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ABSTRACT

In some applications involving line spectra or direction ofarrival
(DOA) estimation, we may have known a priori information. This
information could consist of known frequencies in Magnetoen-
cephalography (MEG) or mechanical signals, or of known DOA’s
in a RADAR urban scenario. With this fact in mind we propose an
optimal method for array processing that exploits the information of
the known DOA’s for estimating the unknown DOA’s as accurately
as possible. This newPrior-knowLEDGE (PLEDGE) method is
based on the method of direction estimation (MODE) approach. To
show the benefits of incorporating prior-knowledge we also present
the corresponding stochastic Cramér-Rao Bound (CRB). Finally, we
apply PLEDGE for estimating frequencies in the current spectrum
of an induction motor to perform the diagnosis on rotor bars.

1. INTRODUCTION

In some applications involving direction of arrival (DOA) or line
spectra estimation, we may have known a priori information.We
support on two observations to prove that fact. First, in a RADAR
urban scenario, the presence of stationary sources such arebuild-
ings, brings about the reflection of the waves emitted. Thoseone im-
pinge then on arrays with always the same direction. In addition and
as an important remark, in such a multi-path problem, the sources
are highly correlated and even coherent. Next, the sources of Mag-
netoencephalography (MEG) are synchronous synaptic currents in
the cerebral cortex. Since some neural activities of human brain are
repetitive we know frequencies present in the synaptic current spec-
trum. A more industrial application but still in the same context is
the diagnosis of rotating machines. The kinematic of these systems
is well known and particular frequencies are so well identified, that
could be the on line signal frequency or gears frequencies. The point
is that these prior knowledge might not carry any information and
might mask what is of interest. It is then crucial to take advantage
of the prior-information for estimating the parameters of interest as
accurately as possible. Following this way, recent work hasbeen
proposed [4] in the context of MEG and [8] in the context of array
processing. Each these methods uses the concept of reduced signal
subspace by deflating the sample covariance matrix. The Cramér-
Rao Bound (CRB) associated with this model has been given and
studied in [2]. This bound, the Prior-CRB, shows that this kind of
methods are limited and suffer of drastic assumptions as well. We
could advance that the non-bijective transformation (the deflation)
causes an information loss. From this it is obvious and easy to un-
derstand why these algorithms are limited.
So, the idea is to propose an optimal algorithm in which we could
easily use and fix the known parameters. We have based our
derivation on the popular method of direction estimation (MODE)
[12] from which we have deduced the optimalPrior-knowLEDGE
(PLEDGE) algorithm for the array processing. The PLEDGE is pre-
sented for the Uniform and Linear Array (ULA) case which allows
us to easily transpose the algorithm to the line spectra estimation. To

show the benefice of incorporating prior-knowledge we also present
the corresponding Cramér-Rao Bound (CRB). We give simulation
results from which we propose a discussion on what prior-hypothesis
are essential. We end this work by presenting a diagnosis problem
on rotor bars in an induction motor. As we will show PLEDGE is in
total adequation with this context and solve the problem.

2. MODEL STATEMENT

Considern narrowband and Far-field plane waves impinging on an
ULA composed byL sensors separated by a half wavelength. Let
t be a sample (“snapshot”) and assume that the total number of
available samples isN , then t = 1, . . . N . The one sample re-
sponse, or equivalently the single-experiment time seriesmodel can
be parametrized in the following manner

y(t) = A(ω)x(t) + n(t) (1)

whereA(ω) = [a(ω1) . . . a(ωn)] and wherea(ωi) is thei-th
steering vector defined by

a(ωi) = [1 ejωi . . . ej(L−1)ωi ]T (2)

with ωi = −π sin(θi) the spatial pulsation for the direction of arrival
(DOA) estimation problem (θ the DOA) and whereωi could be the
temporal pulsation, i.eωi = 2π fi

fe
(fe the sample frequency) for the

line spectra estimation problem. Amplitude wavesx(t) and noise
signaln(t) are assumed to be jointly Gaussian with zero-mean, sta-
tionary and circular stochastic process of second order moments

