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ABSTRACT
We consider the problem of image alignment using random
measurements. More specifically, this paper is concerned
with estimating a transformation that aligns a given refer-
ence image with a query image, assuming that not the im-
ages themselves but only random measurements are avail-
able. According to the theory behind compressed sensing,
random projections of signal manifolds nearly preserve pair-
wise Euclidean distances when the reduced space is suffi-
ciently large. This suggests that image alignment can be per-
formed effectively based on a sufficient number of random
measurements. We build on our previous work in order to
show that the corresponding objective function can be de-
composed as the difference of two convex functions (DC).
Thus, the optimization problem becomes equivalent to a DC
program that can be solved by an outer-approximation cut-
ting plane method, which always converges to the globally
optimal solution.

1. INTRODUCTION

The problem of image alignment is of paramount importance
and enjoys numerous applications in various fields includ-
ing pattern recognition, computer vision and medical image
analysis, to name just a few [1]. The comparison of two vi-
sual patterns is generally only meaningful if they are aligned
first, so that their distance reflects their structural and ge-
ometric differences. Image alignment consists in estimat-
ing the relative transformation between patterns. The trans-
formed version of a pattern can be described as a point of a
(possibly nonlinear) manifold in a high dimensional space,
which is usually called thetransformation manifold. The
manifold distance (MD) is the minimum distance between
the query imagep and the manifold generated by the refer-
ence images, see Figure 1.

At the same time, a theory of sparse signals has recently
emerged, often referred to as compressed sensing (CS). Ac-
cording to this theory, a few random projections of a sparse
(or nearly sparse) signal are sufficient to preserve its salient
information. Moreover, in [2, 3] it is shown that random
projections of signal manifolds result into approximately
isometric embeddings i.e., pairwise Euclidean distances are
nearly preserved in the reduced space. This framework al-
lows to work with random measurements of a signal rather
than the full signal itself. In the context of image align-
ment, we use CS to estimate the geometric transformation
of the reference image and, optionally, to reconstruct the
query image with the transformation compensated for. An
advantage of using random measurements is reduced com-
putational complexity. Moreover, in certain applicationswe
might not have access to the full images (e.g., due to band-
width, complexity or storage space constraints), but only to

Figure 1: Manifold distance is the minimum distance from a
query pointp to the transformation manifoldT spanned by
the transformed versions ofs.

such measurements, which moreover provide a non expen-
sive way to get some minimal information about the images.

In this paper, we propose a new method for image align-
ment, which is able to estimate the globally optimal transfor-
mation of the reference images, given a sufficient number
of random measurements. We represents as a sparse lin-
ear combination of geometric primitives, called atoms, which
are chosen from a parametric, possibly redundant dictionary.
The proposed framework also allows for a closed form rep-
resentation of the transformed image in terms of the trans-
formation parameters. We build on our previous work [4]
and formulate the pattern alignment problem with random
measurements as a DC program by showing that the objec-
tive function is DC, i.e., that it can be written as adifference
of convex functions. DC programs are non-convex problems
that can be solved globally and efficiently by exploiting their
special structure. Our approach therefore provides a feasi-
ble way to perform image alignment with random measure-
ments. In contrast, existing solutions [5, 6] are based on
exhaustive search, which is computationally expensive and
provides no theoretical guarantee for the optimality of the
attained solution.

The rest of this paper is organized as follows. In Sec.
2 we discuss the representation of transformation manifolds
using sparse geometric expansions and in Sec. 3 we formu-
late the problem of matching random measurements as an
optimization problem. We show in Sec. 4 that the objective
function is DC. Finally, experimental results are presented in
Sec. 5.

2. TRANSFORMATION MANIFOLDS AND
RANDOM PROJECTIONS

2.1 Visual pattern representation

In the following, we explain the representation of a pat-
tern as a linear combination of geometric functions (usually
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calledatoms), taken from a structured parametric and pos-
sibly redundant dictionaryD = {φγ , γ ∈ Γ} spanning the
input space. This representation typically allows to capture
the most prominent features of the pattern. The atoms in a
parametric dictionary are constructed by applying geometric
transformations to a generating mother function denoted by
φ . A geometric transformationγ ∈ Γ can be represented by
the action of an operatorU(γ) and therefore the parametric
dictionary takes the form

D = { φγ = U(γ)φ , γ ∈ Γ}. (1)

A transformationγi, applied to theith atom, is composed
of elementary transformations of the following three types.
• Translation by bi = [bix biy]

⊤. U(bi) moves the gen-
erating function across the image i.e.,U(bi)φ(x,y) =
φ(x−bix,y−biy).

