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ABSTRACT 
A novel modification to the debiased converted-
measurement Kalman filter (CMKF-D) is proposed and im-
plemented.  The resulting CMKF-D evaluates the average 
true measurement-error bias and covariance with polar tar-
get-position estimates obtained by nonlinearly transforming 
Cartesian estimates formed by traditional weighted-least-
squares fusion of the debiased converted measurements and 
the predicted Cartesian estimates of the CMKF-D. A track-
ing-performance comparison is made between the resulting 
CMKF-D and the previously presented CMKF-D which 
demonstrates the improvements obtained from the new tech-
nique when bearing measurement errors are large. 

1. INTRODUCTION 

The problems of debiasing the converted measurements and 
approximating the converted-measurement error covariance 
have been examined by Lerro and Bar-Shalom [1] for the 
CMKF-D which tracks a target in Cartesian coordinates 
given polar measurements. This present work demonstrates 
a technique for improving the tracking performance of the 
previously published method by calculating better polar 
estimates for use in the average true bias and measurement-
error covariance. The better polar estimates are calculated by 
transforming to polar coordinates the Cartesian estimates 
obtained by weighted-least-squares fusion of the CMKF-D’s 
predicted target-position estimates and the debiased con-
verted measurements. 

2. TECHNICAL BACKGROUND 

2.1 Polar-Measurement Model 
A sensor, located at the origin of the plane in which the tar-
get moves, produces measurements of the target’s range and 
bearing. This investigation assumes a traditional polar-
measurement model in which the kth measurements consist 
of the true range and bearing quantities,  and [ ]r k [ ]kβ , 
corrupted by additive, uncorrelated, white, zero-mean nor-
mal measurement noises [2]. Thus, the measurements are 
mathematically described by 

[ ] [ ] [ ]mr k r k r k= +  
and 

[ ] [ ] [ ]m k kβ β β= + k , 

where ( )[ ] ~ 0, [ ]rr k N kσ , ( )[ ] ~ 0, [ ]k N kββ σ , and 
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with [ ]Kδ •  indicating the Kronecker delta function. 
2.2 The Debiased CMKF (CMKF-D) 
To be used in the considered CMKF-D, the polar measure-
ments are first transformed to Cartesian converted meas-
urements with 
 ( )[ ] [ ]cos [ ] [ ] [ ]m m mx k r k k x k x kβ= = +  (1) 
and 
 ( )[ ] [ ]sin [ ] [ ] [ ]m m my k r k k y k y kβ= = +  (2) 
where 

( )[ ] [ ]cos [ ]x k r k kβ=  
and 

( )[ ] [ ]sin [ ]y k r k kβ= . 
 
Lerro and Bar-Shalom demonstrated [1] that the nonlinear 
transformations (1) and (2) introduce biases in the converted 
measurements even though the original polar measurements 
were unbiased. These biases can become unacceptably se-
vere when the bearing-measurement error variance is large.  
 
The true vector bias is given by 
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where ( )E •  represents mathematical expectation. For the 
assumed normal range- and bearing-measurement noises, 
the elements of  are explicitly given by (6) of [1]; note [ ]t kμ
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that both elements require the target’s true range and bearing 
for evaluation. Similarly, the true measurement-error covari-
ance is given by  
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For the assumed normal range- and bearing-measurement 
noises, the elements of  are explicitly given by (7) of 
[1]; note that all four elements require the target’s true range 
and bearing for evaluation. 

[ ]t kR

 
Since the true polar coordinates of the target are unavailable 
in practice, Lerro and Bar-Shalom proposed conditioning 

 and  on   and [ ]t kμ [ ]t kR [ ]mr k [ ]m kβ  to obtain the aver-
age true measurement-error bias 

{ } ( ) ( )[ ] [ ] [ ], [ ] [ ] [ ]x y
a t m m a ak E k r k k k kβ μ μ ′⎡= = ⎣μ μ ⎤⎦  

and the average true measurement-error covariance 
{ }[ ] [ ] [ ], [ ]a t m mk E k r k kβ=R R . 