E[x(t)xH(t)] = P and E[n(t)nH(t)] = σ2
I (3)

whereE stands for the mathematical expectation andH for the trans-
pose and conjugate. For the latter use we introduceT as the trans-
pose and∗ as the conjugate.
The aim of this work is to furnish an optimal method for the DOAes-
timation which integrates the prior-knownledge of some directions.
The optimality has to be understood in the Maximum Likelihood
(ML) sense and elaborating ML DOA estimation has been treated in
abundance since the two last decades (see for instance [9]).MODE
rose up particularly by its good performances and computational cost
(among other things) [10, 6, 12]. We briefly recall its principle be-
fore using it to tackle the problem of prior-information integration.

3. MODE

The derivation of MODE can be seen by different points of viewand
we chose to give a pragmatic manner without going into deep, for
more details you can refer to [12] and the references therein. As-
sume that the directions can be found by polynomial rooting.Con-
sequently, we define the polynomial

b0z
n + b1z

n−1 + . . . + bn = b0

nY

i=1

(z − ejωi) (4)
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in which then angle roots are then directions of interestω. Since all
the roots of (4) belongs to the unit circle, its coefficients must satisfy
the conjugate symmetry constraint [12], and thusbi = b∗n−i , i =
0, . . . , n. Let us define now the sylvester matrix whose rows are
formed by the polynomial coefficients{bi} such that

B
H =

2
64

bn bn−1 . . . b0 0
. . .

. . .
. . .

0 bn bn−1 . . . b0

3
75 (5)

meaning that the columns ofB span the null space ofA.
Consider now by deterministic derivation, the concentrated negative
log-likelihood function [9]FML (ω) = Trace[Π⊥

A R̂] or equivalently

FML (b) = Trace[B(BH
B)−1

B
H

R̂] (6)

with b = [b0 . . . bn]T , whereΠ⊥

A = I − A
`
AH A

´−1

AH , and
where the sample covariance matrix is defined by

R̂ =
1

N

NX

t=1

y(t)yH(t). (7)

Let besides
R̂ = ÊSΣ̂SÊ

H

S + ÊN Σ̂N Ê
H

N (8)

be an eigendecomposition of̂R. A consistent estimate of the noise
variance is given bŷσ2 = 1

L−n
Trace[Σ̂N ].

It has been shown that the ML estimate was computationally heavy
and not efficient, i.e. the variance of the estimation errors(ω̂i − ωi)
do not achieve the CRB [12]. So, a better approach is given by a
large sample realization of (6) given by

Trace[AH
ÊN Ê

H
NAW ] (9)

whereW is a positive definite weighting matrix. The derivation
which comes up with the optimal (ML sense)W can be found in
[12] and after algebraic manipulations we obtain the MODE mini-
mizer. The coefficients{bi} are therefore the solution of the mini-
mizer [12]

FMode(b) = Trace[ B(B̂
H

B̂)−1
B

H
ÊSΛ̂Ê

H

S ] (10)

with
Λ̂ = Σ̂S(Σ̂S − σ̂2

I)−2. (11)

We make use of the rank-1 equivalence ofÊSΛ̂Ê
H

S to observe that
(10) can be viewed as a quadric minimizer. To this end, we use
conjointly

ÊSΛ̂Ê
H

S =

nX

k=1

λ̂kêkê
H
k (12)

and property

B
H

êk = êEkb (13)

introduced in [3] and whereêEk is a(L − n + 1) × (n + 1) Hankel
matrix defined such that

êEk =

2
664

êk(0) êk(1) . . . êk(n)
êk(1) . . . . . . êk(n + 1)

...
...

êk(L − n) . . . . . . êk(L)

3
775 , (14)

to remark that (10) can effectively be written

Trace[ B(B̂
H

B̂)−1
B

H
ÊSΛ̂Ê

H

S ] = b
H

Q̂b (15)

where

Q̂ =

nX

k

λ̂k
êE

H

k (B̂
H

B̂)−1 êEk. (16)

As (16) gives prominence, for solving (15) thêB must be estimated.

