17th European Signal Processing Conference (EUSIPCO 2009)

Glasgow, Scotland, August 24-28, 2009

MINIMUM REDUNDANCY MULTICARRIER AND SINGLE-CARRIER
SYSTEMS BASED ON HARTLEY TRANSFORMS

Wallace A. Martins and Paulo S. R. Diniz

LPS — Signal Processing Laboratory
COPPE/DEL-Poli/Federal University of Rio de Janeiro
P.O. Box 68504, Rio de Janeiro, RJ, 21941-972, Brazil
Email: {wallace,diniz}@Ilps.ufrj.br

ABSTRACT

Four efficient block-based transceivers exploiting the dis-
placement structure approach are proposed. In terms of
computational burden, the resulting systems are asymptot-
ically as simple as orthogonal frequency-division multiplex
(OFDM) and single-carrier with frequency-domain (SC-FD)
equalization transceivers. Even though the effective chan-
nel impulse response must be symmetric, the novel schemes
are appealing since they only use discrete Hartley transforms
(DHTSs) and diagonal matrices in their structures, which re-
sults in numerically efficient algorithms for the equalization
process. The key feature of the proposed transceivers is their
higher throughput, since they require only half the num-
ber of symbols of redundancy in comparison to the standard
OFDM and SC-FD systems.

1. INTRODUCTION

OFDM and SC-FD are the simplest and most widely used
implementations of fixed and memoryless multicarrier and
single-carrier transceivers. The standard design of these sys-
tems requires, at least, L elements for redundancy, where
L stands for the channel order. The redundancy eliminates
the inherent interblock interference (IBI), which is part of all
block-based transceivers, and turns the channel matrix cir-
culant. This property allows the use of superfast' algorithms
for designing intersymbol-interference-free (ISI-free) or zero-
forcing (ZF), and minimum mean squared error (MMSE)
equalizers, by means of the spectral decomposition of the
circulant channel matrix using the discrete Fourier trans-
form (DFT) [1]. Other alternative real-valued transforms
may also be successfully employed by inducing a Toeplitz—
plus—Hankel structure in the effective channel matrix [2].

The role of redundancy in quite general transceivers was
extensively studied in [1], [3], [4], and [5]. When dealing
with block-based or memoryless® systems it was shown in [4]
that the minimum required redundancy for IBI-free designs
is [L/2]. However, the solution relies on inversion of matri-
ces, which in general requires (’)(nS) operations.

So far, the only effective and practical solutions employ-
ing minimum redundancy were proposed in [6]. The referred
solutions require O(nlogn) computations for equalization
since they are based on standard DFT and diagonal matri-
ces. This paper complements those recent results by solving
the problem of designing fixed and memoryless transceivers
with minimum redundancy for frequency-selective channels,
utilizing DHT's and diagonal matrices.

When compared to OFDM and SC-FD, the proposed
multicarrier and single-carrier transceivers have comparable
computational complexity for the equalization process, i.e.,
O(nlogn), and substantially higher throughput for chan-
nels with long impulse responses due to their minimum re-
quired redundancy. However, as a drawback of the pro-
posed transceivers, the finite impulse response (FIR) filter

IThat is, it requires O(nlog?n) operations, for d < 3 [7].
2We do not distinguish between these terms as done in [4].
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that models the effective channel is constrained to be sym-
metric.

In order to achieve our goals, this paper discusses the
properties of structured matrices [7], [8] required to de-
rive superfast transceivers with minimum redundancy. The
Sylvester and Stein displacements [7] are utilized to exploit
the structural properties of channel matrix representations.
By using adequate displacement properties it is possible to
conceive DHT-based representations of Bezoutians [8], which
are the key to reach solutions for block-based transceivers
requiring minimum redundancy. Some structured matrix
properties are presented in the paper, where those directly
available from the literature include no proof, whereas those
adapted or modified are presented along with their proofs.

