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ABSTRACT
We study the problem of model fitting in the framework of
nested probabilistic families. Our criteria are: (i) sparsity of
the identified representation, (ii) its ability to fit the (finite
length) data set available. As we show in this paper, current
methodologies, often taking the form of penalized versions
of the data likelihood, cannot simultaneously satisfy these re-
quirements, as the examples presented clearly demonstrate.
On the contrary, maximization of the Bayesian model pos-
terior, even without assumption of a complexity penalizing
prior, is able to select models with appropriate complexity,
enabling sound determination of its parameters in a second
step.

1. INTRODUCTION

1.1 Problem formulation
In many situations of interest the ultimate goal is to identify
one simple model that “correctly” describes the structure of
the observed data Z. One can then discard the original data
using the identified model as a proxy for it. This is different
from denoising-like problems, where we are not interested in
learning the data structure, but rather to “clean it”.
Generally speaking, the complexity of a model is a measure
of the information needed to specify it. A convenient way
of adjusting the model complexity to the data complexity is
to consider a set M of candidate models that is the union of
nested families of parametric models Mk:

M =
∪

k∈K

Mk ; K = {kmin · · ·kmax} (1)

Mk = {p(·|θ), θ ∈ Θk} ⊂ Mk+1 . (2)

The integer k indexing each family of models Mk is directly
related to their complexity: if k′ > k, the complexity of mod-
els in Mk′ is higher than the complexity of those in Mk. The
overall parameter space Θ of M is simply

Θ =
∪

k∈K

Θk . (3)

To make the problem stated above tractable, we need to spec-
ify what “correctly” means, i.e., to define the criterion that
the selected model p̂ = p(·|θ̂k̂) must optimize. Two common
choices for parameter estimation are Maximum Likelihood
(ML) and Bayesian. It is well known that ML is inconsis-
tent for models with this structure, systematically preferring
the most complex models. Bayesian approaches regularize
the identification problem through the definition of a prior

over Θ, and optimize the expected value of some functional
of the estimation error under the posterior distribution over
Θ. Set (3) no longer has the structure of a vector space, even
when each Θk is a vector space. Definition of distributions
which are the basic entities manipulated by Bayesian tech-
niques (e.g. prior or posterior distributions) must be done
with care. When parametric probabilistic families over each
Θk are known, as we assume her, an intuitive way is to use a
mixture-like approach, writing densities over Θ as

p(θ) = ∑
k∈K

pk(θ), θ ∈ Θ , (4)

where each pk(θ) is the Radon-Nikodym derivative of an un-
normalized measure with respect to (w.r.t) the invariant mea-
sure over Θk: if θ /∈ Θk then pk(θ) = 0, and

1 ≥
∫

Θk

pk(θ)dθ ≡ Pr(Mk) .

A proper density νk(θ) over Θk is obtained by normalization:

νk(θ) , pk(θ)∫
Θk

pk(θ)dθ
≡ p(θ |Mk) ,θ ∈ Θk ,

where we stressed the meaning of νk as resulting from condi-
tioning on θ ∈ Θk. Note that these “local” densities (as their
un-normalized versions) are defined w.r.t distinct reference
measures, the invariant measures, over each Θk and are thus
not directly comparable.

1.2 Background
To correct the overfitting behavior of ML, many authors pro-
posed the addition of corrective terms that favor selection of
models using less parameters:

θ̂PL = argmax
k,θ

p(Z|θ)+P(k) , (5)

where P(k) is a decreasing function of k. These techniques
are generally known by the name of “penalized likelihood”
methods, and have received three distinct justifications. (i)
They are sometimes dictated by the desire to impose some
regularity characteristics on the solution, requiring in this
case prior knowledge on its characteristics which is not
necessarily available. (ii) They have also been justified as
particular cases of MAP (Maximum a Posteriori) estimation
for special selections of the prior p(θ), e.g. in [2, 4].
We will see below that there is a fundamental flaw in this
approach. (iii) More generically, they are derived from
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asymptotic arguments which relate them to the models’
Bayesian marginal posterior [9] Pr(Mk|Z) – this is the case
for AIC (Akaike Information Criterion), BIC (Bayesian
Information Criterion) and MDL (Minimum Description
Length) – [13, 12], and thus cannot offer any guarantee for
finite data sets.

