obtain very high accurate ̂ estimates, it has been estab-
lished by means of computer simulation that a good choice 
is  = 50 [see section (6)]. In this case the previously rela-
tionship becomes: 
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For example if A = 1, n = 8 bits, and FSR = 5, the minimum 
value of l which satisfy (20) is equal to 37, i.e. 69-times 
smaller than the minimum value required when the IpDFT 
method is used. It should be noticed that this methods is well 
suited when ADCs with low and medium resolutions are 
employed in the digitizing process. Otherwise, higher values 
for l are required.   

4. STATISTICAL EFFICIENCY OF THE METHOD 

In order to accurately model common real-life situations, we 
assume that a stationary white noise with zero mean and 
variance 2

n is added to the sine-wave. 
By applying the low of uncertainty propagation [9] on (9) 
after some calculations the following expression for the stan-
dard deviation of the ̂  estimates is obtained: 

               
  .131

sin

22

ˆ n
MA




  


     (21) 

The unbiased CR lower bound for the  estimates is ap-
proximately [4]: 
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From (21) and (22) it follows that the statistically efficiency 
of the three-point IpDFT method is given by: 
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The maximum of the  ˆ , 
max̂ , is obtained for   = 0.5 

(see Fig. 4), and it is approximately  two-times higher than 
the   .ˆ CR   

5. CHOICE OF THE NUMBER OF SAMPLES 

When the sine-wave is corrupted by a stationary white noise 
the normalized frequency estimator exhibits an almost nor-
mal distribution [4]. Thus, if the maximum acceptable nor-
malized frequency absolute error || is V, the following 
constraint must be satisfied: 

      ,
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where c is the suitable coverage factor (i.e. c = 3). 
From (21) and (24) after some calculations we can obtain the 
following constraint on the M:  
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To reduce the DFT computational effort, M should be chosen 
equal to the minimum integer power of two satisfying (25). 

6. SIMULATION RESULTS 

The aim of this section is to verify the validity of the rela-
tionships (20), (23), and (25) by means of the computer 
simulations.  
a) Validation of the constraint (20) 
The sine-wave used in simulation is characterized by A = 1, 
and  variable in the range [0, 2) rad with a step equal to 
/50 rad. M is set to 1024.  varies in the range [0.5, 0.5) 
with a step equal to 1/25. The sine-wave is corrupted by the 
quantization noise of a bipolar ADC with FSR equal to 5. 
The quantization noise was modeled by a uniformly distrib-
uted additive noise.  For each value of  the maximum of the 
absolute error of , ||max, occurring during the phase scan 
is retained. Fig. 3 shows the ||max as a function  for dif-
ferent value of l when the ADC resolution is equal to 8 bits 
and to 10 bits. The second value used for l is equal to the 
minimum value of l satisfying (20). 
As it can be seen from Fig. 3 when the l values are higher 
than or equal to the minimum value given by the constraint 
(20) the ̂ estimates are very close since they are not practi-
cally affected by the spectral interferences. 

 
b) Validation of the expression (23) 
The sine-wave used in simulation is characterized by A = 1, 
  uniformly distributed in the range [0, 2) rad, and l = 123. 
M is set to 1024.  varies in the range [0.5, 0.5) with a step 
equal to 1/25. The sine-wave is corrupted by the quantization 
noise of a bipolar 10-bit ADC with FSR equal to 5. For each 
value of , 5000 runs are done to calculate the standard de-
viation of the ̂  estimates. Fig. 4 shows the efficiency of ̂  
estimates as a function of  obtained by both (23) and com-
puter simulation.  
In Fig. 4 it can be seen the good agreement between the 
simulations and theoretical results obtained by (23). 
 
c) Validation of the constraint (25) 
 varies in the range [0.5, 0.5) with a step equal to 1/50. In 
rest the same characteristics as in Fig. 4 are used. The maxi-
mum allowed error V is obtained from (25) for M = 1024 
(V   2·10-4). For each value of , 1000 runs are performed  
and the value ||max is retained. Fig. 5 shows the number of 
occurrences of the errors || higher than V as a function of 
.  From Fig. 5 it follows that in the worst case the 
probability to have ̂  estimates with absolute errors || 
smaller than V is equal to 99.7%, which is very close to the 
theoretical ones, that is 99.73%. 
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(a) n = 8 bits. (b) n = 10 bits 

Fig. 3. ||max as a function  for different value of l when the ADC resolution is equal to: (a) 8 bits, (b) 10 bits. 

  

Fig. 4. Standard deviation of the ̂  estimates normalized to the 
corresponding CR lower bound. 

Fig. 5. Number of error occurrences higher than the maximum 
allowed error V  obtained from (25) for M = 1024. 

7. CONCLUSION 

This paper has been focused on the estimation of the nor-
malized frequency by the three-point IpDFT method with 
rectangular window. A constraint on the integer number of 
recorded sine-wave cycles which ensures that the spectral 
interferences from the image components of the spectrum on 
the  estimates (and also on the normalized frequency 0 
estimates) are practically neglected is derived. Based on this 
constraint it has been shown that the three-point IpDFT 
method is more efficient in reducing the systematic errors 
than the IpDFT method. In addition, it has been demon-
strated that the maximum of the standard deviation of the  
estimates is two-times higher than the unbiased CR lower 
bound. Finally, a constraint on the minimum number of ac-
quired samples that ensures the estimation with a given ac-
curacy of the normalized frequency has been derived. All 
the derived expressions have been validated by means of 
computer simulations. The analyzed method is recom-
mended to be used when in the digitizing process ADCs 
with low and medium resolutions are used. It should be no-
ticed that this method is very simple to implement. There-
fore, it is well suited for real-time measurements of the nor-
malized frequency.  
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