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ABSTRACT
In this paper, matched subspace detectors based on the
framework of Compressive Sensing (CS) are developed. The
proposed approach, called compressive matched subspace
detectors, exploits the sparsity model of the signal-of-interest
in the design of the random projection operator. By tai-
loring the CS measurement matrix (projection operator) to
the subspace where the signal-of-interest is known to lie, the
compressive matched subspace detectors can effectively cap-
ture the signal energy while the interference and noise ef-
fects are mitigated at sub-Nyquist rate. The proposed detec-
tion approach is particularly suitable for detection of wide-
band signals that emerge in modern communication systems
that demand high-speed ADCs. The performance of the sub-
space compressive detectors are studied by analytically de-
riving closed-form expressions for the detection probability
and through extensive simulations.

1. INTRODUCTION

Optimum matched subspace detectors that maximize the de-
tection probability for a given probability of false alarm in
the presence of additive noise and interference have been de-
veloped under different models for the signal, noise and in-
terference [1, 2, 3, 4]. These detectors, in general, rely on
the assumption that the received signal can be sampled at
least at Nyquist rate to derive sufficient statistics as a func-
tion of the sampled signal. In many emerging application
areas, however, such as impulse radio ultra-wideband com-
munications, the signal-of-interest to be detected has ultra-
short duration at the (sub)nanosecond scale demanding the
use of high-speed analog-to-digital converters (ADCs) with
sampling frequency on the order of several GHz. Such
formidable sampling rates can be achieved with high-speed
ADCs at the expense of high power consumption, limited
resolution and demanding very fast digital hardware for sub-
sequent data processing.

Compressive sensing (CS) emerges as a potential ap-
proach that maps the original signal to a new domain
where the transformed signal can be sampled at Sub-Nyquist
rates [5, 6]. Interestingly, it has been shown that by using
a random basis the relevant information about the signal is
preserved in the mapping operation. Furthermore, if the pro-
jections are carried out in the analog domain, sampling the
randomly projected signal at sub-Nyquist rate leads to a re-
duced set of samples (random projections) that convey the
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salient information about the original signal without demand-
ing high-speed ADCs.

Much like a reduced set of compressed measurements
provides sufficient information for signal reconstruction [6],
these compressed measurements can be suitably used for
other statistical inference tasks such as signal detection [7, 8].
Signal detection using compressive measurements has been
recently addressed in [8] where a matched filter-like test
statistic has been derived as a function of the random projec-
tions. Thus, the compressive signal detection reduces to ran-
domly projecting the received signal followed by a matched
filter operation on the random samples. Although the ran-
dom measurement scheme for compressive detection pro-
posed in [8] provides universality for detecting signals in the
N-dimensional space, it fails to exploit the signal structure
that may be known a priori [1].

In this paper, we propose a new approach to address the
subspace signal detection problem under the framework of
Compressive Sensing. It is shown that the detection perfor-
mance based on compressive measurements can be signif-
icantly improved by exploiting the underlying signal struc-
ture in the random projection stage. More precisely, by de-
signing a projection matrix tailored to the subspace where
the signal-of-interest is known to lie, the signal energy can
be captured more efficiently, and at the same time mitigating
the effect of noise and interference, resulting in a much better
detector performance with a reduced set of random measure-
ments. A new class of sub-Nyquist sampling rate matched
subspace detectors are derived based on compressive mea-
surements which yield comparable performances to those ob-
tained with conventional (Nyquist sampling) detectors [1] but
without demanding expensive ADC resources. Our work is
a refinement of [8], where we take advantage of the known
signal subspace, and the resulting detection performance is
much enhanced. This new class of matched subspace detec-
tors includes subspace compressive detectors for the detec-
tion of a known signal in a known subspace where the signal-
of-interest is embedded in additive white Gaussian noise or in
additive white Gaussian noise and interference. Interestingly,
the new class of matched subspace detectors defines statis-
tical decision rules in the subspace domain leading to test
statistics that depend on the random measurements, there-
fore signal reconstruction is not required for signal detection.
This builds on the fact that generally, far fewer measurements
and less computational complexity are needed for signal de-
tection than for signal reconstruction [7, 8]. Further details
of this work as well as the extension to subspace detection of
unknown sparse signals can be found in [9].
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2. PRELIMINARIES