Both  and  depend only on the polar measure-
ments. The debiased converted measurements are thus given 
by 

[ ]a kμ [ ]a kR

( )( ) ( )[ ] [ ]cos [ ] [ ]d x
m m m ax k r k k kβ μ= −  

and 
( )( ) ( )[ ] [ ]sin [ ] [ ]d y

m m m ay k r k k kβ μ= − . 
 
In order to improve dynamic tracking performance, Lerro 
and Bar-Shalom specified the additional requirement of 
evaluating  [3] and  [1, 3] using the best avail-
able polar estimates rather than exclusively using the polar 
measurements on which  and   had been condi-
tioned. To provide a practical means of meeting this addi-
tional requirement, Lerro and Bar-Shalom presented a sim-
ple test, (35) of [1], which chose the more accurate of the 
measured and predicted polar quantities (obtained via 
nonlinear transformation of the CMKF-D’s predicted Carte-
sian measurements) based on the sizes (computed with de-
terminants) of the respective error covariances in Cartesian 
coordinates. 

[ ]a kμ [ ]a kR

[ ]a kμ [ ]a kR

2.3 Proposed Improvement to the Tracking Algorithm 
Whereas the additional requirement given in [1, 3] and cor-
rectly explained in [4] calls for using the best available polar 
quantities to evaluate  and  , it should be noted 
that the given rule actually determines the better (i.e., the 
less uncertain) of the measured and predicted Cartesian es-
timates. Although using true range and bearing quantities to 
evaluate  and  is obviously impractical, it does 
motivate a search for polar estimates superior to both the 
measured and predicted quantities to use in the evaluation of 

 and .  

[ ]a kμ

[ ]a kR

[ ]a kR

[ ]a kμ

[a kR[ ]a kμ ]
 
The polar measurements and Cartesian predictions comprise 
the only practically and immediately available estimates of 
the target’s position.  Since the errors in the Cartesian pre-
dictions depend upon measurement noise prior to the cur-

rent measurement only, and since the measurement noises 
are white processes, the errors in the polar measurements 
and the errors in the Cartesian predictions are statistically 
independent. We therefore propose producing polar esti-
mates for the evaluation of  and  by first fusing 
the (converted) measured and predicted target-position esti-
mates in Cartesian coordinates and then nonlinearly trans-
forming the fused Cartesian estimates to polar coordinates. 
Section III provides details for the proposed data-fusion and 
coordinate-transformation method. 

[ ]a kμ [ ]a kR

3. PROPOSED METHOD OF ESTIMATING THE 
POLAR TARGET-POSITION VALUES 

3.1 Weighted-Least-Squares Fusion of Measured and 
Predicted Target-Position Estimates 

The traditional method of weighted-least-squares estimation 
[5] assumes a set of l measurements  that is a linear com-
bination of the elements of a constant vector  corrupted by 
a zero-mean random additive measurement noise vector . 
Mathematically, 

z
x

v

= +z Mx v . 
The estimate  of  that minimizes the scalar cost function x̂ x

( ) (1ˆ ˆJ −′= − −vz Mx C z Mx) , 
where cov( )=vC v , is 

 ( ) 11ˆ
−−′ ′= vx M C M M C z1−

v . (3) 
The measured target-position estimate and associated error 
covariance are in the polar coordinate system, but the pre-
dicted target-position estimate and associated error covari-
ance are in the Cartesian coordinate system. As a result, the 
two target-position estimates cannot be directly fused using 
the weighted-least-squares approach of [5, eq. (4.0-5)] (in 
which the weighting matrix is conventionally formed from 
the inverses of the two estimates’ error covariances), since 
this technique requires the two estimates and their respective 
error covariances to be in identical coordinate systems. 
Thus, some means of converting one estimate and its error 
covariance to the coordinate system of the other estimate is 
required.  
 