As we see, generic justifications of penalized likelihood
link it to Bayesian estimates: either to the model posterior
p(θ |Z) or to the marginal model posteriors Pr(Mk|Z). Let us
concentrate first on Bayesian estimates for θ . The two most
popular Bayesian criteria are the MMSE (Minimum Mean
Square Error) and the MAP (Maximum A Posteriori). For
the union-type models like (1)-(2)-(3), the MMSE criterion is
meaningless, the associated cost function (θ − θ̂(Z))2 being
undefined when θ ∈ Θk and θ̂(Z) ∈ Θk′ with k 6= k′. On
the contrary, the 0/1 cost function of the MAP criterion is
well defined, and should enable determination of a unique
model amongst the set of candidate models. When Θ has
the simple structure of a vector space, this criterion leads to
θ̂(Z) = argmaxθ p(θ |Z). Surprisingly, several authors have
proposed estimators based on a direct transposition of this
equation to the model structure considered herein [1, 4]. We
designate them by “naive MAP” estimators:

θ̂nMAP = argmax
θ∈Θ

p(θ |Z) = argmax
k∈K

max
θ∈Θk

pk(θ |Z) (6)

= argmax
k∈K

pk(θ̂k|Z) ,

θ̂k = arg max
θ∈Θk

pk(θ |Z)

As we pointed out before, the un-normalized densities
pk(θ |Z) defined over each Θk are not defined with respect to
the same measures. This criterion, that abusively compares
them directly, may lead to estimates with pathological
behavior as the examples given below demonstrate.

We address now the second justification of penalized
likelihood, that relates it to Bayesian Model Selection (BMS)
which does not attempt at directly selecting the model set and
the parameter value, and instead starts by selecting the model
Mk using the posterior probabilities Pr(Mk|Z), k ∈K [14]:

k̂ = argmax
k

∫
Θk

p(θ |Z) dθ . (7)

Determination of these posteriors requires specification of a
priori distribution π defined over Θ, that if π is of the form
(4) implies ∀k ∈ K ,

Pr(Mk|Z) =
p(Z|Mk)π(Mk)

∑
j∈K

p(Z|M j)π(M j)
, (8)

Pr(Z|Mk) =
∫

Θk

p(Z|Mk,θk)π(θk|Mk)dθk . (9)

We refer to [9] for some analysis about how one can spec-
ify the prior. Once the model is determined, the parameter
θ ∈ Θk̂ can be estimated using one of the standard statistical
estimation criteria (ML, MMSE, MAP,...). This (sound) es-
timation approach selects k by comparing the total posterior
probability mass accumulated over Mk. One may question

whether this marginal approach can guarantee the aptitude
of the elements of Mk̂, alone, to fit the data well. We will
see below that in all the examples considered the models
selected by BMS have fitting properties close to those ob-
tained by penalized likelihood criteria. More surprisingly,
numerical studies not reported here show that their fitting
performance in “signal-in-noise” problems is similar to di-
rect MMSE “signal” estimation, which belongs to a set much
richer than M .

1.3 Numerical issues
For most problems of practical interest Bayesian approaches
must resort to numerical (Monte Carlo) methods [3, 7]. A
tool that has now become a standard to draw from posteriors
p(θ |Z) with the structure (1)-(2) is RJMCMC (Reversible
Jump Markov Chain Monte Carlo) [8]. It builds a Markov
Chain over Θ that asymptotically converges to p(θ |Z), en-
abling numerical determination of expected values with re-
spect to it.