2. SYSTEM MODEL

Assume that we transmit a vector s € CM*!, with M € N,
through an (L + 1)-tap channel whose discrete-time block
model is given by the pseudo-circulant matrix H(z) =
Hisi(z) + zilHIBI(z) [4]. It is possible to eliminate the
IBI caused by the matrix Hipi(z) € CV*V where N =
M + K € N, by using at least K > L/2 elements for redun-
dancy [4]. This can be achieved by the following transmitter
and receiver matrices, respectively [4]: F = [F{
with Fo € CM*™ and G = [Oupy(r-x) Gol, with Go €

CM*(M+2K-L) Thys, the transfer matrix of this transceiver
model is given by T(z) = GH(2)F = GoHoFo = T, in
which Hj is a Toeplitz matrix, whose ijth coefficient is given
by h(K + ¢ — j),Vi,j € M = {0,1,--- ,M — 1} such that
0< K+i—j<L,and otherwise h(K +i—j) = 0. We will
assume that Hy is already symmetric, that is K = L/2 (even
order) and h(K +i—j) = h(K +j—1).> Notice that we con-
sidered the special case where the noise v is null, motivated
by the design of ZF systems [4].

The aim of this work is to design the matrices F(y and
Go by using only DHTs and diagonal matrices. The fol-
lowing definitions for the orthogonal DHTs and the unitary
DFTs [8] are employed in this work.

OMxK]T7

Definition 1. Given 6i(i,j) = 2ijn/M, 611(3,5) = i(2j +
V)w/M, 6i(i, j) = (2i+1)jm /M, and 6rv (3, j) = (2i+1)(25+
)w/2M, for (i,5) € M?, we define the orthogonal DHT-
X matrix as [Hx]i; = (sin[fx(i,7)] + cos[fx(i,4)])/VM,
and the unitary DFT-X matrix as [Wx]:; = (sin[0x (¢, 5)] —
gcos[0x (i,5)]) /v M, where X € {I,II,TI1,TV} and 5*> = —1.

3. DISPLACEMENT STRUCTURE

There are ways to measure the degree of structure of a
matrix, such as through the displacement operator. Defi-

3When L is not even, we can consider the channel model zero
padded with one zero in order to achieve an even order. Besides,
the symmetric channel can be approximated by using a front-end
prefilter [9], [2].



nition 2 contains a formal statement about displacement op-
erators [7].

Definition 2. For A,B,C € CM*M  the operators
Vas,Aap : CMXM _, CMXM | defined by Va,g(C) =
AC — CB and Aa B(C) = C — ACB, are the displacement
linear operator of Sylvester and Stein types, respectively.

The rank of the resulting matrices Va,g(C) and
Aa B(C) are the so-called displacement ranks. It is very
important to choose correctly the operator matrices A and
B in order to obtain a relatively small displacement rank.
The most common operator matrices are the A-circulant
matrix Zx = [e2 --- eym Aer] and the diagonal matrix
D, = diag{v}, where A € C, e, is a vector having its
mth element equal to 1 and all others equal to 0, and
v=I[wvuv - vm-1]", with vM = v e C,Ym € M. Note
that Z3' = Z7,,,Vx € C\ {0} [7].

The proposed design for block-based transceivers relies
on the displacement rank approach, which is characterized
by the following key features [7]: (i) Compression: the dis-
placement rank of a structured matrix C must be small com-
pared to the dimension of C. In this case, the displacement
can be compressed by using the so-called displacement gen-
erator for the matrix C. The displacement generator, given
by the pair (P, Q), has the following characteristic: by con-
sidering that we are dealing with a Sylvester operator, be-
ing R its rank, we have that Vas(C) = 3%  p.qf =
PQ”, where P = [p1 ---pr] € CM*® and Q =
a1 -+ qr] € CM*F, with p, = [por p1r -+ P(ur—1)r]" and
ar = [gor q1r - qu—1), )7, Vr € {1, -+, R}; (ii) Opera-
tion: once compressed, operations with structured matrices
can be performed much faster by using their displacements;
and (4i7) Decompression: after the operation stage, the orig-
inal matrices can be recovered through decompression from
their displacement.

The first important result employing displacement oper-
ators is the equivalence of the Sylvester and Stein displace-
ments when at least one of the two operator matrices, A or
B, is non-singular [7].

Proposition 1. If the operator matriz B is invertible, then
Vas(C)=—-A,5-1(C)B.

The second result relates a Sylvester displacement of a
matrix with a Sylvester displacement of its inverse [7]. This
result shows that the compression of the inverse of a ma-
trix can be achieved through operation on the compressed
representation of the original matrix.

Proposition 2. For an invertible matrizc C € CM*M e

have that V,a(C™!) = —~C7'V A 5(C)C™!, where A,B €
CM*M_

Propositions 3 and 4 describe how traditional operations,
such as linear combinations and products of matrices, trans-
form the displacement generators of the original matrices [7].

