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ABSTRACT

In some applications involving line spectra or directionaofival
(DOA) estimation, we may have known a priori information.iSTh
information could consist of known frequencies in Magnatoe

cephalography (MEG) or mechanical signals, or of known BOA
in a RADAR urban scenario. With this fact in mind we propose an

optimal method for array processing that exploits the imfation of
the known DOA's for estimating the unknown DOA's as accusate
as possible. This newrior-knowL EDGE (PLEDGE) method is
based on the method of direction estimation (MODE) approdoh
show the benefits of incorporating prior-knowledge we alssent
the corresponding stochastic Cramér-Rao Bound (CRBallyjrwe
apply PLEDGE for estimating frequencies in the current spat
of an induction motor to perform the diagnosis on rotor bars.

1. INTRODUCTION

In some applications involving direction of arrival (DOAJ tine
spectra estimation, we may have known a priori informatidvie
support on two observations to prove that fact. First, in 2DRR
urban scenario, the presence of stationary sources sudbuéde
ings, brings about the reflection of the waves emitted. Tlhogam-
pinge then on arrays with always the same direction. In addénd
as an important remark, in such a multi-path problem, thecasu
are highly correlated and even coherent. Next, the sourfce®g-
netoencephalography (MEG) are synchronous synaptic rasrie
the cerebral cortex. Since some neural activities of hunnaim lare
repetitive we know frequencies present in the synapticetuispec-
trum. A more industrial application but still in the same tx is
the diagnosis of rotating machines. The kinematic of thgsteems
is well known and particular frequencies are so well idesdifithat
could be the on line signal frequency or gears frequencike.pbint
is that these prior knowledge might not carry any informatimd
might mask what is of interest. It is then crucial to take adage
of the prior-information for estimating the parametersri€rest as
accurately as possible. Following this way, recent work hasn
proposed [4] in the context of MEG and [8] in the context ofagrr
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show the benefice of incorporating prior-knowledge we atesent
the corresponding Cramér-Rao Bound (CRB). We give siriorat
results from which we propose a discussion on what prioethgsis
are essential. We end this work by presenting a diagnosisiero
on rotor bars in an induction motor. As we will show PLEDGEris i
total adequation with this context and solve the problem.

2. MODEL STATEMENT

Considern narrowband and Far-field plane waves impinging on an
ULA composed byL sensors separated by a half wavelength. Let
t be a sample (“snapshot”) and assume that the total number of
available samples iV, thent = 1,...N. The one sample re-
sponse, or equivalently the single-experiment time seniedel can

be parametrized in the following manner

y(t) = A(w)z(t) +n(t) 1)

where A(w) = [a(w1)...a(wn)] and wherea(w;) is thei-th
steering vector defined by

a(w) =[1e* .. @)

withw; = —m sin(6;) the spatial pulsation for the direction of arrival
(DOA) estimation problemé§the DOA) and wherev; could be the
temporal pulsation, i.e; = Qw;—z (f. the sample frequency) for the
line spectra estimation problem. Amplitude waveg) and noise
signaln(t) are assumed to be jointly Gaussian with zero-mean, sta-
tionary and circular stochastic process of second orderentsn

Elz(t)z”(t) =P and En()n"(t)] =0T (3)

whereE stands for the mathematical expectation &rfdr the trans-
pose and conjugate. For the latter use we introdues the trans-
pose and’ as the conjugate.

The aim of this work is to furnish an optimal method for the D&\
timation which integrates the prior-knownledge of somedions.
The optimality has to be understood in the Maximum Likelitoo
(ML) sense and elaborating ML DOA estimation has been tceiate

Aej(L—l)wi]T

processing. Each these methods uses the concept of redgoall s 5 ndance since the two last decades (see for instanceV[@IRE
subspace by deflating the sample covariance matrix. The &ram oge up particularly by its good performances and compmrtaticost
Rao Bound (CRB) associated with this model has been given a”@imong other things) [10, 6, 12]. We briefly recall its prislei be-

studied in [2]. This bound, the Prior-CRB, shows that thisdkof
methods are limited and suffer of drastic assumptions ab W¢s
could advance that the non-bijective transformation (teiation)
causes an information loss. From this it is obvious and easyni
derstand why these algorithms are limited.

fore using it to tackle the problem of prior-informationegtation.