Models with the structure (1)-(2)-(3) often occur in the
search for a parsimonious parametric model f (t;θ) for a sig-
nal s(t) of which we observe noisy samples:

Z(ti) = s(ti)+ ε(ti) ' f (ti;θ), i = 1 · · ·N . (10)

where the distribution of the noise ε(t) is known. For this
problem BARS (Bayesian Adaptive Regression Splines) [6]
uses RJMCMC to find an estimate of s(t) as E[ f (t;θ)|Z],
giving up identification of a single parametric model for s(t).
In [2, 1], Reversible Jump Simulated Annealing (RJSA, a
Simulated Annealing (SA) algorithm with a proposal distri-
bution controlled by a RJMCMC kernel) is used to find the
maximum of the “posterior density” in (6). We can also men-
tion the trans-dimensional simulated annealing (TDSA) of
[4], that maximizes a penalized likelihood interpreted by the
authors as a “posterior over Θ”.

1.4 Outline
In our (large) introduction, we concluded that only BMS
can serve as a sound method for model identification using
nested model families. In section 2 we describe a numeri-
cal implementation of BMS for problem (10), that first com-
putes the marginal MAP criterion and then identifies a model
within the family of models chosen previously using a stan-
dard MAP criterion. Section 3 illustrates the possible patho-
logical behavior of the “naive MAP” estimator (6) – directly
relating it to the varying dimension of the parameter sets Θk
– in a simple case-study where analytical determination of
the posterior is possible. The last section compares use of
the BIC penalty to the actual computation of the BMS crite-
rion within the context of free-knots splines curve modeling,
revealing its biased behavior for small data sets.

2. TWO-STEP MAP ESTIMATION

We present now a numerical implementation of the “Two-
step MAP estimator”,

(i) k̂ = argmax
k∈K

Pr(Mk|Z) , (11)

(ii) θ̂ = arg max
θ∈Θk̂

p(θ |Z,Mk̂) . (12)
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that uses BMS to select Mk and MAP to identify a θ ∈Θk̂. In
this manner optimization is done in each step using commen-
surable score functions: the (discrete) posterior distribution
over the families of models Mk in (i), and a regular poste-
rior density over Θk̂, with respect to a selected base measure,
in (ii). Note that [10] proposes a similar idea for ML esti-
mation, selecting first the Mk using the BMS criterion and
computing the ML estimates of the θ ∈ Θk in a second step.

We consider a prior π of the form (4),

πθ (θ) =
kmax

∑
k=kmin

π(θ |Mk) Pr(Mk), θ ∈ Θ .

2.1 Identification of Mk (family selection)
For most problems the posterior probabilities Pr(Mk|Z) have
no closed-form and their maximum must be determined nu-
merically. We obtain estimates P̂r(Mk|Z) by sampling from
p(θ |Z),θ ∈ Θ using RJMCMC [8] and computing the to-
tal mass of each Mk as the corresponding marginals. RJM-
CMC uses a proposal distribution q(θ ′|θ), θ ′ ∈ Θk′ , θ ∈ Θk,
where θ (resp. θ ′) is the current (resp. candidate) state of
the chain, that is a mixture of basic transition distributions
(birth, death or change) moving across neighboring fami-
lies of models Mk and Mk+1. To ensure chain reversibil-
ity (and thus convergence in distribution to the target distri-
bution p(θ |Z)) the acceptance function of the chain is [8]
αRJ(θ ,θ ′) = min{1,rRJ}, with

rRJ =
p(θ ′|Z)
p(θ |Z)

q(θ ′|θ)
q(θ |θ ′)

J(θ ′,θ) , (13)

where J(θ ′,θ) is the Jacobian of the mapping from θ to θ ′.
Finally, the family Mk̂ is chosen using the RJMCMC sam-

ples
(

θ (i)
k(i)

)M

i=1
∝ p(θ |Z) in the following manner

k̂ = argmax
k

P̂r(Mk|Z), P̂r(Mk|Z) =
Mk

M
, (14)

where Mk = #
{(

θ (i)
k(i)

)M

i=1
: k(i) = k

}
(# A is the cardinality

of set A).