Proposition 3. For a € C, Vas(C) = PQ7Y, and
Vags(D) =P'Q7, we have that Va B(C +aD) = PQ”,
where P=[P oP'] and Q =[Q Q'].

Proposition 4. For Vas(C) = PQT and Ve p(E) =
P'Q", we have that Vap(CE) = PQT, where P =
[P CP'land Q=[E"Q Q']

Now, it is possible to apply the displacement operators
on Toeplitz matrices in order to verify if they can be com-
pressed. Consider the Sylvester operator Vz, z. applied to a
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symmetric Toeplitz matrix T = (t‘i,ﬂ)%;}), with £,7 € R:
Vz,.z:(T) Z,T — TZ

= el [ntm-1-t nt1 —tp—1 nto]
~—~

P1 q’{
T

+ [0 tam—1 — &l t1 —Etp—1]” el
~—
P2 Qg

L AT o AT ... [&T 57T
= D147 +P2Gs = [D1 D2] {QIT} =PQ". (1)

2

Hence, it is obvious that a symmetric Toeplitz matriz can
be compressed, when M > R = 2.

Proposition 5 contains an important result: the relation-
ship between the displacement generators of a Toeplitz ma-
trix and its inverse [6]. The inverse of a Toeplitz matrix is
called a T-Bezoutian matriz [8].

Proposition 5. For a invertible Toeplitz matriz T € CM*M
such that its displacement generator pair related to the
Sylvester displacement operator Vaz, z., with §,n € C, is

given by (157Q), we have that the displacement generator
pair (P, Q) related to the Sylvester displacement operator

Vz,,z, applied to the T-Bezoutian B = T-! is given by
(-BP,B"Q).

4. DHT REPRESENTATION OF BEZOUTIANS

In this section, we develop the mathematical background
required for deriving the main contribution of this work re-
lated to the design of practical block-based transceivers with
minimum redundancy. Inspired by traditional ZF-OFDM
and ZF-SC-FD systems that decompose inverses of circu-
lant matrices by using DFT, IDFT, and diagonal matri-
ces, we now describe some results related to the decompo-
sition of a Bezoutian matriz by using DHTs and diagonal
matrices. A matrix C € CM*M is a Bezoutian matrix if
R =rank{Vz, z,(C)} < M [6]. Notice that a T-Bezoutian
matrix has rank two.

Proposition 6 is our first contribution. It is based on a
similar result of [8]. Unlike the polynomial approach adopted
in [8], we use a matrix approach based on the Sylvester and
Stein displacement operators. Our approach allows us to de-
rive transformations without requiring extension with zeros
of the involved matrices as in [8]. This eventually allows us
to design multicarrier transceivers (see Section 5), which is
not possible by using the same formulation presented in [§].

Proposition 6. Given a centro-symmetric matriz C €
(CMXM, i.e., C=JCJ, with J = [em em—1 ez e1],
and given that Vz,z_,(C) = PQT, where (P,Q)
CM*f o cM*® and R_€ N, then HuCHiy = C
is such that Ap,p_,(C) = PQT, with (P,Q) =

(—gWuP, WivZ_1Q). Furthermore, C can be expressed as
[Clij = (-WiP)(WnZ-1Q)"];;/2sin (W)

m

Proof. See the appendix. O

Proposition 7 is our second contribution. It is also based
on a similar result of [8]. However, our approach allows us
to work with complex matrices, which is not possible in [8].

Proposition 7. Given (P,Q) € CM*F x CMXE  yith
R € N, we have that —WP = Hi(—P+ +_jP,) =
P and WmiZ-1Q = Hm(—1Q+ + Q=) = Q, where
P. = (P+JP)/2 Qi = (Z.1Q + J'Z_,Q)/2, J' =
[e1 em es e2], andJ' =[—e1 en es ez].

Proof. See the appendix. O
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Figure 1: Single-carrier minimum redundancy block transceiver: ZF-SC-MRBT.

Proposition 8 is a result taken from [8] that is required
to prove the main mathematical contribution of this work,
Theorem 1. Once again, Theorem 1 is based on a similar
result of [8], but only with our solution it is possible to design
multicarrier transceivers for complex channel models.