It has been proved [12] that an initial consistent estimate¯̂
b is obtained

by taking(B̂
H

B̂) = I . Constraining the minimizer with‖b‖2 =

1, we obtained̂b as the eigenvector corresponding to the smallest

eigenvalue ofQ̂ =
Pn

k λ̂k
êE

H

k
êEk. Making use of this consistent

estimate, we form̂B and (15) is solved with the constraint‖b‖2 = 1
by selecting the eigenvector associated with the smallest eigenvalue
of (16). Lastly, then DOA’s are deduced from then angle roots of
(4).

4. PLEDGE

We deduce PLEDGE directly from MODE. Thanks to the polyno-
mial rooting, we can easily write a new polynomial which integrates
known zeros. In such a case, the polynomial defined in (4) can be
factorized in the following manner

b0

nY

i=1

(z − ejωi) = b0

nkY

i=1

(z − ejωi)

nuY

i=1

(z − ejωi) (17)

where are introduced the two following polynomials

Qk(z) = q0

nkY

i=1

(z − ejωi) = q0z
nk + . . . + qnk

(18)

Qu(z) = b̄0

nuY

i=1

(z − ejωi) = b̄0z
nu + . . . + b̄nu

, (19)

which are respectively the polynomials whose zeros are the known
DOA’s and the unknown DOA’s. Theb vector can therefore be for-
mulated in algebraic correspondence. It is enough for this to con-
volve the coefficients of the two polynomialsQk(z) andQu(z) and
it yields

[b0 b1 . . . bn]
T

= C
T

b̄ (20)

where

b̄ =
ˆ
b̄0 b̄1 . . . b̄nu

˜T

C =

2
64

q0 q1 . . . qnk
0

. . .
. . .

. . .
0 q0 q1 . . . qnk

3
75 .

PLEDGE estimates thenu unknown DOA’s from the polynomial
of coefficients{b̄i}. To solve this problem, we substitute (20) into
(15) and the following modified quadratic optimization problem is
deduced

Trace[BH
ÊSΛ̂Ê

H
S B] = b̄

H
Q̄b̄ (21)

with Q̄ = CQCH . The first consistent estimate is the eigenvec-
tor associated with the smallest eigenvalue of(CCH)−1Q̄. We
stress on the fact that as it might not be an evidence, the bestper-
formances are obtained when the constraint is equal to‖b‖2 = 1
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and not‖b̄‖2 = 1. Then, the estimation of thenu DOA’s is ob-

tained by replacing the consistent estimatesˆ̄b into (16) to once again

form theB̂ matrix, find the PLEDGE estimatē̂b by selecting from
the smallest eigenvalue of(CCH)−1CQ2C

H its associated eigen-
vector. Finally the angles of thenu polynomial roots achieve the
unknown DOA’s.

5. PLEDGE CRB

The CRB proposed in [2] is based on a subspace reduction by an or-
thogonal deflation method which guarantees to suppress the known
informations present. This bound, named the Prior-CRB (P-CRB),
has been derived under the deterministic assumption. The results
and analysis which were given, pointed out that exploiting the prior-
information by an orthogonal projection was not an optimal method.
Actually the main observations are :(1) theP-CRB= CRB in gen-
eral conditions and(2) theP-CRB< CRB when sources associated
with the known and unknown directions are correlated. So, insuch
a procedure, the only way to improve the estimation of the unknown
DOA’s is to be in presence of full correlated sources. We can ad-
vance two reasons for that. One is surely the determinist derivation
of the P-CRB, and the other could be felt by the fact we projectthe
data leading to an irremediable information loss. Startingfrom this
admission, we propose in this section the stochastic CRB based on
PLEDGE model and thereby named PLEDGE CRB.
We drew our inspiration from [11] to formulate and derive the
PLEDGE CRB. Accordingly, let

α = [ωT
u ρ

T σ2]T (22)

be the unknown parameter vector, whereωu = [ω1 . . . ωu]T .
Actually ωu is the set of unknown DOA’s and indices here
have no importance, they are arbitrary and help the mathemati-
cal formulation. Then2 × 1 vector ρ is made from{P ii} and
{Re(P ij), Im(P ij) for j > i}. Under the previous assumptions
and the Gaussian hypothesis, the Fisher Information Matrix(FIM)
for the parameter vectorα is given by