2.2 Estimation of θ (parameter estimation)
Once the family Mk̂ has been determined, parameter estima-
tion is done for θ ∈ Θk̂. Again, there is, in general, no ana-
lytical solution, and we must resort to a numerical method to
find the model with the maximal posterior density pk̂(θ |Z).
A common choice for approximating the solution of this op-
timization problem is Simulated Annealing (SA), with an ac-
ceptance probability αSA:

αSA(θ ′
k̂,θk̂,Ti) = min

1;

(
p(θ ′

k̂
|Z,Mk̂)

p(θk̂|Z,Mk̂)

) 1
Ti

 , (15)

where θk̂ (resp. θ ′
k̂
) is the current (resp. candidate) state, and

Ti is the chain temperature that must decrease according to
a convenient cooling scheme. We refer the interested reader
to [11] for details on SA.

σ2 0.6 1 1.2 1.6 2 4
Pr(θ̃ ∈ M1|M2) 0 0.25 0.61 0.945 0.985 1

Table 1: Pr(θ̃ ∈ M1|M2), σ2 = (0.6,1,1.2,1.6,2,4).

3. NAIVE MAP: PATHOLOGICAL BEHAVIOR

In this section we expose using a simple example the possible
biased behaviour of the “naive MAP” criterion.

3.1 Case-study
Let Z = [z1, . . . ,zn] ∈ Rn be the observation vector, and con-
sider a model with just two families: M = M1∪M2, where1

Mk =
{
N

(
fk(·|θ),σ2In

)
, θ ∈ Θk

}
,k = 1,2 .

Above, fk(·|θ) is a k-piecewise linear signal, see Figure 1(a),
such that the parameters of the models are θ1 = [P0,σ2] and
θ2 = [P1,P2,σ2], where {Pi = (Pi

x,P
i
z)∈R2}2

i=0 are the break
point coordinates.

We use an uninformative factored prior distribution over
both parameter spaces: Pi

x ∝ U ([0N]), Pi
z ∝ N (0,Σ2), i =

0,1,2, and σ2 ∝ U (R+)2. To minimize the impact of the
prior we set Σ2 À 1. Models are equiprobable: π (M1) =
π (M2).

3.2 Naive MAP estimator
Apparently, the prior chosen does not express preference for
M1, and one would expect that the biased ML behaviour
(always choose M2) would not be corrected. We will see
that this is not the case, and that a bias of opposite sense is
induced, (6) exhibiting a strong preference for the simpler
model M1.

Table 1 displays estimates of the error probability
Pr

(
θ̂ ∈ Θ1|θ ∈ M2

)
for several values of the noise vari-

ance σ2, obtained over 200 Monte Carlo runs. Parameters
were set at: P1 = (250,10),P2 = (800,6), Σ = 1016 and
X = {10m}100

m=0, see figure 1(b). We see that even for small
values of the noise variance the error probability is very high:
the “naive MAP” estimator is biased toward the simplest
model M1, even if the data clearly shows the existence of
3 different slopes.

We will now show that this preference for simple models
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Figure 1: (a) f (·|θ1) (− blue), f (·|θ2) (−− red) ; (b) Z ∝
p(·) ∈ M2, σ2 = 1.2.

1N (µ,Σ) denotes the normal density with mean µ and covariance ma-
trix Σ.

2X ∝ p indicates that random variable X is drawn according to p and
U (A) denotes the uniform distribution over set A.
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that seems to be hidden in the prior chosen is actually an
artifact caused by the comparison of densities defined with
respect to distinct measures. Let ρ2

i = ||Z − fi(X ;θi)||2 be
the residuals for model Mi, i = (1,2). Criterion (6) leads

to a model selection rule r
M1
≶
M2

1 where r is the ratio

r =
π (M2) p2(θ2|Z)
π (M1) p1(θ1|Z)

=

√
2
π

1
ΣN

(
ρ1

ρ2

)n

exp
(
−

(P1
z )2 +(P2

z )2 − (P0
z )2

2Σ2

)
.