Proposition 8. The Hartley
Hiv obey the following relationship:

1/M sin (7(2i+2j+1)”) .

transforms Hn and
HuHwvl]i; =

2M

Theorem 1. Given C as in Proposition 6 and (P, Q) as in
Proposition 7, it follows that:

R
M
C= 77‘(111 <Z Df)THIIHIVDc‘lT> Hrv, (2)

r=1

where Pr is the rth column vector of P and §, is the rth
column vector of Q.

Proof. See the appendix. |

5. DESIGN OF SUPERFAST TRANSCEIVERS
5.1 ZF Solution
5.1.1 Single-Carrier System

As in SC-FD, let us define Fy = I, in such a way that we
must have Gg = Hal in order to achieve the ZF solution.
Of course, this ISI-free solution can only be implemented if
H, is square and invertible.

Since Hy! = JH; 'J is a centro-symmetric T-Bezoutian,
we can apply Theorem 1, in such a way that

2
_ M
Go = H, 1_ 77‘{111 < E D;_)THIIHIVDE{T> Hiv, (3)
r=1

where p,, G- can be easily found from p,, q, by using Propo-
sitions 7 and 5. The generator vectors p.,q, can be deter-
mined by using eq. (1), with £ =1, n = —1, and, Vm € M,
tm = h(L/2 £ m), for 0 < m < L/2, otherwise ¢, = 0.

Figure 1 depicts the resulting single-carrier transceiver
structure. In this transceiver, the guard period consists of
L/2 zeros. The prefilter turns the channel symmetric [9].
After removing the guard period, the DHT-IV is applied
to the received vector. The first equalization step on the
data vector is performed, that is, the resulting data vector
is simultaneously processed by two different branches of the
transceiver. The 1-tap equalizers in this stage are the ele-
ments of the vectors @i and @z. A final equalization step is
performed in each branch, after the application of the DHT-
IV and DHT-II. The 1-tap equalizers in this stage are the
elements of the vectors p1 and pa.
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5.1.2 Multicarrier System

Similarly, it is also possible to design the ZF solution for
a multicarrier minimum redundancy block transceiver (ZF-
MC-MRBT). This system is characterized by the following

matrices: Fo = M1 and Go = ’HEIH(?I , that is:

2
M
Go = - <Z DI‘)THIIHIVD(‘1T> Hiv. (4)

r=1

5.2 MMSE Solution

5.2.1 Single-Carrier System

Given the equivalent model y = Hou + v, with u = Fgs,
the linear MMSE solution Kumse € CY** is given by
Kuvse = Hp [HOH(*) + (03/05)1}71 = JKmumseJ (centro-
symmetric), where we considered that the transmitted sym-

bols and the noise are i.i.d., drawn from white zero-mean

stochastic processes, and mutually independent. Besides, it

was considered that E[ss*] = o2 and E[vv*] = 2.

Consider that Vz,, z.(Ho) = PQ" and Vg, z,(Hp) =
P'Q/, for (p,&,m) € C* and n # 0. Now, by applying
Proposition 4, we have that Vz,, .z, (HoHp) = PQT, with
P=[P HoP']and Q= [H;Q Q]

Define A = HoH;, + (02/02)I. Thus, by supposing that
Vz,,,.z,(I) = pa” and employing Proposition 3, we ob-
tain: Vzl/mzp(A) = PQ7, with P = [f’ (62/c2)p]

and Q = [Q §]. In addition, from Proposition 2, we
have Vz,z,, (A7) = P'Q”", with P/ = ~A~'P and
G-a"7Q

Thus, by again applying Proposition 4, we obtain

Vze,z,, Kuuse) = PQT, with P = [P/

Q=[AT"Q Q1.
Hence, the displacement generator of the MMSE solution
is given by the pair

H;P’] and

2
- ~ ~ g
P = [P’ — KumseP ' — KumseHoP? — %KMMSEﬁ}
95 MxT7
Q = [ATTQ KiusQ ATTQ ATTE] MXT"

By applying the matrix inversion lemma, it is possible to
show that PQT can be expressed as
2 2

) =1 15,3 T A — 5 A I B -
—Z (A") P AT - Knumse PQT Kvvse — U—;KMMSEPQTA L

s

Q



A more compact definition for P and Q is:

2 2
o - - o .
[% (AH7'P’ —KuymseP  — %KMMSEP:| (5)
95 95 M x5

[AiTQ, K{/IMSEQ AiT(ﬂ MXx5 " (6)

Hence, by using the result in Theorem 1 and by consid-
ering that (p,&,n) = (0,1, —1), we have that

M 5
KwvuMse = THIII <Z D;‘)T'HH'HIVDQT> Hiv. (7)

r=1

The displacement generator pairs (P,Q), (P, Q) e
CM*2 5 CM*2 are easily found by using eq. (1). Moreover,
p=[10 0]" and =10 0 —2]7.