• Rotation by ωi. U(ωi) rotates the generating func-
tion by angle ωi i.e., U(ωi)φ(x,y) = φ(cos(ωi)x +
sin(ωi)y,cos(ωi)y−sin(ωi)x).

• Anisotropic scaling by ai = [aix aiy]
⊤. U(ai) scales the

generating function anisotropically in the two directions
i.e.,U(ai)φ(x,y) = φ( x

aix
, y

aiy
).

Composing these transformations yields a transformation
γi = (bi,ai,ωi) ∈ Γ, a synthesis of translations, anisotropic
scalings and rotations. It can be observed that applying a
transformation on the mother function is equivalent to trans-
forming the coordinate system from{x,y} to {x̃, ỹ} before
applyingφ(·). In particular, when theith atom in the para-
metric dictionary (1) is built asφγi = U(γi)φ(x,y), where
γi = (bi,ai,ωi) ∈ Γ, it forms the same 2D function asφ(x̃, ỹ),
where
[

x̃
ỹ

]

=

[
1

aix
0

0 1
aiy

]

︸ ︷︷ ︸

A

[

cosωi sinωi
−sinωi cosωi

]

︸ ︷︷ ︸

R(ωi)

[

x−bix
y−biy

]

︸ ︷︷ ︸

t

= AR(ωi)t. (2)

The approximation of a patterns with atoms from the dic-
tionaryD can be obtained in different ways. Even if finding
the sparsest approximation ofs is generally a hard problem,
effective sub-optimal solutions are usually sufficient to cap-
ture the salient and geometric structure of the pattern with
only a few atoms. In this work, we have chosen to use Or-
thogonal Matching Pursuit (OMP) [7, Sec. 9.5.3], which is a
simple but yet effective algorithm for computing sparse ap-
proximations in practice.

Initially, OMP chooses the residualr0 = s and then
proceeds iteratively by selecting in thejth step the
atom φγ j that best matches the residualr j−1 i.e., γ j =

argγ∈Γ max|〈r j−1,φγ 〉|. At each step, it updates the residual
by orthogonal projection on the span of the selected atoms
(i.e.,r j = (I−P)r j−1, whereP is the orthogonal projector on
the span{φγ1, . . . ,φγ j}). After K steps of OMP, the patterns is
approximated by a sparse linear combination of a few atoms
i.e.,

s ≈
K

∑
k=1

ξkφγk . (3)

We propose the use of a dictionary of two-dimensional
atoms that capture the geometrical information in an image.

The generating functionφ of D used in this paper is the
Gaussian

φ(x,y) =
1
ρ

exp(−(x2 + y2)). (4)

Figure 2 shows the progressive approximation of the digit ’5’
from a Gaussian dictionary using OMP. Observe that only a
few atoms are sufficient to capture the main geometric char-
acteristics of the pattern and the representation (3) does not
need to be very accurate before it is useful for alignment pur-
poses.

2.2 Transformation manifolds

In the following, we discuss geometric transformations of the
the reference images. In contrast to the previous section, we
restrict scalings to be isotropic, i.e., the geometric transfor-
mationη takes the formη = (b,α,ω); that is, it consists of
a synthesis of translationb = [bx,by], isotropic scalingα and
rotationω . The manifoldT of all such transformed images
can be expressed mathematically as

T =
{

s(η) = U(η)s, η = (b,α,ω)
}
. (5)

Although the manifold resides in a high-dimensional space,
its intrinsic dimensiond is rather small and equal to the num-
ber of transformation parameters, which is 4. Figure 3 shows
a few samples from the transformation manifold of the digit
“5”, when the transformation is a rotation.