If Σ2 À 1, such that exp
(
− (P1

z )2+(P2
z )2−(P0

z )2

2Σ2

)
' 1, then

log
(

ρ1

ρ2

)
M1
≶
M2

1
n

log
(

ΣN

√
π
2

)
= γ.

Note that ΣN is the ratio of the normalizing constants of the
prior densities over Θ1 and Θ2, that increases with the num-
ber of breakpoints of M2. As the previous equation shows,
the decision region for M1 increases monotonically with ΣN,
explaining why the apparently uninformative prior leads to a
strong bias in favor of M1. This biased behaviour is entirely
due to the fact that we are comparing the “densities” pk(·|Z)
defined with respect to measures µk (the Lebesgue measure
in both cases) over spaces of distinct dimensions (d1 = 3,
d2 = 5). Depending on the priors chosen, this may bias the
decision, in an unclear manner, in favor of simpler or more
complex models. We stress that these remarks do not con-
cern penalized likelihood methodologies globally, but only
their interpretation as Bayesian MAP estimators.

4. BIC AND BAYESIAN MODEL SELECTION

In this section, we compare BIC to the two-step BMS/MAP
semi-parametric identification described in section 2 for
curve modeling with free-knot (cubic) splines. We begin
with a brief description of the model and of numerical is-
sues related to its optimization, presenting our comparative
study in a second step.

4.1 Free-knots spline model
We assume that the observations follow a normal model

p(Z|θ ,Mk) = N
(

f (t;θ),σ2I
)
, f (t;θ) =

k

∑
i=1

β ibi(t,ξk) .

(16)
where k is the number of knots, bi(t,ξk) is the ith B-Spline
function, ξk ∈ [01]k is the (ordered) knots vector, and βk ∈
R2k is the vector of control points. We refer to [5] for de-
tails about splines. The parameter vector of Mk is θk =
(ξk,βk,σ2).

4.2 Implementation
Maximization of the likelihood allows analytic determina-
tion of the estimates of βk and σ2 for a fixed model order
k. Using the reduced likelihood at this estimated values
as the target distribution of the SA algorithm, we can find
the ML estimate of the knot vector ξk. Temperature Ti is
initialized at T0 = 50 and decreases every 500 iterations by

a factor of 0.2. The maximum number of iterations is fixed
to 10000. We thus obtain the ML estimate of the parameter
vector (with k fixed). Adding the BIC penalty term to the
likelihood and maximizing the sum with respect to k allows
determination of the BIC-penalized estimate of k.

This scheme is adapted to find the MAP estimates of the
parameters θ ∈ Θk for fixed k. In this case, the target dis-
tribution of SA algorithm is the posterior p(θ |Z,Mk). We
use the factored prior already proposed for this problem in
[6], except for the prior over k which we consider uniform,
establishing thus no prior preference for simpler models:

π(θk) = π(βk|Mk,ξk,σ2)π(ξk|Mk)π(Mk)π(σ2).

π(Mk) = U (k ∈ [kmin,kmax]); π(ξk|Mk) ∼ U ([0 1]k);
π(βk|Mk,ξk,σ2) = N

(
0,σ2N(BT B)−1

)
where B = Bk̂,ξ is

the spline design matrix with entries bi(t,ξk); π(σ2) = 1/σ2.
As described in section 2, we first identify Mk̂, using

RJMCMC to estimate Pr(Mk|Z). The proposal distribution
q(θ ′|θ) is classically taken as a mixture of basic transition
laws that allow “jumps” between families of models: birth
(b), death (d) and change (c) of a knot point in the knot vec-
tor ξk. With these priors, holding ξk fixed, we can analyti-
cally find the MAP estimates of the linear coefficients βk and
of the noise variance σ2. We obtain one sample of the pa-
rameter vector at each iteration of the RJMCMC procedure,
allowing thus the numerical determination of k̂ for the crite-
rion (14).
Fixing k = k̂, the second step identifies the parame-
ters of Mk̂ by maximizing the “local posterior density”
νk(θ) = p(θ |Z,Mk̂),θ ∈ Θk̂. Maximization with respect to
(βk̂,σ