FIMp,q = NTrace
»

∂R

∂αp
R

−1 ∂R

∂αq
R

−1

–
(23)

for p, q = 1, . . . , nu + n2 + 1

with the true covariance matrixR = AP AH + σ2I . The further
derivation steps require first the vectorization of (23)

1

N
FIM =

„
∂r

∂αT

«H

(R−T ⊗ R
−1)

„
∂r

∂αT

«
(24)

with ⊗ the kronecker product and

r = vec(R) = (A∗ ⊗ A)vec(P ) + σ2vec(I), (25)

and second the following partitioning

(R−T/2 ⊗ R
−1/2)

»
∂r

∂ωT
u

|
∂r

∂ρT

∂r

∂σ2

–
= [Gu|∆] (26)

which leads to

1

N
FIM =

»
GH

u

∆H

–
[Gu∆]

=

»
GH

u Gu GH
u ∆

∆HGu ∆H∆

–
. (27)

We conduct the derivation for the upper left submatrixGH
u Gu along

with the methodology of [11]. With no surprise, the final result,
agreeing with an intuitive approach, gives us an expressionof the
PLEDGE CRB

PLEDGE CRB(ωu) =

σ2

2N

»
Re

“
D

H
u Π⊥

ADu

”
⊙

“
P

H
u A

H
R

−1
AP u

”T
ff–−1

(28)

with ⊙ the Hadamard product and where the partitioningP =
[P u|P k] is considered. Once again this is an arbitrary choice
and theP u matrix is composed by the columns ofP associated
with the sources whose directions are unknown. Lastly,Du =
[d1 . . . dnu

], di = (da(ωi)/dωi).

6. SIMULATIONS

In all the plots attached, we have two sources impinging on a ULA
with a half-wavelength distance between the sensors. The sources
have the directionsθ1 andθ2 respectively. We define the power of
each source with respect to the correlation matrix as

P

σ2
=

"
10

SNR1
10 ρ

ρ∗ 10
SNR2
10

#

whereσ2 is kept equal to one for each simulation andρ is the cor-
relation. The DOA of interest is the second one, namelyθ2. The
number of sensors, snapshots, the power of the sources are varying
along with the figures but the two DOA’s are located atθ1 = 10◦ and
θ2 = 12◦ for all experiments concerning Fig.1 and lastly each results
are the mean of 1000 independent trials. We compare PLEDGE to
MODE and P-MUSIC [2] except we have improved the performance
of the latter by using the noise-free sample covariance matrix instead
of directly the sample one (i.e.̂R − σ̂2I instead ofR̂). We have
plotted the stochastic CRB for n parameters, the PLEDGE CRB,the
CRB for uncorrelated sources of Jansson etal [7] and the CRB for
nu unknown DOA’s,nu = 1 in the context of these simulations.

6.1. On PLEDGE performances

First, PLEDGE achieves the PLEDGE CRB whatever be the sce-
nario. This fact concludes that PLEDGE is an optimal solution to the
prior knowledge-based DOA estimation. Next, the set of Fig.1 and
Fig.2’s plots show the benefit of using PLEDGE instead of MODE.
For example, one would wonder what could be the gain brought by
PLEDGE when the sources of interest are less or much less powerful
than the ones which are known. An hint can be found on Fig.1-(b)
which reveals that theθ2’s estimation has been improved. To be
sure, on can observe on this figure that when the source of interest is
half powerful than the known one, having thenSNR2/SNR1 = 0.5,
the gain is greatly significant. For equipower sources the advantage
could be used at low SNR, less than 10dB, where the gain can nearly
reach 5dB. PLEDGE is thus a possible solution to improved thepre-
cision into the threshold. We also show that PLEDGE could be much
less sensitive to the correlation than MODE and naturally than P-
MUSIC which is suboptimal, to be convinced see Fig.2. Lastly, we
can see on Fig.1-(c) that the P-MUSIC is better than PLEDGE atlow
SNR. For this SNR range, P-MUSIC follows a CRB that we named
the PLEDGE uncorrelated CRB. That CRB takes into account the
prior knowledge of uncorrelated sources and the knowledge of θ1 (or
generallynk known DOA’s), which are the implicit hypothesis of the
P-MUSIC algorithm. Due to the lack of space and since this bound
is not the key contribution of this work, no closed-form expression
of this bound was brought in this paper. That, will be done in a
future work. These additionally assumptions on prior-informations
introduce the next reflexion.
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6.2. On prior-knowledge

