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ABSTRACT Euclidean Distance query pattern

We consider the problem of image alignment using random
measurements. More specifically, this paper is concerned
with estimating a transformation that aligns a given refer-

reference g

pattern Manifold Distance

ence image with a query image, assuming that not the im- s(n*)

ages themselves but only random measurements are avail- ;’;?j:rmed

able. According to the theory behind compressed sensing,

random projections of signal manifolds nearly preserve pai transformation 7~

manifold

wise Euclidean distances when the reduced space is suffi-
ciently large. This suggests that image alignment can be per

formed effectively based on a sufficient number of randonkigure 1: Manifold distance is the minimum distance from a

measurements. We build on our previous work in order tquery pointp to the transformation manifol& spanned by
show that the corresponding objective function can be dehe transformed versions ef

composed as the difference of two convex functions (DC).
Thus, the optimization problem becomes equivalentto a DC
program that can be solved by an outer-approximation cusuch measurements, which moreover provide a non expen-
ting plane method, which always converges to the globallgive way to get some minimal information about the images.
optimal solution. In this paper, we propose a new method for image align-
ment, which is able to estimate the globally optimal transfo
1. INTRODUCTION mation of the reference imagg given a sufficient number

The problem of image alignment is of paramountimportancé’f fa”dobm m_easufrements.. We rgpreseatfl e:jsparseoljlur;]-_
and enjoys numerous applications in various fields includ®ar combination of geometric primitives, called atoms,aini

ing pattern recognition, computer vision and medical imag re chosen from a parametric, possibly redundant dictjonar
analysis, to name just a few [1]. The comparison of two vi-| € Proposed framework also allows for a closed form rep-
sual patterns is generally only meaningful if they are aidjn resentation of the transformed image in terms of the trans-
first, so that their distance reflects their structural and geformation parameters. \We build on our previous work [4]
ometric differences. Image alignment consists in estimat‘:’lnd formulate the pattern alignment problem with random

ing the relative transformation between patterns. Thestran Mé@surements as a DC program by showing that the objec-

formed version of a pattern can be described as a point of ve function is DC, i.e., that it can be written asliference

(possibly nonlinear) manifold in a high dimensional space,?h convext;‘unctilonz D|Cbp|r|ogra(rjnsﬁar_e noln-tt):onve>|( PFOb_'eth
which is usually called théransformation manifold. The at galn € solve %0 ally an ?\ |(r:]|entfy yexp_gltlngltfe .
manifold distance (MD) is the minimum distance betweerﬁpec'a structure. Our approach therefore provides a-feasi

the query image and the manifold generated by the refer- le way to perform |mage_allgnment with random measure-
ence imags, see Figure 1. ments. In contrast, existing solutions [5, 6] are based on

At the same time, a theory of sparse signals has recent haustive search, which is computationally expensive and
emerged, often referred to as compressed sensing (CS). [oyldes no t_heoretlcal guarantee for the optimality of the
cording to this theory, a few random projections of a sparsé&ttained solution.. . .

(or nearly sparse) signal are sufficient to preserve itesali _ 1he rest of this paper is organized as follows. In Sec.
information. Moreover, in [2, 3] it is shown that random 2 we discuss the representation of transformation marsfold
projections of signal manifolds result into approximatelyUSing sparse geometric expansions and in Sec. 3 we formu-
isometric embeddings i.e., pairwise Euclidean distances a'at€ the problem of matching random measurements as an
nearly preserved in the reduced space. This framework aPtimization problem. We show in Sec. 4 that the objective
lows to work with random measurements of a signal rathefnctionis DC. Finally, experimental results are preseinie
than the full signal itself. In the context of image align- >®¢-

ment, we use CS to estimate the geometric transformation

of the reference image and, optionally, to reconstruct the 2. TRANSFORMATION MANIFOLDS AND

query image with the transformation compensated for. An RANDOM PROJECTIONS

advantage of using random measurements is reduced co
putational complexity. Moreover, in certain applications
might not have access to the full images (e.g., due to bandn the following, we explain the representation of a pat-
width, complexity or storage space constraints), but oaly t tern as a linear combination of geometric functions (usuall

D1 Visual pattern representation
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calledatoms), taken from a structured parametric and pos-The generating functio of 2 used in this paper is the

sibly redundant dictionar? = {¢,, y € I'} spanning the
input space. This representation typically allows to cegptu

the most prominent features of the pattern. The atoms in a
parametric dictionary are constructed by applying geometric
transformations to a generating mother function denoted b.