2.1 The detection Problem
Given a continuous-time signal x(t), the goal is to decide
which of two possible models is more suitable to describe the
observation signal, x(t). In a first model, the observation sig-
nal is a random realization of a noise process, whereas for the
second model, x(t) is the superposition of a signal-of-interest
and noise. Assume for now that the signal of interest and the
noise are bandlimited to | f | ≤B and that it is possible to sam-
ple the observation signal at the Nyquist rate over some inter-
val 0 ≤ t < T . Let x = [x1,x2, . . . ,xN ]T be the discrete-time
representation of the signal x(t) where xi = x(ti). This deci-
sion problem reduces to distinguish between the hypotheses
H0 and H1,

H0 : x = w
H1 : x = s+w (1)

where s represents the signal of interest that is assumed to be
K-sparse in some dictionary Ψ = [ψ1,ψ2,ψ3, . . . ,ψZ ] with
ψi ∈ RN . Thus, s can be represented by a linear combina-
tion of K vectors from Ψ, with K << N. Namely, s = HΘ
where H = [ψn1 ,ψn2 , . . . ,ψnK ], with ni ∈ {1,2, . . . ,Z} for
i = 1,2, . . . ,K. Θ is a K-dimensional vector with all non-
zero entries that defines s in the signal subspace spanned
by the columns of H. Thus, the signal of interest resides
in the K-dimensional subspace spanned by the columns of
the N×K matrix H. In Eq. (1), w denotes the noise vector
that is assumed to be i.i.d. obeying N (0,σ2I). Furthermore,
we assume that the signal subspace 〈H〉 is known or it can
be learned from a secondary data set [2, 4, 9, 10, 11].

2.2 Conventional Matched Subspace Detector
In order to introduce the notation and terms that will be used
hereafter, let’s consider the detection of a known sparse sig-
nal in white Gaussian noise with known variance σ2. The
detection problem reduces to distinguishing between the hy-
potheses

H0 : x = w
H1 : x = HΘ+w (2)

The aim is to find an expression as a function of the obser-
vation vector x that used as a test statistic allow us to decide
whether the signal of interest is present or not in the obser-
vation vector. According to the Neyman-Pearson (NP) crite-
rion, the optimum decision strategy that maximizes the prob-
ability of detection (Pd) while keep the probability of false
alarm Pf a under a certain value is given by the likelihood
ratio test (LRT) defined as [12]:

Λ(x) =
f1(x;Θ,σ2|H1)
f0(x;Θ,σ 2|H0)

H1
≷
H0

η (3)

where f1(x;Θ,σ 2|H1) is the probability of observing x un-
der H1 and f0(x;Θ,σ2|H0) is the probability of observing
x under H0. The threshold parameter η is chosen to achieve
a desired probability of false alarm.

It is well known that the LRT for detecting a known sig-
nal in white Gaussian noise with known variance yields as
sufficient statistic the matched filtering operation [12]:

t(x) = ΘT HT x = sT x (4)

where s = HΘ is the signal of interest and T denotes the
transpose operator. Since the matched filter output is a linear
combination of Gaussian random variables, t(x) obeys the
following distribution

t(x)∼




N (0,σ2sT s) under H0

N (sT s,σ2sT s) under H1

where we use the notation ∼ to mean “is distributed as” and
N (µ ,σ2

0 ) to denote normal distribution with mean µ and
variance σ 2

0 .
To evaluate the performance of the matched filter detec-

tor, the false alarm probability, Pf a and the detection prob-
ability, Pd , are found based on the statistic of the matched
filter output [12]. Setting the probability of false alarm to a
fixed value, say α , the Pd can be found as a function of Pf a
as follows [12]:

Pd(α) = Q

(
Q−1(α)−

√
sT s
σ2

)
(5)

where Q(x) , (2π)−
1
2
∫ ∞

x e−x2/2dx and Q−1(·) denotes the
inverse of the Q(·) function. Equation (5) is known as the
receiver operating characteristics (ROC) for the matched fil-
ter detector and it fully describes the performance of the de-
tection as a function of the false alarm probability and the
signal-to-noise ratio SNR = sT s

σ2 .

3. SUBSPACE COMPRESSIVE DETECTION OF A
KNOWN SPARSE SIGNAL

CS framework has emerged as a promising approach to re-
duce ADC resources by randomly transforming the original
observation signal to a new domain where the transformed
signal is sampled at Sub-Nyquist rates preserving the salient
information about the original signal. In the new domain, a
random projection based test statistic must be derived to al-
low us to decide whether the signal of interest is present or
not and where the samples are obtained at sub-Nyquist sam-
pling rates.