All such transformationsη form a group, namely the
similitude group SIM(2) on the 2D plane. As in (2), we de-
note

R(ω) =

[
cosω sinω
−sinω cosω

]

, 0≤ ω < 2π ,

as the rotation matrix for the angleω in the 2D plane. If
(b,α,ω) and (b′,α ′,ω ′) are two elements of the SIM(2)
group, then the group law [8] is

(b,α,ω)◦ (b′,α ′,ω ′) = (b+αR(−ω)b′,αα ′,ω ′+ω). (6)

Replacing the reference images by its approximation (3),
applying the transformationη results in

s(η) = U(η)s =
K

∑
k=1

ξkU(η)φγk =
K

∑
k=1

ξkφη◦γk , (7)

whereη ◦ γk is a composition of transformations. In words,
the transformation is applied to each constituent atom indi-
vidually. Furthermore, the group law (6) can be employed to
determine the updated parameters of the transformed atoms.
Let us emphasize the importance of equation (7): it allows to
express the manifold equation (5) in closed form with respect
to the transformation parametersη . This is essential for the
computation of the manifold distance, and in particular for
the applicability of the DC programming methodology that
is proposed in the next section.

3. PROBLEM FORMULATION

In this paper, we are interested in estimating the transforma-
tion η∗ that matches best two visual patterns. As above, let
p denote the query pattern andT the transformation man-
ifold described by equation (5). The main idea is to per-
form matching between their random projections instead of

1305



Figure 2: Progressive OMP approximation of the digit “5” (leftmost) with 10, 20, 30, 40 and 50 Gaussian atoms (from left to
right).

Figure 3: Samples from the transformation manifold of the digit “5”. From left to right, the samples correspond to rotation
angles from 0 to 2π with stepπ/4.

the visual patterns themselves. Assume that we haveM ran-
dom projections of both the reference patterns and the query
pattern p, obtained by computing inner products with the
sameM random signalsz1, . . . ,zM. In what follows, we pro-
vide first some background material on random projections
of manifolds and then we formulate the transformation esti-
mation from random projections as an optimization problem.

3.1 Random projections of manifolds

Suppose that we project the transformation manifolds
spanned by two distinct patterns onM random vectors
z1, . . . ,zM. In order to make sure that the matching between
points in the reduced space is equivalent to matching cor-
responding points in the initial high-dimensional space, the
embedding should be (nearly) isometric i.e., pairwise Eu-
clidean distances should be (nearly) preserved. Only if this
is the case then one can reliably perform image alignment in
the reduced space and estimate the unknown transformation.

What is a good choice ofM? Recall thatd is the intrin-
sic dimension of a manifold (in our cased = 4, the num-
ber of transformation parameters). Recently, Baraniuk and
Wakin [2] provide an estimate ofM that is linear ind and
logarithmic inN, the number of pixels in the image. We re-
visit the main result from [2].

Theorem 1 Let T be a compact d-dimensional manifold in
R

N having volume V and condition number 1/τ . Fix 0< ε <
1 and 0 < ρ < 1. Let Z be a random orthoprojector from R

N

to R
M and

M ≥ O
(d log(NV τ−1) log(ρ−1)

ε2

)

. (8)

Suppose M < N. Then, with probability exceeding 1−ρ , the
following statement holds: For every pair of points x,y ∈ T ,

(1− ε)

√

M
N

≤
‖Zx−Zy‖2

‖x− y‖2
≤ (1+ ε)

√

M
N

. (9)

Roughly speaking, the theorem is proved by determining a
high-resolution sampling on the manifold and then applying
the Johnson-Lindenstrauss lemma [9] to the sampled points.
The above theorem implies thatM depends logarithmically
on other properties of the manifold, such as its volumeV
and condition number 1/τ. However, in practice it is hard to
know or to estimate these parameters, and therefore empiri-
cal algorithms are used for determiningM (see e.g., [3]).