We develop herein a study on using prior-knowledge. We base our
reflexion on the CRBs plotted. Compared to the CRB forn param-
eters of interest, the PLEDGE CRB which is of reduced dimension,
shows that the prior-information is useful especially at low SNR.
In addition, increasing the number of known parameters should in-
crease that difference. Pay now attention to the CRB for uncorrelated
sources. Make use of this prior hypothesis leads to derive the FIM
with 2n+1 parameters instead ofn2 +n+1 for the CRB. The num-
bers of FIM elements for the PLEDGE isnu+n2+1. Then we could
have thought that knowing the sources are uncorrelated could have
improved more significantly the variance. We can verify thiswith
the help of Fig.1-(c). However for the 2 DOA’s case, we can have a
scenario from which knowing some directions is better than know-
ing the uncorrelation state of the sources. That fact is illustrated by
Fig.1-(d). We conclude by saying that the minimum variance is ob-
tained when we couple together both the assumption of uncorrelated
sources and the assumption of known directions. The correspond-
ing derivation leads to the PLEDGE uncorrelated CRB. This bound
has by far the best gain, whatever be the scenario. It is then neces-
sary to give the PLEDGE for uncorrelated sources. This future work
will be the optimal prior-knowledge algorithm taking into account
both the correlation and the direction. We can imagine furthermore
that this new algorithm could be a new tool to test the assumption of
correlated/uncorrelated sources.
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Fig. 1. (a) 5 sensors, 1000 snapshots and equipower sources, (b)
SNR1 = 4 dB, 10 sensors and 100 snapshots, (c) 10 sensors, 100
snapshotsSNR1 = 4 dB andSNR2 = 14 dB, (d) SNR=2 dB, 6
sensors and equipower sources.
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Fig. 2. 10 sensors, 100 snapshots SNR = 2 dB,θ1 = 10◦, θ2 = 14◦

with equipower.

7. UTILITY FOR MECHANICAL DIAGNOSIS

The mechanical diagnosis seems to be an attractive application by
essence. Indeed, many rotating systems generates frequencies linked
to the rotation of gears or rotor and stator in induction motors. Thus,
acquiring a vibratory signal or a current signal brings out informa-
tions on the mechanical structure and healthiness of the system. In
addition, thanks to the kinematic, some frequencies are known and
either do not bring out useful information or prevent the frequencies
of interest from being clearly estimated. The application concerned
corresponds to the second case mentioned and we will depict the
utility of PLEDGE on the estimation of two sideband components
masked by a much powerful one. Those frequencies are besidesof
major importance in rotor bars diagnosis [5].
The following explanations are strongly inspired from
http://www.ieee-kc.org/library/motors/motorslip.htm. An induc-
tion motor consists of two basic assemblies : a stator and a rotor.
The name ”induction motor” comes from the alternating current
induced into the rotor via the rotating magnetic flux produced in the
stator. Motor torque is developed from the interaction of currents
flowing in the rotor bars and the stators’ rotating magnetic field. In
actual operation, rotor speed always lags the magnetic field’s speed,
allowing the rotor bars to cut magnetic lines of force and produce
useful torque. This speed difference is called slip speed. The slip is
therefore defined ass = vs−v