Consider the detection problem described in Eq. (1),
where the signal of interest is known to lie in the signal sub-
space spanned by the columns of 〈H〉. Furthermore, assume
that the signal parameter Θ and the noise variance are known.
Under the subspace CS framework, the received signal is pro-
jected onto the random basis Φ to yield a measurement vector
y. The detection problem reduces to distinguish between the
two hypotheses H0 and H1:

H0 : y = Φw (6)
H1 : y = Φ(s+w)

where Φ is an M×N random projection matrix, called the
measurement matrix, that is suitably designed to exploit the
a prior knowledge about the signal sparsity model. That is,
unlike the conventional CS framework where the projection
matrix, Φ, are realizations of i.i.d. random variables follow-
ing a normal distribution, in the application at hand, we want
to exploit in the projection operation the inherent structure of
the sparse signal to be detected. More precisely, if we know
a priori that the signal of interest follows a linear model, i.e.,
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s=HΘ, the measurement matrix can be tailored to the signal
model leading to fewer random projections, and, therefore
less demanding ADC resources.

In this work, the proposed subspace measurement matrix
is defined as:

Φ = G(HT H)−1HT (7)

where G is an M × K i.i.d. random matrix whose en-
tries follow a N (0,1/K) distribution with M ≤ K. Note
that under H1 the random projection reduces to y =
G

(
Θ+(HT H)−1Hw

)
, hence, the signal energy in the pro-

jection domain is the same as in [8] while the noise power
is greatly reduced. Thus, good detection performance is ex-
pected even with a small number of measurements.

Note in Eq. (6) that the observation data y is an M-
dimensional vector whose entries are random projections
of the underlying signal. As a result, a new test statistic
and a decision rule have to be derived to decide whether
or not s is present in the random measurement y. Since
w ∼ N (0,σ2I) and the measurement matrix is known, it
follows that the likelihood ratio test reduces to:

Λ(y) =
exp

[−(y−ΦHΘ)T (σ2ΦΦT )−1(y−ΦHΘ)
]

exp
[
−yT (σ2ΦΦT )−1 y

] (8)

Taking the logarithm on Eq. (8) and after some algebraic
manipulations, it follows that the sufficient statistic is given
by:

t̄(y) = yT (ΦΦT )−1Φs = yT [G(HT H)−1GT ]−1GΘ. (9)

Thus, the signal is detected if the test statistic, t̄(y) is greater
than a given threshold η .

Furthermore, since t̄(y) is a weighted sum of Gaussian
random variables, it is distributed according to:

t̄(y)∼




H0 : N (0,ΘT C−1Θ)

H1 : N (ΘT GT [G(HT H)−1GT ]−1GΘ,ΘT C−1Θ)

where C = [G(HT H)−1GT ]−1G. This allow us to find a
closed-form expression to characterize the performance of
the subspace CS detection. It can be shown that for a given
Pf a = α , the detection probability is given by[9]:

Pd(α) = Q

[
Q−1(α)−

√
sT PΦs

σ2

]
, (10)

where PΦ = ΦT (ΦΦT )−1Φ. Furthermore, we have that

sT PΦs = sT ΦT (ΦΦT )−1Φs

= ΘT GT [G(HT H)−1GT ]−1GΘ.

When M = K, G is invertible with probability 1 [13] leading
to

sT PΦs = ΘT HT HΘ = sT s. (11)

Note that when the number of random projections equals
the sparsity of the signal, i.e., M = K, the proposed subspace
CS detection has the same performance as the conventional
detector given by Eq. (5). Note that GGT ≈ KIM×M and

GT G≈MIK×K if M,K À 1. Further, if the signal of interest
is sparse on an orthonormal basis, it can be shown that:

sT PΦs≈ (M/K)sT s. (12)

Then, with M ≤ K, the detector performance can be approx-
imated as:

P̄d(α)≈ Q

[
Q−1(α)−

√
M/K

√
sT s
σ2

]
. (13)

The approximation of Pd(α) by Eq. (13) also holds when
ψi’s in Ψ have unit energy and are approximately orthogonal
to each other.

Comparing the proposed subspace CS detection to that
introduced in [8], we notice several differences. First, in [8]
the signal model is not taken into account in designing the
measurement matrix. Second, the number of measurements
has to be greater than the sparsity of the signal, while in our
approach only M ≤ K measurements are required. Finally,
comparing the performance of the subspace CS detection to
that in [8], it can be noticed that the proposed detector pro-
vides better detection performance with much fewer number
of measurements.

Much like the CS detector in [8] provides a universal de-
tection scheme for signals in the N-dimensional space, the
proposed subspace compressive detector provides a universal
detection scheme for all signals that lie in the same subspace.