Since converted-measurement debiasing with Lerro and Bar-
Shalom’s technique was shown to produce statistically con-
sistent converted measurements for even reasonably large 
measurement-error variances, the kth debiased converted 

measurements ( ) ( )[ ] [ ]d d
m mx k y k ′⎡ ⎤⎣ ⎦

]

, when conditioned on the 
true target coordinates, approximately represent a randomly 
drawn sample from a joint distribution with mean 

[ [ ] [ ]x k y k ′  and covariance  Thus,  [ ] [ ].s
ak ≅C Rmea

Cart k

[ ]( ) ( ) ( ) ( )[ ] [ ] [ ] [ ] [ ] [ ]d d d d
m mx k y k x k y k x k y k′ ′′⎡ ⎤ ⎡= + ⎤⎣ ⎦ ⎣ ⎦  

where  
( ) ( )cov [ ] [ ] [ ] [ ].d d meas

Cart ax k y k k k⎛ ⎞′⎡ ⎤ = ≅⎜ ⎟⎣ ⎦⎝ ⎠
C R  
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In basic (linear) Kalman-filter theory, the predicted state at 
index k is a linear transformation of the state estimate at 
index  which is itself a linear combination of the meas-
urements taken at indices up to and including 

1k −
1k −  [6]. 

Therefore, the kth predicted target-position estimates, 

[ ]p [ ]px k y⎡⎣ k ′⎤⎦

]

, when conditioned on the true target coor-
dinates, represent a randomly drawn sample from a joint 

distribution with mean [ [ ] [ ]x k y k ′  and error covariance 

 . (4) [ ] [ | 1]pred
Cart k k k ′= −C HP H

 
In (4), 

1 0 0 0
0 0 1 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

H  

is the observation or measurement matrix and [ | 1]k k −P  is 
the predicted state-estimate-error covariance matrix at 
measurement index k.   is in turn given by [ | 1]k k −P

[ | 1] [ 1 | 1] [ ]k k k k k′− = − − +P FP F Q  
where 

1 0 0
0 1 0 0
0 0 1
0 0 0 1

T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

F  

is the state-transition matrix (with T representing the meas-
urement interval),  is the state-estimate-error 
covariance at measurement index , and  is the 
process-noise covariance. Thus,  

[ 1 | 1]k k− −P
1k − [ ]kQ

[ ][ ] [ ] [ ] [ ] [ ] [ ]p p p px k y k x k y k x k y k′ ′⎡ ⎤ ⎡= +⎣ ⎦ ⎣
′⎤⎦  

where  

cov [ ] [ ] [ ].pred
p p Cartx k y k k⎛ ⎞′⎡ ⎤ =⎜ ⎟⎣ ⎦⎝ ⎠

C  

 
We may now apply (3) to the problem of fusing the meas-
ured and predicted Cartesian quantities: 
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3.2 Transformation of the Fused Cartesian Estimates to 
Polar Coordinates 

The estimates ˆ[ ]x k  and  are fused Cartesian estimates, 
which are expected to be more accurate than either 

ˆ[ ]y k
( )[ ]d
mx k  

and  or ( )[ ]d
my k [p ]x k  and . However, polar estimates 

are required for the evaluation of  and , so some 
method of coordinate transformation from Cartesian to polar 
is required. The conventional method adopted here converts 
an estimate in one coordinate system to an estimate in an-
other coordinate system via the nonlinear transformation 
relating the two coordinate systems:   

[ ]kpy
[ ]a kμ [ ]a kR

2 2ˆ ˆ ˆ[ ] [ ] [ ]r k x k y k= +  
and 

( )1ˆ ˆ ˆ[ ] tan [ ] / [ ]k y k xβ −= k

l

. 

4. TRACKING PERFORMANCE WITH THE 
PROPOSED IMPROVEMENT 

4.1 Debiased Converted-Measurement Kalman Filters 
A performance comparison of two CMKF-D configurations 
is conducted. All CMKF-D configurations have the general 
structure given in Section IV.A of [1]. The two considered 
CMKF-D configurations differ in the method by which the 
polar values used to evaluate  and  are chosen. 
The first CMKF-D is that described explicitly by [1]. The 
second CMKF-D uses the polar estimates obtained as de-
scribed in Section III. 