Thus, in the single-carrier transmission, we can define
Fo = I]u and

5
M
Go = 77‘(111 (; D;‘;THIIHIVDQT> Hrv (8)

in order to achieve the linear MMSE solution.

Note that the equalization process of the MMSE-SC-
MRBT requires almost the same processing time of the ZF
solution, since the structures of the receivers are very similar.
It is also possible to take advantage of the inherent parallel
structures (the MMSE entails five parallel branches instead
of only two. See Figure 1).

5.2.2 Multicarrier System

In the multicarrier transmission (MMSE-MC-MRBT), we
can define Fg = Hir and

5
M
Gy = > <Z Df)THIIHIVDC_lr> Hiv. ()

r=1

6. SIMULATION EXPERIMENTS

In this section, we present two simulation examples in order
to compare the performance of our proposed designs against
the standard OFDM and SC-FD systems.

Ezample 1 (Symmetric Random Rayleigh Channel). In this
example, it is transmitted 100 blocks, each one containing
M = 32 BPSK data symbols (without taking redundancy
into account), and it is computed the throughput by us-
ing a Monte-Carlo averaging process with 1000 simulations.
These symbols are sampled at a frequency f, = 1.0 MHz
and they are transmitted through a channel with a model
operating at the same frequency as the symbols and with
impulse response of order L = 8. Both the imaginary and
real parts of the channel are independently drawn from a
white and Gaussian process. Besides, the channels are al-
ready considered symmetric. The throughput performance
of the proposed transceivers is much better than the tra-
ditional ones, as illustrates Figure 2. Such favorable result
originates from the choices for M and L (delay constrained
applications in quite dispersive environments). These types
of applications are suitable for the proposed transceivers. In
the cases where M > L, the traditional OFDM and SC-FD
solutions are more adequate.

Ezample 2 (ADSL Shortened Channel). In this example, it
was transmitted 1000 blocks, each one containing M = 256
QPSK data symbols (without taking redundancy into ac-
count), and we compute the resulting BER for such transmis-
sion. The symbols are also sampled at a frequency fs = 1.0
MHz and they are transmitted through an ADSL channel*
whose model operates at the same frequency. This channel is
represented by the FIR approximation with 93 coefficients of
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Figure 3: BER x SNR for an ADSL channel.

the transfer function H(z) = (0.1272 - 0.1)/(z72 — 1.5z +
0.54) [10].

Considering delay constrained applications with very dis-
persive environment, it is mandatory for OFDM and SC-FD
systems to employ a front-end prefilter in order to shorten
the channel [9], [2]. Thus, in order to have a fair compar-
ison in terms of throughput, we designed a shortening FIR
filter of order 64, considering the SNR fixed at 30 dB for the
design of this filter. The length of the TIR (target impulse
response) was set to L/2 4+ 1 = 47, in such a way that the
amount of redundancy for both the traditional and the pro-
posed systems was L/2. On the other hand, the length of
the TIR for the proposed systems was set the same of the
channel length L 4+ 1 = 93, but with symmetry constraint®.
Figure 3 depicts a BER curve for all the systems, considering
the existence of the prefilter. It is possible to observe that
the proposed transceivers outperform their related pairs for
both ZF and MMSE designs.

7. CONCLUDING REMARKS

In this paper we proposed transceivers with minimum re-
dundancy for block data transmission. The ZF and MMSE
solutions employ only DHTs and diagonal matrices. This
feature makes the new transceivers computationally efficient.
Our approach relied on the properties of structured matri-
ces using the concepts of Sylvester and Stein displacements.

4In practice, an ADSL system applies bit and power loading to
the subchannels, rather than transmitting equal power signals on
every subchannel as done here. But, the problem of power loading
when using the proposed transceivers has not been addressed and
appears to be more complex than in the traditional DMT schemes,
since the effective channel matrix is not diagonalized.

5Additional details about the degrees of freedom required by
the front-end prefilter in order to shorten the channel and to make
it symmetric can be found in [9], [2].