@. A geometric transformatiope I' can be represented by
the action of an operatd#(y) and therefore the parametric
dictionary takes the form

7={@=U(y)o, yel}. @y

A transformationy, applied to thaéth atom, is composed
of elementary transformations of the following three types
e Translation by by = [bix biy]". U(b;) moves the gen-
erating function across the image i.&l(b)@p(x,y) =
@(x— bix,y — biy).

e Rotation by w. U(w) rotates the generating func-
tion by anglew i.e., U(w)p(xy) = @(cogwm)x +
sin(c )y, cos( @ )y — sin(e)x).

e Anisotropic scaling by a = [aix ay] . U(a) scales the

generating function anisotropically in the two directions

le.U(a)o(xy) = 0(2, L),

Composing these transformations yields a transformatio
v = (bi,&,w) € ', a synthesis of translations, anisotropic
scalings and rotations. It can be observed that applying

transformation on the mother function is equivalent togran
forming the coordinate system frofx,y} to {X ¥} before
applyingg(-). In particular, when théh atom in the para-
metric dictionary (1) is built asg; = U (y)@(x,y), where
v = (bi,a,w) €T, it forms the same 2D function agX,y),

where
£ % 0 cosw  sinw X — bix
vy - 0 X —sinw  cosw y—biy
aiy
A R(aw) t
= AR(w)t. (2)

The approximation of a patteawith atoms from the dic-

Gaussian

P(x,y)

1
= Eexp(—(XZerz))- (4)
Figure 2 shows the progressive approximation of the digit '5

om a Gaussian dictionary using OMP. Observe that only a
few atoms are sulfficient to capture the main geometric char-
acteristics of the pattern and the representation (3) does n
need to be very accurate before it is useful for alignment pur
poses.

2.2 Transformation manifolds

In the following, we discuss geometric transformationdef t
the reference image In contrast to the previous section, we
restrict scalings to be isotropic, i.e., the geometricsfan
mationn takes the forrm = (b, a, w); that is, it consists of
a synthesis of translatidn= [by, by], isotropic scalingx and
rotationw. The manifoldZ of all such transformed images
can be expressed mathematically as

7 ={s(n)=U(n)s, n=(b,a,w)}. (5)

Although the manifold resides in a high-dimensional space,
'ﬁs intrinsic dimension is rather small and equal to the num-
er of transformation parameters, which is 4. Figure 3 shows
few samples from the transformation manifold of the digit
", when the transformation is a rotation.
All such transformationg) form a group, namely the
similitude group SIM(2) on the 2D plane. As in (2), we de-
note

cosw Sinw

—sinw cosw , Osw<2m,

R(w) = {

as the rotation matrix for the angte in the 2D plane. If
(b,a,w) and (b',a’, ') are two elements of the SIM(2)
group, then the group law [8] is

(b,a,w)o(b,a",w) = (b+aR(—w)b',aa’,w + w). (6)

Replacing the reference imageby its approximation (3),

tionary 2 can be obtained in different ways. Even if finding @PPlying the transformation results in

the sparsest approximation ®fs generally a hard problem,
effective sub-optimal solutions are usually sufficient &p-<

ture the salient and geometric structure of the pattern with

K K
s(n)=U()s= 3 &UM@ =3 &y (7
k=1 k=1

only a few atoms. In this work, we have chosen to use Or- _ N )
thogonal Matching Pursuit (OMP) [7, Sec. 9.5.3], which is awheren o ) is a composition of transformations. In words,
simple but yet effective algorithm for computing sparse apthe transformation is applied to each constituent atomindi

proximations in practice.

Initially, OMP chooses the residuah = s and then
proceeds iteratively by selecting in th@h step the
atom ¢, that best matches the residugl, i.e., yj =

vidually. Furthermore, the group law (6) can be employed to
determine the updated parameters of the transformed atoms.
Let us emphasize the importance of equation (7): it allows to
express the manifold equation (5) in closed form with respec

arg,cr max|(rj_1,,)|. Ateach step, it updates the residual to the transformation parameteys This is essential for the

by orthogonal projection on the span of the selected atom

(i.e.,rj = (I = P)rj_1, whereP is the orthogonal projector on
the spaf@y, ..., @, }). AfterK steps of OMP, the pattesis

approximated by a sparse linear combination of a few atoms

l.e.,

K
s~ Y &y 3)
k=1

%omputation of the manifold distance, and in particular for
the applicability of the DC programming methodology that
is proposed in the next section.