3. MODE
The derivation of MODE can be seen by different points of vawl

So, the idea is to propose an optimal algorithm in which wedtou We chose to give a pragmatic manner without going into deap, f

easily use and fix the known parameters.
derivation on the popular method of direction estimatiorOIVE)
[12] from which we have deduced the optiniior-knowlL EDGE

(PLEDGE) algorithm for the array processing. The PLEDGE is pre-

sented for the Uniform and Linear Array (ULA) case which ako
us to easily transpose the algorithm to the line spectrenagiin. To
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We have based otiore details you can refer to [12] and the references ther&s

sume that the directions can be found by polynomial rootidgn-
sequently, we define the polynomial

boz" + b1z 4+ ...+ b, = b H(z — ej“”)

i=1

(4)



in which then angle roots are the directions of interest. Sinceall  to remark that (10) can effectively be written
the roots of (4) belongs to the unit circle, its coefficientsstsatisfy

the conjugate symmetry constraint [12], and thus= b,,_, ,i = s av-1gHp A _ 1 HA
0,...,n. Let us define now the sylvester matrix whose rows are Trac¢ B(B B) "B EsAEs]=b"Qb (15)
formed by the polynomial coefficien{d; } such that Where
bn bp—1 ... b 0 . naH . N
BY — (5) Q:%:)‘k Ey (B B)"'Ey. (16)
0 bn bp—1 ... bo

As (16) gives prominence, for solving (15) tiemust be estimated.

meaning that the columns @ span the null space oi. A . Ny .
Consider now by deterministic derivation, the concenttategative 't 1S F)een P;f\fed [12] thatan |n|.t|¢.51I consistent e.stlrﬁaﬂ.eabtagned
log-likelihood function [9]Fw. (w) = TracéIT4 R] or equivalently ~ by taking(B" B) = I. Constraining the minimizer witfib||* =
1, we obtainedb as the eigenvector corresponding to the smallest
— ~ N .~ aH=a
Fu.(b) = Tracd B(B" B) "' B" R] (6)  eigenvalue o) = Y1 A E, E;. Making use of this consistent
estimate, we fornB and (15) is solved with the constraift||> = 1

taH ,and Dby selecting the eigenvector associated with the smaligehealue

withb = [bo ... by]", whereIlg =T — A (A" A)~

where the sample covariance matrix is defined by of (16). Lastly, then DOA's are deduced from the angle roots of
4).
1 N
>, H
= — . 7
R N ;:1 y(t)y" (t) (7 4. PLEDGE

We deduce PLEDGE directly from MODE. Thanks to the polyno-
mial rooting, we can easily write a new polynomial which gnates
known zeros. In such a case, the polynomial defined in (4) ean b
factorized in the following manner

Let besides . "
R:EsZSES +EN2NEN (8)

be an eigendecomposition &. A consistent estimate of the noise N

: . . 2 N
variance is given by* = 1 Tracd y]. b H(Z — eIy = b H(Z — eI H(Z — &) (17)
It has been shown that the ML estimate was computationalyyhe , i e

and not efficient, i.e. the variance of the estimation erférs— w; )

do not achieve the CRB [12]. So, a better approach is given by @here are introduced the two following polynomials
large sample realization of (6) given by

g
Tracé A" En Ef AW 9) Q(2) = q][(z—e™)=qz"+...+qm (18)

i=1

where W is a positive definite weighting matrix. The derivation _ o _ _

which comes up with the optimal (ML sens#y can be found in Qu(z) = bo H(z — ) =boz" + ...+ bn,, (19)

[12] and after algebraic manipulations we obtain the MODHimi i=1

mizer. The coefficient§b; } are therefore the solution of the mini- ) . .

mizer [12] which are respectively the polynomials whose zeros are tiogvk

DOA's and the unknown DOA's. Thé vector can therefore be for-

AH oA oA o~ A H mulated in algebraic correspondence. It is enough for thison-
Fuce(b) = Trac¢ B(B B)" B" EsAEs] (10)  volve the coefficients of the two polynomiat, (=) andQ.,(z) and
with it yields
T _ ~T T
A _ ES(SS _ &21)_2‘ (11) [b() b1 e bn] = C b (20)
. .H where
We make use of the rank-1 equivalenceEd¥ A E 5 to observe that
(10) can be viewed as a quadric minimizer. To this end, we use b = [Eo b1 ...l_;nu}T
conjointly
o n g qQ .. Qny 0
EsAEs =) Méxél (12) Cc =
P . . .
0 qo g1 ... Qny

and property
PLEDGE estimates the,, unknown DOAs from the polynomial
of coefficients{b; }. To solve this problem, we substitute (20) into

introduced in [3] and Wherék isa(L —n+1) x (n+1) Hankel ((jlesguigg the following modified quadratic optimization pieb is

BPe, — Exb (13)

matrix defined such that Trace{BHEs[\EgB] _ BHQI—) 1)
2’“83 (1) ... : ?;1(3—)1) with Q@ = CQC*. The first consistent estimate is the eigenvec-
By — . o T (14)  tor associated with the smallest eigenvalue(6fC™)~'Q. We
: : ’ stress on the fact that as it might not be an evidence, thepeest
ex(L—n) ... ... éx(L) formances are obtained when the constraint is equibid = 1
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and not||d||> = 1. Then, the estimation of the, DOAS is ob-
tained by replacing the consistent estimatésto (16) to once again

form the B matrix, find the PLEDGE estimateby selecting from
the smallest eigenvalue 6€C*7)~*CQ,C*" its associated eigen-
vector. Finally the angles of the, polynomial roots achieve the
unknown DOASs.