2) can again be found analytically, see [6], enabling
the definition of the “reduced posterior” P(ξk̂|Z,Mk̂) =
p(ξk̂|Z

N
1 ,Mk̂)p(β̂k̂, σ̂

2|Z,Mk̂,ξk̂).
A SA algorithm is run with P(ξk̂|Z,Mk̂) as the score

function, producing a sequence of values of ξk̂ that converge
in distribution to its maximum, completely identifying a sin-
gle model amongst M . We performed M = 10000 iterations
of the RJMCMC algorithm followed by L = 2000 SA itera-
tions. Temperature Ti is initialized at T0 = 0.02, and is halved
every 500 iterations.

4.3 Numerical results
We first compare the two methods BIC and BMS/MAP on
simulated data, with the goal of exposing the asymptotic na-
ture of the BIC criterion, which only for very large data sets is
an approximation of BMS, inheriting the problems of “naive
Bayes” under its interpretation as a posterior computed for a
particular “prior.”
We simulated data from a spline model with k = 13 knots and
σ2 = 0.04 (see Fig. 2), and considered two observation sets:
D1 with N = 51 data points and D2 with N = 401 data points,
see Figure 2. Figure 3 summarizes the comparison of the two
methods. For the shorter data set D1 BIC systematically
chooses a ’wrong’ model order k = 12 (Fig. 3(left)), under-
estimating the data complexity, while BMS/MAP correctly
identifies the true value k = 13 (Fig. 3(right)). For the larger
data set D2 both criteria choose the same (and correct) model
order, confirming that only asymptotically BIC yields an un-
biased estimate of the model complexity, while the two-step
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Figure 2: Spline model (-) and data sets D1 (*) and D2 (·).
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Figure 3: (left) BIC criterion for D1 (−−) and D2 (−) de-
pending on the model order in abscissa. (right) Log-posterior
probability of models for D1 (black) and D2 (gray) with
model order in abscissa.

numerical estimator BMS/MAP has an unbiased behavior for
all values of N. Table 2 shows the mean square error of the
models identified by the two criteria, averaged over the 50
MC runs. We note here that while producing overall similar
error figures, for the larger data set D2 the two models have
indeed virtually identical residual error, while for D1 BIC
yields a slightly smaller error, revealing its close relation to
ML.

5. CONCLUSION

This paper draws a comparative analysis of several ap-
proaches proposed in the literature for semi-parametric es-
timation in the context of model fitting using nested fami-
lies of models. We concentrate in statistically based method-
ologies related to the use of penalized versions of the likeli-
hood score and their frequent interpretations either as max-
imizing the model parameter “posterior distribution” or as
asymptotic approximations of the marginal posterior proba-
bilities of each model family. We stress a basic flaw of direct
transposition of the MAP criterion to this complex setting
as it has sometimes been done in the literature – and thus
of the former interpretation of penalized likelihood – show-
ing in a simple problem that it can lead to arbitrarily biased
estimates. We then discuss the potential problems associ-
ated with asymptotic penalties, showing that the same neg-
atively biased behavior can occur when the data set is of fi-
nite length, while computation of the true model posterior
leads to unbiased estimates of the model complexity. Under-
estimating the model complexity for smaller data sets, BIC
may fail to capture important structure of the data. As our
example shows, even under a uniform prior over the mod-
els, use of the correct Bayesian criterion is not subject to the
overfitting behavior typical of likelihood scores, relieving the

D1 D2
BIC 0.0597 0.0848
BMS/MAP 0.0620 0.0845

Table 2: Average (over 50 runs) of the mean square error
between data and models.

user from the need to choose a specific penalty on the model
dimension.
The discussion in this paper shows that only a BMS two-
step approach provides a safe methodology for identification
with the type of models considered. The price payed for this
better (unbiased) performance is an increase in the compu-
tational complexity of the estimation task. For the particular
type of models used in the examples presented here (free knot
splines), we think that a number of useful heuristics can be
defined by exploiting the locality of the basis functions. We
will address this issue in future publications.
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