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ABSTRACT
Discrete-time Volterra models play an important role in many
application areas. The main drawback of these models is their
parametric complexity due to the huge number of their pa-
rameters, the kernel coefficients. Using the symmetry pro-
perty of the Volterra kernels, these ones can be viewed as
symmetric tensors. In this paper, we apply tensor decomposi-
tions (PARAFAC and HOSVD) for reducing the kernel para-
metric complexity. Using the PARAFAC decomposition, we
also show that Volterra models can be viewed as Wiener mo-
dels in parallel. Simulation results illustrate the effectiveness
of tensor decompositions for reducing the parametric com-
plexity of cubic Volterra models.

1. INTRODUCTION

Finite-dimensional discrete-time Volterra models, also
called truncated Volterra series expansions or nonrecursive
polynomial models, can be used for approximating any
fading memory nonlinear system [4]. These models have
been used in various fields of application : echo and noise
cancellation [1], [23] loudspeaker system linearization
[15], modeling, equalization and predistortion of nonlinear
communication channels [2], [3], [6], [12], modeling of
physiological systems [7], control of nonlinear processes
[10].

Volterra models that can be viewed as a nonlinear extension
of the finite impulse response (FIR) linear model, are inter-
pretable in terms of multidimensional convolutions. They
possess two interesting properties : linearity with respect
to their parameters, the kernel coefficients, and guaranteed
stability in the bounded-input bounded-output (BIBO) sense.
Their main drawback is the huge number of parameters
needed to characterize their kernels. There are different
ways for reducing the parametric complexity of Volterra
models. One approach consists in expanding the Volterra
kernels using orthonormal basis functions like Laguerre
functions [5], [11], [18], [22], or general orthonormal bases,
i.e. orthonormal basis functions characterized by multiple
poles [17]. Another approach [20] consists in representing
the Volterra system in a parallel-cascade form resulting from
the singular value decomposition of an unfolded matrix
representation of the kernel. In [19], the authors propose to
reduce the parametric complexity by using a tensor product
basis approximation, four methods being proposed for
choosing the approximation basis. The approach proposed
in this paper consists in considering the Volterra kernels as
tensors and using tensor decompositions. This approach was
introduced for the first time in [16].

As any Volterra kernel of order equal to or higher than two
can be replaced by a symmetric kernel, we propose, in this
paper, to use two tensor decompositions, the so called PA-
RAllel FACtor (PARAFAC) decomposition [14] and Higher
Order Singular Value Decomposition (HOSVD) [8], for de-
composing symmetric kernels.
The rest of this paper is organized as follows. In section 2,
we briefly present the Volterra model and indicate how its
kernels can be put in a symmetric form. In section 3, we re-
call the two used tensor decompositions and we describe the
algorithms allowing to estimate the matrix factors of these
decompositions. In the case of a separable cubic kernel, we
propose an analytic solution for computing the vector factor
of the PARAFAC decomposition. Using this PARAFAC
decomposition, we also show that Volterra models can be
viewed as Wiener models in parallel. Simulation results are
shown in section 4 to illustrate the significant parametric
complexity reduction of cubic Volterra kernels in using
tensor decompositions. Finally, in section 5, we conclude
the paper in drawing some perspectives for this work.

Notations : Scalars, vectors, matrices and tensors are
respectively written as lower-case (a,b, . . .), bold lower-
case (a,b, . . .), bold upper-case(A,B, . . .), and blackboard
(A,B, · · ·) letters. AT , AH and A† denote respectively trans-
pose, transconjugate (or Hermitian transpose) and Moore-
Penrose pseudo-inverse of A. The operators diag(.) and
diagi(.) form a diagonal matrix from its vector argument and
from the ith row of its matrix argument respectively, whereas
the operator vec(.) forms a column vector by stacking the
columns of its matrix argument. The vector Ai. (resp. A. j)
denote the ith row (resp. jth column) of A. The outer, Kro-
necker and Khatri-Rao products are respectively denoted by
◦, ⊗ and �. The Khatri-Rao (column-wise Kronecker) pro-
duct of matrices A and B with respective dimensions M×R
and N×R is the matrix of dimensions MN×R defined as :
A�B = (A.1⊗B.1 · · ·A.R⊗B.R).