3.2 Transformation estimation problem

We formulate the parameter estimation problem as follows1

η∗ = arg min
η=(b,α ,ω)

f (η), where

f (η) =
M

∑
i=1

|〈s(η),zi〉− 〈p,zi〉|. (10)

Recall thats(η) ∈ T denotes the transformation ofs sub-
ject toη = (b,α,ω). We assume that the patterns has been
approximated by a sparse expansion over the dictionaryD ,
see (3). When the atom parametersγk in this expansion are
fixed, the transformed patterns(η) in (7) provides a para-
metric pattern model with respect toη . Note that in the op-
timization problem (10), the query patternp is not expanded
but used in its original form.

The optimization problem (10) for determining the best
transformation parametersη∗ is typically nonlinear and non-
convex [10]. This makes it hard to solve using traditional
methods, such as steepest descent or Newton-type methods
due to their local convergence property and the presence of
an unknown number of local minima. However, it will be
shown in Section 4 that the above objective function is a dif-
ference of two convex (DC) functions. This allows us to for-
mulate the optimization problem as a DC program and solve
it globally by a cutting plane method [11, Thm 5.3].

4. DC DECOMPOSITION

The purpose of this section is to show that the objective func-
tion (10) is DC.

4.1 Properties of DC functions

We start with some definitions and basic properties about DC
functions [11, 12, 13]. LetX ⊆ R

n be convex. A functionf :
X → R is called DC onX if there exist two convex functions
g,h : X → R such that

f (x) = g(x)−h(x). (11)

A representation of this form is calledDC decomposition of
f . DC decompositions are clearly not unique; for any con-
vex functionc(x), the decompositionf (x) = (g(x)+ c(x))−

1Note that, in our formulationf (η) is based on the 1-norm distance and,
strictly speaking, Theorem 1 does not apply. However, by theequivalence
of norms in finite-dimensional spaces, a good match in the 1-norm yields a
good match in the 2-norm, to which Theorem 1 applies.
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(h(x)+ c(x)) is also DC. We will make use of the following
two properties.

Proposition 1 (Properties of DC functions [12, Sec 4.2])
Let f = g−h and fi = gi −hi, i = 1. . . ,m be DC functions.
Then the following functions are also DC:

(a) ∑m
i=1 λi fi =

[

∑{i:λi≥0} λigi − ∑{i:λi<0}λihi

]

−
[

∑{i:λi≥0} λihi −∑{i:λi<0}λigi

]

.

(b) | f | = 2max{g,h}− (g + h).

4.2 DC form of the objective function

We now combine Proposition 1 with our previous results [4]
to prove the main result of this paper.

Theorem 2 The objective function f in (10) is DC.

Proof: Recall that

f (η) =
M

∑
i=1

|〈s(η),zi〉− 〈p,zi〉|

=
M

∑
i=1

|
K

∑
k=1

ξk〈φηk ,zi〉− 〈p,zi〉|, (12)

whereηk = η ◦ γk. In [4] we have shown that (i) the trans-
formed generating functionsφηk are DC, (ii) the inner prod-
ucts〈φηk ,z〉 between the atoms and a fixed patternz are DC,
and (iii) the inner product〈s(η),z〉 = ∑K

k=1 ξk〈φηk ,z〉 is also
a DC function ofη .

In particular, each function〈s(η),zi〉 = ∑K
k=1 ξk〈φηk ,zi〉

corresponding to a measurement vectorzi, with 1≤ i ≤ M, is
DC. Note thatfi(η) := 〈s(η),zi〉− 〈p,zi〉 remains DC since
the second term is constant and does not depend onη . As-
sume now that the DC decomposition of each functionfi is
given by fi(η) = gi(η)−hi(η).

By Proposition 1(b), the absolute value of a DC function
is DC and hence

| fi(η)| = 2max{gi,hi}− (gi + hi) = g̃i(η)− h̃i(η).

is also DC. Finally, the objective function in (12) is DC since
it is simply a sum ofM DC functions:

f (η) =
M

∑
i=1

| fi(η)| =
M

∑
i=1

(g̃i(η)− h̃i(η))

=
M

∑
i=1

g̃i(η)

︸ ︷︷ ︸

g(η)

−
M

∑
i=1

h̃i(η)

︸ ︷︷ ︸

h(η)

.