3. PROBLEM FORMULATION

In this paper, we are interested in estimating the transfierm

tion n* that matches best two visual patterns. As above, let

p denote the query pattern and the transformation man-

We propose the use of a dictionary of two-dimensionaifold described by equation (5). The main idea is to per-
atoms that capture the geometrical information in an imagdorm matching between their random projections instead of
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Figure 2: Progressive OMP approximation of the digit “5'fifieost) with 10, 20, 30, 40 and 50 Gaussian atoms (from left to

right).
EENUdESEREH

Figure 3: Samples from the transformation manifold of thgitdb”. From left to right, the samples correspond to ratati
angles from 0 to & with stepr/4.

the visual patterns themselves. Assume that we Navan- 3.2 Transfor mation estimation problem

dom projections of both the reference patteemd the qUery e formylate the parameter estimation problem as follows
patternp, obtained by computing inner products with the
sameM random signalg, ..., zu. In what follows, we pro- n*=arg min f(n), where

vide first some background material on random projections n=(b,a,w)

of manifolds and then we formulate the transformation esti- M

mation from random projections as an optimization problem. f(n)= Z| (s(n),z) —(p,z)|- (10)
i=

3.1 Random projections of manifolds _
Recall thats(n) € Z denotes the transformation efsub-

Suppose that we project the transformation manifold?ect ton = (b, a,w). We assume that the patteshas been
spanned by two distinct patterns dv random vectors gnproximated by a sparse expansion over the dictiofary
Z,....2u. In order to make sure tha’g the matching b_etweer&ee (3). When the atom parametgysn this expansion are
points in the reduced space is equivalent to matching COfixed, the transformed pattesin) in (7) provides a para-
responding points in the initial high-dimensional spabe, t metric pattern model with respect (o Note that in the op-
embedding should be (nearly) isometric i.e., pairwise EUgimization problem (10), the query pattepris not expanded
clidean distances should be (nearly) preserved. Onlysf thipy i used in its original form.

is the case then one can reliably performimage alignmentin e optimization problem (10) for determining the best
the reduc_ed space and_estlmate the unknown tran_sfo_rmathpansformation parametens is typically nonlinear and non-

_ What is a good choice d#? Recall thatl is the intrin-  onyex [10]. This makes it hard to solve using traditional
sic dimension of a manifold (in our case= 4, the nuM-  methods, such as steepest descent or Newton-type methods
ber of transformation parameters). Recently, Baraniuk anfe to their local convergence property and the presence of
Wakin [2] provide an estimate d¥l that is linear ind and 513 ynknown number of local minima. However, it will be
logarithmic inN, the number of pixels in the image. We re- shown in Section 4 that the above objective function is a dif-
visit the main result from [2]. ference of two convex (DC) functions. This allows us to for-
mulate the optimization problem as a DC program and solve

Theorem 1 Let .7 be a compact d-dimensional manifold in it globally by a cutting plane method [11, Thm 5.3].

RN having volumeV and condition number 1/7. Fix0 < € <

1and 0 < p < 1. Let Z be a random orthoprojector from RN
to RM and 4., DC DECOMPOSITION
dloa(NVT-1)] 1 The purpose of this section is to show that the objective-func
M > O( og( ng) og(p )). ®) tion (10) is DC.

4.1 Propertiesof DC functions

We start with some definitions and basic properties about DC
functions [11, 12, 13]. LeX C R" be convex. A functiorf :

M [zx—zy| M X — R is called DC orX if there exist two convex functions
(1—8)1/—§72§(1+e),/ﬁ. (9) g,h:X—Rsuchthat

IX=Yll2
| j . f(x) = g(x) ~h(x). (12)

Roughly speaking, the theorem is proved by determining a
high-resolution sampling on the manifold and then applyingA representation of this form is calldiC decomposition of
the Johnson-Lindenstrauss lemma [9] to the sampled point§. DC decompositions are clearly not unique; for any con-
The above theorem implies thit depends logarithmically vex functionc(x), the decompositioffi(x) = (g(x) + ¢(x)) —
on other properties of the manifold, such as its volwhe Note thar . atiorf(7)is based on the 1 dist §

it H H it ote that, In our Tormulationt (n ) 1s based on the 1-norm distance and,
and condition numberﬂr. However, in practice it is hard to .strictly speaking, Theorem 1 does not apply. However, byetngvalence
know or to estimate these parameters, and therefore empigt norms in finite-dimensional spaces, a good match in thertnryields a
cal algorithms are used for determinikb(see e.g., [3]). good match in the 2-norm, to which Theorem 1 applies.

Suppose M < N. Then, with probability exceeding 1 — p, the
following statement holds: For every pair of pointsx,y € .7,
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(h(x) +c(x)) is also DC. We will make use of the following
two properties.