2. VOLTERRA MODELS

An Pth-order Volterra model for a causal, stable, finite
memory, single-input single output (SISO) system is descri-
bed by the following input-output relation :

y(k) = h0 +
P

∑
p=1

Mp

∑
m1=1
· · ·

Mp

∑
mp=1

hp(m1, · · · ,mp)
p

∏
i=1

u(k−mi)

= h0 +
P

∑
p=1

yp(k) (1)
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where u(k) and y(k) denote respectively the input and out-
put signals, P is the nonlinearity degree of the Volterra mo-
del, Mp is the memory length of the pth-order homogeneous
term yp(k), and hp(m1, · · · ,mp) is a coefficient of the pth-
order kernel. This coefficient being characterized by p in-
dices, it can be viewed as an element of a tensor Hp ∈
K Mp×Mp×···×Mp , of order p, with K = R or C , depen-
ding on whether the kernel coefficients are real-valued or
complex-valued. The pth-order kernel is characterized by Mp

p
coefficients. As each permutation of the indices m1, · · · ,mp
corresponds to the same product ∏

p
i=1 u(k−mi) of delayed

inputs, we can sum all the coefficients associated with these
permutations to get a symmetric kernel defined as :

hp,sym(.) =
1

p ! ∑
π(.)

hp(mπ(1), · · · ,mπ(p))

where (π(1), · · · ,π(p)) denotes a permutation of (1, · · · , p).
The number of independent coefficients contained in the
symmetric pth-order kernel is equal to CMp+p−1

p .

The pth-order kernel is said to be separable if it can be ex-
pressed as the product of p first-order kernels :

hp(m1, · · · ,mp) = Π
p
i=1h(i)

mi (2)

where h(i)
mi represents the mth

i element of the first-order kernel
h(i). If the separable kernel is also symmetric, then the p first-
order kernels h(i) are identical and (2) becomes :

hp(m1, · · · ,mp) = Π
p
i=1hmi

3. TENSOR DECOMPOSITIONS

We first recall some definitions relative to tensors. Then,
we present the so called PARAFAC and HOSVD decompo-
sitions.

3.1 Some definitions
A tensor, also called a multi-way array, of order P

and dimensions M1 × M2 × ·· · × MP, is a mathematical
object described by means of P indices, each index being
associated with a coordinate axis, also called a mode or
a way, and Mp representing the dimension of H along its
pth-mode. An Pth-order tensor H ∈ K M1×M2×···×MP is
characterized by ∏

P
p=1 Mp scalar coefficients hm1,··· ,mp ∈K ,

mp = 1,2, · · · ,Mp, p = 1, · · · ,P.

The tensor H is said to be symmetric if its elements hm1m2···mp
do not change under any permutation of their indices.

The mode-p slice of H is the (P−1)th-order tensor obtained
by fixing the mode-p index, and the mth

p mode-p slice is
denoted by H···mp··· ∈K M1×···×Mp−1×Mp+1×···×MP .

The mode-p vectors (or fibers) are the Mp-dimensional
vectors obtained from H by varying the index mp, with the
other indices fixed : Hm1···mp−1•mp+1···mP .

For a third-order tensor H ∈ K I×J×K with entries hi jk,
the mode-p slices corresponding to p = 1,2 and 3, are the

matrices respectively denoted by Hi.., H. j. and H..k, and
called horizontal, lateral and frontal slices of H.

An important operation consists in matricizing (or unfol-
ding) a tensor, i.e. transforming the tensor into a matrix. The
unfolded representation of H ∈ K M1×M2×···×MP along the
mode-p is denoted by Hp ∈K Mp×(Mp+1···MPM1···Mp−1), and
the column vectors of Hp are the mode-p vectors of H. The
rank of Hp, denoted by Rp = r (Hp), is called the mode-p
rank of H, i.e. the dimension of the vector space spanned by
the mode-p vectors.