4. COMPRESSIVE SUBSPACE DETECTION IN
NARROWBAND INTERFERENCE

The proposed subspace compressive detection can be nat-
urally extended to the case where interference signals are
present in the observations. In particular, we are interested
in detecting signals embedded in additive Gaussian noise in
the presence of narrowband interference (NBI) that lies in
a known interference subspace. With the knowledge of the
interference subspace, an effective subspace compressive de-
tector can be designed for subspace signal detection and, at
the same time, interference rejection.

Consider the interference modeled by z = Sϕ where S
is an N×J matrix whose columns span the interference sub-
space 〈S〉 and ϕ ∈RJ is the interference parameter that lo-
calizes the interference in the subspace 〈S〉 with J ¿ N−K.
In our study, we assume that the interference subspace S is
available but the interference coefficient ϕ is unknown. That
is, we know the subspace where the interference lies but we
do not know its exact location because ϕ is unknown. Fur-
thermore, we assume that the signal subspace and the inter-
ference subspace do not overlap.

The detector aims to distinguish between two hypothe-
ses, H0: interference + noise and H1: signal-of-interest +
interference + noise. Formally:

H0 : x′ = Sϕ +w, (14)
H1 : x′ = HΘ+Sϕ +w.

Under the subspace compressive framework, we want to
design a measurement matrix that on the one hand cancels
out the interference and on the other hand exploits the fact
that the signal-of-interest lies in a known subspace spanned
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by the columns of H. It turns out that by letting the projec-
tion matrix be

Φ̆ = G(H̆T H̆)−1H̆T = G(HT P⊥
S H)−1HT P⊥

S (15)

where H̆ = P⊥
S H and P⊥

S = IN −S(ST S)−1ST both goals
are jointly achieved in the projection stage. Note that P⊥

S
is the orthogonal projection matrix for the NBI null space.
G is, as before, an M×K random matrix whose entries are
i.i.d. random variables following a Gaussian probability den-
sity function with zero-mean and variance 1/K. Thus, the
hypothesis problem (14) reduces to:

H0 : y̆ = Φ̆(Sϕ +w), (16)

H1 : y̆ = Φ̆(HΘ+Sϕ +w).

Upon closer examination of Equations (15) and (16), it
can be noticed that the proposed detector first projects the re-
ceived signal onto the NBI null space rejecting the interfer-
ence and then the resultant signal is projected onto the signal
subspace reducing the noise effect. Note also that the de-
sign of the subspace measurement matrices according to Eq.
(15) is similar in spirit to the principle of the zero-forcing
equalizer [14] widely used in digital communications. The
interference, if present, is completely eliminated by project-
ing the received signal onto the interference null space.

In order to derive a test statistic expression as a func-
tion of the measurements y̆, notice that under H0, y̆ fol-
lows a normal distribution with mean Φ̆Sϕ and variance
σ2Φ̆Φ̆T , whereas under H1, y̆ is normally distributed with
mean Φ̆(HΘ +Sϕ) and variance σ2Φ̆Φ̆T . Therefore, it can
be shown that the LRT yields as sufficient statistic [9]:

t̆(y̆) = y̆T (Φ̆Φ̆T )−1Φ̆s = y̆T [G(HT P⊥
S H)−1GT ]−1GΘ.

Consequently, the detector performance is given by:

PD(α) = Q
(

Q−1(α)−
√

sT PΦ̆s
σ2

)
, (17)

where s = HΘ, α = Pf a and PΦ̆ is the orthogonal pro-
jection onto the subspace spanned by the rows of Φ̆, i.e.,
PΦ̆ = Φ̆T (Φ̆Φ̆T )−1Φ̆.

Note that the detector performance depends on the term:
ε = sT PΦ̆s = ||sΦ̆||2, which is the signal energy that the de-
tector can collect in the random subspace Φ̆. Furthermore,
for M = K, it can be shown that ε reduces to sT P⊥

S s [14].
Thus, if the number of measurements is equal to the sparsity
of the signal-of-interest, the energy collected by the detec-
tor turns out to be the signal energy after it has been passed
through the null-steering operator P⊥

S . It should be pointed
out that a natural extension of the compressive detection ap-
proach developed in [8] to address the problem of signal de-
tection in presence of interference and additive white Gaus-
sian noise can be obtained by observing that the received sig-
nal can be passed through an interference rejecting filter [1]
and then projected using an M×N random projection matrix
with entries obeying a normal distribution. Following this
line of thought, the detection problem (14) reduces to:

H0 : ỹ = Φ̃P⊥
S (Sϕ +w) , (18)

H1 : ỹ = Φ̃P⊥
S (HΘ+Sϕ +w)
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Figure 1: Performance of the various signal detection algorithms
for detecting a known signal in additive white Gaussian noise

where P⊥
S = IN −S(ST S)−1ST and Φ̃ is an M×N i. i. d.

matrix with M > K. Note that unlike to the subspace com-
pression detection where the a priori knowledge is exploited
in the design of the measurement matrix, in this latter CS
based detection approach, the a priori knowledge about the
interference subspace is exploited in the null steering opera-
tor P⊥

S while the CS universality is kept in the random pro-
jection.