�

Theorem 2 allows the application of DC programming
methods for finding the global minimizer off . However, a
closed form symbolic expression of the DC decomposition of
f would be both too inefficient and too complicated to obtain.
In contrast, the values ofg andh at a specific value ofη can
be obtained much more easily, by sequentially evaluating the
construction in the proof of Theorem 2. In fact, only one
of the two functions needs to be evaluated (for example, the
evaluation ofg yields the corresponding value ofh for free
and vice versa).

(a)

(b)

Figure 4: (a) Pattern warped with the exact transformation
ω∗ = 3π/2 andα∗ = 0.8. (b) Estimated transformationŝη
obtained withM ranging from 10 (leftmost) up to 50 (right-
most) random measurements.

4.3 DC programs

An optimization problem is called a DC program if it takes
the form

min
x

f (x) = g(x)−h(x), (13)

s.t. x ∈ X = {x ∈ R
n : δ (x) ≤ 0},

whereg,h : X → R are convex functions andδ : R
n → R is

a convex function. Assume that (13) is solvable and denote
its global minimum byω∗. The next proposition provides an
optimality condition for (13).

Proposition 2 ([11]) The point x∗ ∈ X is an optimal solution
to the DC problem (13) if and only if there exists t∗ ∈ R such
that

0 = inf{−h(x)+ t : x ∈ X , t ∈ R, g(x)− t ≤ g(x∗)− t∗}.
(14)

In this work, we have chosen to solve the DC Pro-
gram (13) by the outer approximation cutting plane algorithm
proposed in [11, Sec 5.3], for its simplicity and also due
to the fact that the parameter space in our problem is four-
dimensional. However, we should mention that our frame-
work could also be combined with other DC solvers such
as Branch-and-Bound schemes [11, Sec 5.1, Sec 5.2] and
DCA [14].

5. EXPERIMENTAL RESULTS

We use as patterns the handwritten digit image ’5’ shown
in Fig. 2. We build a pattern model ofs using OMP with
K = 20 Gaussian atoms. Observe that already a few atoms
are sufficient to capture the main geometric structure of the
pattern. In our experiments we considerη to be a synthesis
of an isotropic scalingα ∈ [0.5,1.5] and rotationω ∈ [0,2π).

We run 40 random experiments with random transforma-
tionsη and different random realizations of the measurement
matrix Z. Each query imageq is built with image warping
by applying the geometric transformation ons. Then, for
each random experiment, 200 iterations of the cutting plane
method are employed to aligns with q. We compute the rel-
ative error of the estimated transformationη̂ as follows

er =
|ω̂ −ω∗|

ω∗
+

|α̂ −α∗|

α∗
, (15)
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Figure 5: Statistics of the relative errorer with Rademacher
random measurements.
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Figure 6: Statistics of the relative errorer with Gaussian ran-
dom measurements.

whereη∗ is the exact transformation.
We consider two different choices of distribution for

building the measurement matricesZ; (i) the Rademacher
distribution i.e.,±1 with equal probability and (ii) standard
Gaussian distributionN (0,1). Figures 5 and 6 show the
statistics of the relative errorer (see eq. (15)) in boxplot no-
tation, with Rademacher and Gaussian distributions respec-
tively. For each value ofN we run 40 random experiments.
The boxes have lines at the lower quartile, median, and up-
per quartile values. The whiskers are lines extending from
each end of the boxes to show the extent of the rest of the
data. Outliers are data with values beyond the ends of the
whiskers and represented by crosses. Observe that 5 random
measurements are not enough in practice to lead to reliable
alignment of this image. Furthermore, the experimental re-
sults show that 15 or more measurements are sufficient to
enable the cutting plane method to reach the vicinity of the
exact transformation in the vast majority of cases.

6. CONCLUSIONS

We have proposed a globally optimal method for image
alignment with random measurements. We build on previous

work and use sparse geometric expansions to represent the
transformation manifold, which is spanned by transformed
version of a pattern. A few atoms are sufficient to capture
the main geometric structure of the pattern, which is further
used for alignment. We formulate the image alignment prob-
lem with random measurements as a DC program, by prov-
ing that the objective function is DC. The experimental re-
sults show that the proposed method is successful in finding
the global minimizer in practice, when sufficient number of
measurements are provided.
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