For a third-order tensor H ∈K I×J×K , its three unfolded ma-
trix representations obtained in columnwise stacking its ma-
trix slices, are defined as :

H1 = [ H..1 · · · H..K ] ∈K I×JK (3)

H2 = [ H1.. · · · HI.. ] ∈K J×KI (4)

H3 = [ H.1. · · · H.J. ] ∈K K×IJ (5)

Another important operation used for computing
the HOSVD is the mode-p product of a tensor
H ∈ K M1×M2×···×MP by a matrix U ∈ K Np×Mp ,
denoted by H ×p U and defined as the tensor
J ∈K m1×···×Mp−1×Np×Mp+1×···×MP such that :

(H×p U)m1···mp−1npmp+1···mP

=
Mp

∑
mp=1

hm1···mp−1mpmp+1···mP unpmp

This mode-p product can be expressed in terms of mode-p
unfolded representations as Jp = UHp.

3.2 The PARAFAC decomposition
The PARAFAC decomposition of an Pth-order tensor

H ∈K M1×M2×···×MP can be written in scalar form as :

hm1m2···mP =
R

∑
r=1

P

∏
p=1

a(p)
mpr mp = 1, · · · ,Mp (6)

where a(p)
mpr is an entry of the matrix factor A(p) ∈K Mp×R,

p = 1, · · · ,P, and R is the rank of the tensor. Equation
(6) can be rewritten as : H = ∑

R
r=1 A(1)

.r ◦A(2)
.r ◦ · · · ◦A(P)

.r
showing that PARAFAC corresponds to a decomposition
of the Pth-order tensor of rank R, into a sum of R rank-one
tensors, i.e. a sum of R outer products of P vectors.

We can note that for an Pth-order rank-one tensor H, (6) be-
comes :

hm1m2···mP =
P

∏
p=1

a(p)
mp , mp = 1, · · · ,Mp (7)

where a(p)
mp is an entry of the vector factor a(p) ∈K Mp×1. By

comparing (7) with (2), we can conclude that the PARAFAC
decomposition of a rank-one Volterra kernel is equivalent to
that of a separable kernel.
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- - -uT (k)a (.)p
u(k) yp(k)

FIGURE 1 – Realization of the pth-order homogeneous term
of a Volterra model as a Wiener model. Case of a rank-one
kernel.

In the case of an Pth-order symmetric tensor H, of rank R,
the P matrix factors A(p), p = 1, · · · ,P, are all identical and
equal to A. Similarly, for an Pth-order rank-one symmetric
tensor H, the vector factors a(p), p = 1, · · · ,P, are all
identical and equal to a.

Use of the PARAFAC decomposition of a symmetric rank-
one pth-order Volterra kernel allows to rewrite the pth-order
homogeneous term yp(k) in (1) as follows :

yp(k) =
Mp

∑
m1=1
· · ·

Mp

∑
mp=1

hp(m1, · · · ,mp)
p

∏
i=1

u(k−mi)

=
Mp

∑
m1=1
· · ·

Mp

∑
mp=1

p

∏
i=1

amiu(k−mi) =
(
uT (k)a

)p
(8)

where uT (k) = [ u(k−1) · · · u(k−Mp) ] ∈ K 1×Mp is
the linear regression vector associated with this kernel of
memory length Mp, and aT =

[
a1 · · · aMp

]
∈K 1×Mp

contains the coefficients of the vector factor (generator vec-
tor) of the PARAFAC decomposition of the pth-order Vol-
terra kernel. We deduce that (8) can be viewed as the output
of a Wiener model obtained in concatenating a FIR linear
model of memory length Mp with a memoryless nonlinearity
of degree p as illustrated in Fig.1.
For a symmetric pth-order Volterra kernel of rank rp, (8) be-
comes :

yp(k) =
rp

∑
r=1

(
uT (k)A.r

)p
(9)

The pth-order homogeneous term can therefore be carried out
in parallelizing rp Wiener models, each one being associated
with a column of the matrix factor of the kernel PARAFAC
decomposition.
So, the Volterra model output (1) can be obtained as the sum
of a constant term h0, and the outputs of ∑

P
p=1 rp Wiener mo-

dels in parallel, as shown in Fig. 2 for a cubic Volterra model,
where A(p)

.r denotes the rth column of the matrix factor of the
pth-order kernel PARAFAC decomposition, for p = 2,3, and
A(1)

.1 = [h1(1) · · ·h1(M1)], uT
p (k) = [u(k−1) · · ·u(k−Mp)],

p = 1,2 and 3.