These concepts aimed at exploiting the structural properties
of typical channel matrix representations. It was derived new
DHT-based representations of centro-symmetric Bezoutians,
which were the key tools to reach the proposed solutions for
the multicarrier and single-carrier systems. A possible fu-
ture work is to verify if the channel capacity can be achieved
as the number of subcarries increases (with ideal Gaussian
codes). This is a desirable feature inherent to OFDM-based
schemes.
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APPENDIX

Before demonstrating Proposition 6, it will be helpful to
state some results, as follows:

Lemma 1. The four DFT matrices obey the follow-
ing identities: Zn = WHED1W; = WHD: Wy and
Z_, = WD Wi = WED_ Wiy, where Dy =
diag{va'}}%;Ol contains all the Mth unit roots, and D_1 =

diag {va'} exp (7]%) }if:_g contains all the Mth roots of

—1, with Wy = exp(—ji—}“).

Proof. First, consider that j € M \ {M — 1}. Thus,
[DlWI]ij = W;JW;;[ = sz»gﬁ_l) = [Wl]z’(ﬁrl) = [WIZl]ij‘

Second, consider that j =M-1 In this case, we have
[DlWI]i(M—l) = WJZMWJZ»;M_I) = széw =1=[Wi, =
[W1Z1];(5;_1)- The other three identities can be analogously
proved. |

As discussed in [8], it is possible to verify that
Wi = diag{exp(—gma /MM JW; and Wi =
diag{exp(—s(2m + 1)7/2M)}MZ Wi In addition,
Lemma 2 holds [8].

Lemma 2. Given that C € CM*M s g centro-symmetric
matriz, we have that HiiCHiv = yWnnCWry.

Proof of Proposition 6. By applying the results of
Lemma 1, Lemma 2, Proposition 1, and the fact

that Z}' = ZIT/MV)\ € C\ {0}, we have that the
Stein displacement Ap,,p_, applied to C is given
by Ap,p_,(HuCHiv) = Ap,p_,(WnuCWr) =
JWnCWiy — (WuZiWii ) jWuCW)(WiyZE, W) =
JWu(C — Z1CZL, )Wy = jWnlg zr (C)Wiv =
—gWqul,z,l(C)ZTle = (—jWIIP)(WI\/Z_lQ)T.
Thus, by using this fact, it is straightforward to verify that

[(—gWuP)(WivZ_1Q)"];

Cl; = (1,5]%) (10)
IRy WuP)(WivZ_1Q)"]iye’ 201 (11)
= T ENCIE RS \

el M —e’ 2M
_ [(EWiP)(WmZ1Q)")i; (12)
= (2i42j4+ D
2sin (#)
O

Now, we state some useful equalities related to Proposi-
tion 7. A vector v is even if J'v = v, it is odd if J'v = —v,
it is quasi-even if J’v = v, and it is quasi-odd if J'v = —v.
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The definitions of quasi-even and quasi-odd were necessary
in order to correct a slip in the following lemma stated in [8].
The authors of the referred paper did not distinguish between
quasi-even/odd and even/odd vectors.

Lemma 3. Given an even vector v. € (CMXI, an odd vec-
tor v, € CM*1 4 quasi-even vector vge € CM*1, and a
quasi-odd vector Vg, € CM*L we have that Wive = Hive,
Wiv, = —jHivoe, Wiivgee = —JHuwge, and Winvge =
Hinvgo-

Proof of Proposition 7. Since P+ = (P + J'P)/2 and
Q. = (Z-1Q £ J"Z_1Q)/2, then each column vector of
P is an even vector, whereas each column vector of Qy is
a quasi-even vector. In addition, those columns of P_ and
Q- are odd and quasi-odd vectors, respectively. By apply-
ing Lemma 3, we have that —-WiP = —HP, + yHP_ =
Hi(—P4+ + yP_) = P and Wiz 1Q = —HuQ+ +
HimQ- = Him(—1Q+ + Q-) = Q. O

Proof of Theorem 1. Considering that P = [p1 --- Dr]

and Q = [qQ1 dr], then, based on Propositions 6, 7,
and 8, we have that:
M-1
- PQ",;
c = [ (ifjil) 13)
QSin( C 2]{1 7r) o
1,7=0
_ ME
¢ = = > Ds, HuHivDg,, (14)
r=1

leading to the required result using the fact that Hy = M.
O
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