vs
expressed in percent wherev is the

actual speed andvs the synchronous speed (stator). For industrial
induction motors, the slip is of1% or 2%. As it is developed in [5],
a useful indicator of broken rotor bars is the sideband components
around the on line frequency. These sidebands are located inthe
current spectrum at frequenciesfs = (1 ± 2s)fline wherefline is
the network frequency, say the50 Hz. Accordingly, the frequen-
cies of interest are closed from the on line frequency and since the
acquisition signal is the current one, the dynamic of the50 Hz is
very high. There is another drawback caused by the stabilityof
the network frequency. In France, the electrical producer company
ensures the stability of the network frequency on a day, meaning
that for a while this frequency moves. To estimate the sideband
components, the Fourier transform needs a long observationtime to
increase the precision but the effect expected is exactly the opposite
because of the fluctuation of the50 Hz. The more data you acquire,
the less accurate is the estimation. That is illustrated by Fig.3. From
this figure the sideband frequencies would have been visibleon each
side of the 50 Hz lobe but due to instability of the network frequency
the Fourier analysis is ineffective. The problem is then to acquire a
weak number of data and to have the best precision with possibly
get rid of the50 Hz which does not bring out information and is
awkward for the estimation. So, PLEDGE seems be exactly what
we need and even if this algorithm has been derived for the array
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processing we will show that it is suitable in the spectral analysis
case.

7.1. Experimental conditions

We have used the current signal acquired from an induction mo-
tor (http://www.laspi.fr). The machine as a weak broken bars and
thus two sideband components should appear at frequencies 51,17
Hz and 48,83 Hz. The experimental conditions are the following :
we have acquired60000 samples, say 100 revolutions, at the sample
frequencyfe = 25, 6 KHz of the current signal and we have deci-
mated of a factor 200 leading to 3 samples per revolution. PLEDGE
needs an estimation of the signal subspace by eigendecomposition
of the sample covariance matrix. In the context of the spectral line
search, we use an Hankel matrix formed by the data samples instead
and the MDL technic to estimate the dimension of the signal sub-
space, see [1] and the references therein. The MDL estimatorhas
given 30 parameters of interest. The 50 Hz network frequencyis
first estimated by MODE and we use this estimation as the known
frequency in PLEDGE.

7.2. Results

The frequencies estimated by PLEDGE are reported inside Table1.
We focus on the area around the 50 Hz since the key informationon
the rotor bars healthiness is present in this area. first, PLEDGE has
totally suppress the known frequency, that is to say the 50 Hzand
secondly the grey cells give prominence to the diagnosis of the bro-
ken bars since the frequencies estimated are 48.87 Hz and 50.98 Hz.
So, we have shown that PLEDGE was able to estimate 2 frequencies
with much less power than the one which does not carry any informa-
tion. Consequently, PLEDGE seems to be adapted for the diagnosis
of mechanical defects, its high resolution property allowsto acquire
a weak number of samples, struggling then the network frequency
deviation and improving the computational cost of the processing.
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Fig. 3. Power Spectral Density (PSD) of current signal with 300
samples and a sampling frequency of 128 Hz.

Estimated frequencies [Hz] by PLEDGE
0.15 1.24 6.13 9.76 14.74 15.64
18.05 22.61 23.71 25.17 25.68 26.76
30.04 31.70 34.19 35.49 37.86 39.12
41.20 42.09 45.45 48.87 50.98 52.26
54.69 57.83 58.93 61.92 62.67 63.49

Table 1. The gray cells correspond to the 2 sideband frequencies
(slip frequencies)

8. CONCLUSION

In this paper we have proposed an optimalPrior-knowLEDGE
(PLEDGE) method based on the method of direction estimation
(MODE) approach. PLEDGE exploits the information of known
DOA’s to better estimate the unknown ones. To show the benefice
of incorporating known information we have also proposed the
corresponding stochastic CRB. The simulation results showed that
PLEDGE could significantly help the estimation of unknown DOA’s
especially when the sources corresponding to the unknown DOA’s
are much less powerful than those which are known. We saw that
PLEDGE has good performances into the threshold and is robust
to the correlation between the sources as well, even at low SNR.
Finally, we have presented an induction motor diagnosis problem.
The diagnosis consists of estimating to slip frequencies masked by
a close and much powerful one. PLEDGE was totally in adequation
and we showed that PLEDGE solved this problem.
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