Now, we consider the problem of determining the matrix fac-
tor A of the PARAFAC decomposition of an Pth-order sym-
metric Volterra kernel. The proposed estimation method is
the conditional least squares (CLS) algorithm. To simplify

FIGURE 2 – Realization of a cubic Volterra model as Wiener
models in parallel.

the presentation, we consider the PARAFAC decomposition
of a third-order symmetric kernel H ∈K M×M×M :

hm1m2m3 =
R

∑
r=1

3

∏
p=1

ampr, mp = 1, · · · ,M, p = 1,2,3.

In this case, the unfolded matrix representations (3)-(5) are
identical and can be expressed in terms of the matrix factor
A as :

Hi = A(A�A)T ∈K M×M2
, i = 1,2,3. (10)

We propose to determine the matrix factor A in minimizing
the following conditional LS cost function :

min
A

∥∥H1−A(At−1�At−1)T∥∥2
F (11)

where t and ‖.‖F denote respectively the iteration number
and the Frobenius norm.

The CLS algorithm is summarized as follows :
1. Randomly initialize A and set t = 0.
2. Increment t and compute Bt = At−1�At−1 and At =

H1

(
B†

t

)T
.

3. Return to step 2 until convergence.
The convergence test consists in detecting if an estimated
parameter variation between two consecutive iterations or
the model fit error calculated in using the tensor recons-
tructed from the estimated parameters, becomes smaller
than a predefined threshold. In practice, to improve the
convergence, the CLS algorithm that enforces the symmetry
to the solution is applied after a transient period during
which the classical alternating least squares (ALS) is used
for estimating the three matrix factors without enforcing the
symmetry. More efficient algorithms like the enhanced line
search (ELS)[21] or the Levenberg Marquardt one can also
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be used.

In the case of a symmetric rank-one cubic Volterra kernel, it
is also possible to use an analytic solution. Indeed, we have :

hi jk = aia jak i, j,k = 1, · · · ,M (12)

and consequently hiii = a3
i , i = 1, · · · ,M. When the ten-

sor is real, there exists only one real solution ai = 3
√

hiii,
i = 1, · · · ,M. In presence of noise, we propose the following
analytic solution :
1. For i = 1, · · · ,M :

– Compute a(i)
j = h jii

h2/3
iii

, j = 1, · · · ,M.

2. Compute the average value a j = ∑
M
i=1 a(i)

j , j = 1, · · · ,M.

In the complex case, the analytic solution is a little bit more
complicated to calculate due to the fact that now there exists
three possible complex cubic roots 3

√
hiii. Due to a lack of

space, we do not detail the calculation of the corresponding
analytic solution.

3.3 The HOSVD
Given the symmetric Pth-order tensor H∈K M×M×···×M ,

the algorithm for computing its HOSVD is :
1. Compute the SVD of H1, the mode-1 unfolded represen-

tation of H : H1 = UΣUH , where U is an M×M uni-
tary matrix the columns of which span the column space
of H1.

2. Compute the core tensor as : C = H×1 UH ×2 UH ×
·· ·×P UH .

3. Compute the HOSVD of H as :

H = C×1 U×2 U×·· ·×P U. (13)

Note that, in the case of a real tensor, the transconjugation
(H) is replaced by the tranposition (T), and U is orthogonal.

As well known, the best rank-K approximation of a rank-
R matrix, with K < R, is obtained by truncating its
SVD

(
UΣUH), i.e its reduced SVD : U(K)Σ(K)U(K)H

=
∑

K
k=1 σkU.kUH

.k , with σ1 ≥ ·· · ≥ σK ≥ ·· · ≥ σR > 0, U(K)

being formed with the left singular vectors associated with
the K largest singular values. This property is not valid
for tensors of order higher than two. An optimal rank-
(R1,R2, · · · ,RK) approximation of an Pth-order tensor H ∈
K M1×M2×···×MP was proposed in [9]. However, the compu-
tation of this best rank approximation being quite time consu-
ming and providing results very similar to the ones obtained
from a simple truncation, we apply this last solution to a sym-
metric Pth-order rank-R tensor, as summarized below :
1. For a given rank K < R, compute the reduced SVD of

H1 : U(K)Σ(K)U(K)H
, where U(K) is the M×K column-

orthonormal matrix.
2. Compute the reduced core tensor as :

C(K) = H×1 U(K)H×2 U(K)H×·· ·×P U(K)H ∈K K×K×···×K

(14)
3. Compute the truncated HOSVD of H as :

H = C(K)×1 U(K)×2 U(K)×·· ·×P U(K). (15)
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FIGURE 3 – Kernel NMSE versus SNR for the analytic and
iterative methods in the case of complex separable kernels.