[ ]a kμ [ ]a kR

4.2 Simulation Results 
The two considered CMKF-D implementations are tested 
using three standard-deviation values of bearing-
measurement error (10° and 15°) and one standard-deviation 
value of range-measurement error (50 m). The initial target 
state and kinematics model of Section IV.C of [1] are repli-
cated. Specifically, the initial target location is at a range of 
70 km and a bearing of 45°, and the initial target velocity is 
15 m/s in the positive y direction. Additionally, the target-
trajectory model is the second-order kinematics model of [7, 
eq. (2-297)], and the process-noise covariance, given by [7, 
eq. (2-312)], has a standard deviation of 0.01 m/s2 in each 
Cartesian dimension. 
 
The CMKF-D implementations are initialized using a 
slightly modified version of the two-point differencing 
method of [7, eqs. (2-287), (2-288), and (2-289)] which ac-
counts for the fact that, in general, . 
Specifically, designating the indices of the first two meas-
urements as 

[ ] [ ],  a ak l k≠ ≠R R

0k =  and 1k = , respectively, the Cartesian 
state estimate is initialized with 

( )

( )

( )

( ) ( )

( )

( ) ( )

[1]

[1] [0] /
ˆ[1]

[1]

[1] [0] /

d
m

d d
m m

d
m

d d
m m

x

x x T
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y y T

⎡ ⎤
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−⎢ ⎥
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⎢ ⎥
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x , 

and the elements of the initial Cartesian state-estimate-error 
covariance  are set to [1]P

11 11[1] [1],aP R=  
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12 21 11[1] [1] [1] / ,aP P R= = T

T

 
13 31 12[1] [1] [1],aP P R= =  

14 41 12[1] [1] [1] / ,aP P R= =  

( )22 11 11 2[1] [1] [0] / ,a aP R R T= +  
23 32 12[1] [1] [1] / ,aP P R= = T  

( )24 42 12 12 2[1] [1] [1] [0] / ,a aP P R R T= = +  
33 22[1] [1],aP R=  

34 43 22[1] [1] [1] / ,  andaP P R T= =  

( )44 22 22 2[1] [1] [0] / .a aP R R= + T  
Fifty measurements are taken with an interval of 60 sT = . 
The presented results are those averaged over 1000000 
Monte-Carlo runs.   
 
The RMS position errors of the original and proposed 
CMKF-D implementations are shown in Figures 1 and 2 for 
the cases of [ ] 10kβσ = °  and [ ] 15kβσ = ° , respectively.  

 
Figure 1 – RMS position errors for [ ] 10kβσ = °  

 
Figure 2 – RMS position errors for [ ] 15kβσ = °  

 
For both cases, the proposed CMKF-D provides noticeably 
better position-tracking performance than the original 
CMKF-D. Note that qualitatively similar performance re-

sults are obtained when the target’s initial position and ve-
locity are randomly selected.  
 
The percent improvement of the proposed CMKF-D algo-
rithm over the original CMKF-D algorithm, defined as 
 

( )Orig. alg. RMS Error -  Prop. alg. RMS Error 100%
Orig. alg. RMS Error

I = , 

 
is shown in Figure 3 for the cases of [ ] 10kβσ = °  and 

[ ] 15kβσ = ° . 
 

 
Figure 3 – Percent Improvement of the Proposed CMKF-D over the 

Original CMKF-D 

 
The average time required to execute a single iteration of the 
CMKF-D using MATLAB version 7.4 on an Intel® Core™ 2 
Duo CPU T7300 running at 1.99 GHz with 2 GB of RAM 
was 0.10554 ms. The time required to execute a single itera-
tion of the proposed CMKF-D using the same hardware and 
software was 0.62692 ms, so the tracking improvement 
comes at the cost of significantly increased computational 
time.   

5. CONCLUSIONS 

A novel CMKF-D which fuses measured and predicted tar-
get-position information to evaluate the measurement-error 
covariance approximation is proposed and implemented. 
The new CMKF-D generally outperformed the original 
CMKF-D technique for both considered scenarios. The pro-
posed CMKF-D achieves its improved performance, how-
ever, at the cost of additional computations to perform (1) 
weighted-least-squares estimation with the predicted Carte-
sian coordinates and the converted Cartesian measurements 
and (2) the nonlinear transformation of the fused Cartesian 
values. 
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