Proposition 1 (Propertiesof DC functions[12, Sec 4.2])
Let f =g—hand fi=g—hj, i=1...,mbeDC functions.
Then the following functions are also DC:

@ yAfi = {Z{i:/\izo}/\igi - Z{i:/\i<0})\ihi} -

[Z{i')\ >0p Aihi = Y gy <0}/\igi} :
(b) [f|=2maxg,h} —(g+h).

4.2 DC form of the objective function

We now combine Proposition 1 with our previous results [4]F|gur

to prove the main result of this paper.
Theorem 2 The objective function f in (10) isDC.

Proof: Recall that

f(n)

(p.z)|

M

_;|<s<n> z) -
MoK

_ZI > Sklnez) —(
i=1 k=1

whereny = n o k. In [4] we have shown that (i) the trans-
formed generating functiong,, are DC, (ii) the inner prod-
ucts(¢,,2) between the atoms and a fixed patteare DC,
and (jii) the inner products(n),z) = SK_; &(@,,2) is also
a DC function ofr.

In particular, each functioris(n),z) = SK_ 18k(Py, Z)
corresponding to a measurement veamwnh 1<i<M,is
DC. Note thatfi(n) := (s(n),z) — (p,z) remains DC since
the second term is constant and does not depengl oks-
sume now that the DC decomposition of each funcfiois

given byfi(n) =gai(n) —hi(n).

P,z)|, (12)

By Proposition 1(b), the absolute value of a DC function

is DC and hence
|fi(n)] = 2max{g;, hi} — (g + ) =Gi(n) —hi(n).

is also DC. Finally, the objective function in (12) is DC sinc
it is simply a sum oMM DC functions:

f(n)

O
Theorem 2 allows the application of DC programming
methods for finding the global minimizer ¢f However, a

closed form symbolic expression of the DC decomposition o

f would be both too inefficient and too complicated to obtain,
In contrast, the values @fandh at a specific value aff can

be obtained much more easily, by sequentially evaluatiag th

construction in the proof of Theorem 2. In fact, only one

of the two functions needs to be evaluated (for example, the

evaluation ofg yields the corresponding value bffor free
and vice versa).

I

Arl-]-]-

e 4: (a) Pattern warped with the exact transformation
3m/2 anda* = 0.8. (b) Estimated transformationis
obtamed withM ranging from 10 (leftmost) up to 50 (right-
most) random measurements.

4.3 DC programs

An optimization problem is called a DC program if it takes
the form

£(x) = g(x) — h(x),
xeX={xeR":d(x)
whereg,h: X — R are convex functions and: R" — R is

a convex function. Assume that (13) is solvable and denote

its global minimum byw*. The next proposition provides an
optimality condition for (13).

min (13)

s.t. <0},

Proposition 2 ([11]) Thepoint x* € X isan optimal solution
to the DC problem (13) if and only if there existst* € R such
that

=inf{—h(x) +t

i xeX, teR, gx)—t < g(x*)—t*}.

(14)

In this work, we have chosen to solve the DC Pro-
gram (13) by the outer approximation cutting plane algaonith
proposed in [11, Sec 5.3], for its simplicity and also due
to the fact that the parameter space in our problem is four-
dimensional. However, we should mention that our frame-
work could also be combined with other DC solvers such
as Branch-and-Bound schemes [11, Sec 5.1, Sec 5.2] and
DCA [14].

5. EXPERIMENTAL RESULTS

We use as patterathe handwritten digit image '5’ shown
in Fig. 2. We build a pattern model afusing OMP with
K = 20 Gaussian atoms. Observe that already a few atoms
are sufficient to capture the main geometric structure of the
pattern. In our experiments we consideto be a synthesis
of an isotropic scalingr € [0.5,1.5] and rotatiorw € [0, 21).
We run 40 random experiments with random transforma-

ionsn and different random realizations of the measurement

atrix Z. Each query imageq is built with image warping
by applying the geometric transformation en Then, for
each random experiment, 200 iterations of the cutting plane
method are employed to aligrwith g. We compute the rel-
ative error of the estimated transformatigras follows

|©— |
= o +

& —a|
a*

(15)
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work and use sparse geometric expansions to represent the
transformation manifold, which is spanned by transformed
o5l T + ] version of a pattern. A few atoms are sufficient to capture
LT the main geometric structure of the pattern, which is furthe

1 used for alignment. We formulate the image alignment prob-
lem with random measurements as a DC program, by prov-
ing that the objective function is DC. The experimental re-
sults show that the proposed method is successful in finding
the global minimizer in practice, when sufficient number of
measurements are provided.
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