4. SIMULATION RESULTS

In this section, we present some simulation results for
comparing the effectiveness of the PARAFAC decomposi-
tion and the truncated HOSVD for reducing the parametric
complexity of cubic Volterra kernels. Two kinds of kernels
were simulated and, for each kind, 300 kernels were ran-
domly generated.

Two performance criteria are considered for the comparison :
– Number of parameters of the PARAFAC/HOSVD de-

compositions, and associated complexity reduction
rate (CRR) calculated in % as :

CRR = 100
N−Nd

N
(16)

where N and Nd represent respectively the number of
components contained in the original kernel, and in the
factors of its decomposition.

– Kernel NMSE (Normalized mean-square error) calcu-
lated in dB as :

NMSE = 10log10

(
‖H−Hest‖2

F

‖H‖2
F

)
(17)

where Hest is the kernel reconstructed from the estimated
parameters of its decomposition.

1) Case of random symmetric complex separable kernels
generated from their PARAFAC decomposition.

The experiment consists in randomly generating 500
vector factors a of dimension 15× 1. Then, the kernels
are constructed using the PARAFAC model. For each
SNR value, 100 different noise sequences are added to the
simulated kernels. The results are displayed in Fig.3. The
iterative method gives better results than the analytic one,
with a kernel NMSE very close to the SNR.

2) Case of random symmetric real non-separable kernels.

A set of 500 random rank-3 symmetric tensors were simu-
lated from their PARAFAC decomposition, without addi-
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FIGURE 4 – Kernel NMSE versus iterations for CLS algo-
rithm with random rank-3 kernels.

NMSE (dB) Number of CRR
PPPPPK

SNR 20 dB 60 dB ∞ parameters (%)

1 −3.4 −3.4 −3.4 63 99.32
2 −8.3 −8.3 −8.3 134 98.55
3 −34.5 −74.5 −295.7 216 97.67
4 −33.4 −73.4 −297.1 316 96.59

TABLE 1 – NMSE and CRR for the truncated HOSVD of
random rank-3 kernels.

tive noise. Results are plotted in Fig. 4, for the CLS algo-
rithm, and the NMSE and CRR obtained with the truncated
HOSVD and PARAFAC decomposition are given respecti-
vely in Tables 1 and 2.

From the simulation results, we can conclude that the
CLS algorithm only works when the rank of the decomposi-
tion is equal to the rank of the tensor. In this case, the NMSE
decreases when the SNR increases. We make the same ob-
servation with the HOSVD. Moreover, we can conclude that
the truncated HOSVD provides better results than the CLS
algorithm.

NMSE (dB) Number of CRR
PPPPPR

SNR 20 dB 60 dB ∞ parameters (%)

1 −3.3 −3.3 −3.3 63 99.32
2 −8.1 −8.0 −8.0 126 98.64
3 −33.7 −73.9 −284.4 189 97.96
4 −21.4 −54.9 −51.3 252 97.28

TABLE 2 – NMSE and CRR for the CLS algorithm with ran-
dom rank-3 kernels.

5. CONCLUSION

In this paper, two tensor decompositions, the so called
PARAFAC and truncated HOSVD, have been used for redu-
cing the parametric complexity of Volterra models. The trun-
cated HOSVD presents the advantage to be simple to imple-
ment and of non-iterative type. The CLS algorithm is also
easy to implement, but, due to its iterative nature, its conver-

gence is often slow and even not always ensured. Another
way to determine the PARAFAC matrix factors consists in
applying an extended Kalman filter to the input-output re-
lation associated with the Volterra-PARAFAC model [13].
A comparison with methods based on the development of
Volterra kernels on orthonormal basis functions is also under
study.
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