Following a similar approach to that used in deriving
Eq. (17), it can be shown that the sufficient statistics and the
detection performance for this case are given, respectively,
by:

t̃(ỹ) = ỹT (Φ̃P⊥
S Φ̃T )−1Φ̃P⊥

S HΘ (19)

Pd = Q


Q−1(Pf a)−

√
ΘT HT P⊥

S Φ̃T (Φ̃P⊥
S Φ̃T )−1Φ̃P⊥

S HΘ
σ2




5. SIMULATIONS

In this section, the performance of the proposed subspace
compressive detectors are evaluated through several simula-
tions and compared to the performances yielded by the con-
ventional subspace detectors (Nyquist sampling) and to the
corresponding extension of the CS detector [8]. For all the
simulations, the sparse signal s is given by: s = HΘ, where
H ∈ RN×K , Θ ∈ RK×1. The narrowband interference z is
given by z = Sϕ , where S ∈ RN×T , ϕ ∈ RT×1. All the
entries of H, Θ, S and ϕ are drawn from an i.i.d. normal
distribution. The SNR is defined as: SNR = sT s

σ2 .
First, the various detectors are tested in the detection of

a known signal in additive white Gaussian noise. The signal
subspace matrix H has dimensions N = 2000 and K = 200.
The number of measurements for the CS detector [8] is 600,
whereas for the proposed approach M is set to 120. Figure 1
depicts the detection probabilities as a function of the SNR
for a Pf a = 10−4. As can be seen, with much fewer measure-
ments subspace compressive detector outperforms the CS de-
tector that does not use signal subspace information.

In Fig. 1, the approximation to the subspace detection
probability given by Eq. (13) is also shown. As can be
seen, the approximation is quite close to the empirical results,
hence validating the assumption made to obtain this approxi-
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Figure 2: Performance of the proposed approach for detec-
tion of known signal embedded in additive white Gaussian
noise and interference.

mation. Furthermore, note that the subspace compressive de-
tector yields a detection performance relatively close to that
of conventional detector with just 6% of the Nyquist sam-
pling rate. It should be pointed out that all the closed-form
expressions found to characterize the performances of the CS
based detectors match very well the empirical results. They
are not shown in the plots to avoid overloading the graphs.

In the next simulation, the performance of the proposed
subspace compressive detector under narrowband interfer-
ence is evaluated. The subspace matrix H has dimensionality
N = 2000 and K = 200. The dimension of the interference
subspace is 2000× 20. H and S are assumed to be known.
The signal-to-noise ratio is 9 dB. The number of measure-
ments for the subspace compressive detector is M = 180.
The resulting ROC curve is compared to that yielded by the
compressive detector where an interference rejecting filter is
followed by an universal random projection. The number of
i.i.d. random measurements for this latter detection approach
is 600. The simulation results are shown in Fig. 2. As can be
seen, by jointly exploiting signal subspace information and
interference rejection in the projection stage, the compres-
sive matched subspace detector outperforms the results found
by projecting the received signal into the interference null
subspace and then applying compressive detector [8]. For
comparison purpose, the performance of the conventional
matched subspace detector [1] is also shown in Fig. 2. As
can be seen, the proposed approach has a detection perfor-
mance quite similar to the one yielded by the conventional
matched subspace detection but using just 9% of the original
sampling rate. Further simulations reported in [9] show that
the performance of the proposed approach approximates to
that attained by the conventional Nyquist rate detector with
just a few more measurements.

6. CONCLUSIONS.

In this paper, we derived new matched subspace detectors
under the framework of compressive sensing. We show that
with just a few random projections the compressive matched
subspace detector yields competitive performance compared
with the conventional detector but without demanding high
ADC resources. The proposed approach leads to a new class
of subspace compressive sensing that includes LRT detector

for interference-free and interference environments. Exten-
sive simulations and analytical expressions show that by ex-
ploiting the a priori information about the signal subspace
in the projection stages, the proposed approach outperforms
universal sampling CS detectors. Furthermore, the proposed
approach can be generalized to the detection of an unknown
signal embedded in additive white Gaussian noise with or
without interference. These are report in [9].
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