5. PLEDGE CRB

We conduct the derivation for the upper left subma@i¥ G, along
with the methodology of [11]. With no surprise, the final riésu
agreeing with an intuitive approach, gives us an expressiahe
PLEDGE CRB

PLEDGE CREw.) =
’ {Re{ (DanjDu) © (PfAHR’lAPu>T}] h

(28)

The CRB proposed in [2] is based on a subspace reduction bs an o

thogonal deflation method which guarantees to suppressnierk
informations present. This bound, named the Prior-CRB RBC
has been derived under the deterministic assumption. Thétse
and analysis which were given, pointed out that exploitheyprior-
information by an orthogonal projection was not an optimathmod.
Actually the main observations ar¢1) the P-CRB= CRBin gen-
eral conditions and2) the P-CRB< CRBwhen sources associated
with the known and unknown directions are correlated. Sspith

a procedure, the only way to improve the estimation of thenonin
DOA’s is to be in presence of full correlated sources. We a@n a
vance two reasons for that. One is surely the determini$tatem

of the P-CRB, and the other could be felt by the fact we prdjeet
data leading to an irremediable information loss. Starfing this
admission, we propose in this section the stochastic CRBdbas
PLEDGE model and thereby named PLEDGE CRB.

We drew our inspiration from [11] to formulate and derive the
PLEDGE CRB. Accordingly, let

T

a=w, p' o?" (22)

be the unknown parameter vector, whese [wi ... wd]T.
Actually w, is the set of unknown DOAs and indices here
have no importance, they are arbitrary and help the matliemat
cal formulation. Then? x 1 vector p is made from{P;;} and
{RP;;),Im(P;;) for j > i}. Under the previous assumptions
and the Gaussian hypothesis, the Fisher Information Méfiib)
for the parameter vectat is given by

R_I]

7nu+'f12+1

OR

Oap

OR

R—l
Oayg

FIMpq =N Trace{ (23)
forp,q=1,...

with the true covariance matriR = AP A + ¢2I. The further
derivation steps require first the vectorization of (23)

%F!M:( )H(RT®R1)( )

with ® the kronecker product and
r =veqR) = (A" ® A)ved P) + o°vedI),

or

oaT

or
oa™

(24)

(25)
and second the following partitioning

or  Or Or
owl ' 0pT Do

|
|

(R?@R™?) { ] =[G.]A]  (26)

which leads to

GH
A”;I
Giag, GIA
Afg, AEFA

1
~FIM } (N

@7)

|
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2N
with © the Hadamard product and where the partitioniRg =
[P.|Py] is considered. Once again this is an arbitrary choice
and theP,, matrix is composed by the columns & associated
with the sources whose directions are unknown. Ladily, =
[dl e dnu], d¢ = (da(wl)/dwl)

6. SSIMULATIONS

In all the plots attached, we have two sources impinging oA U
with a half-wavelength distance between the sensors. Thees
have the directiong; and#f, respectively. We define the power of
each source with respect to the correlation matrix as

" k]

wherecs? is kept equal to one for each simulation gnis the cor-
relation. The DOA of interest is the second one, nantgly The
number of sensors, snapshots, the power of the sourcesrgiiegva
along with the figures but the two DOA's are locatedat= 10° and

0> = 12° for all experiments concerning Fig.1 and lastly each result
are the mean of 1000 independent trials. We compare PLEDGE to
MODE and P-MUSIC [2] except we have improved the performance
of the latter by using the noise-free sample covarianceixiastead

of directly the sample one (i.eR — I instead ofR). We have
plotted the stochastic CRB for n parameters, the PLEDGE GiRB,
CRB for uncorrelated sources of Janssoald#7] and the CRB for

n., unknown DOA's,n,, = 1 in the context of these simulations.
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6.1. On PLEDGE performances

First, PLEDGE achieves the PLEDGE CRB whatever be the sce-
nario. This fact concludes that PLEDGE is an optimal sotutmthe
prior knowledge-based DOA estimation. Next, the set of Fand
Fig.2’s plots show the benefit of using PLEDGE instead of MODE
For example, one would wonder what could be the gain brought b
PLEDGE when the sources of interest are less or much lessfubwe
than the ones which are known. An hint can be found on Fig)1-(b
which reveals that thé.’s estimation has been improved. To be
sure, on can observe on this figure that when the source oésttis
half powerful than the known one, having th8NR,/SNR, = 0.5,

the gain is greatly significant. For equipower sources thaugizhge
could be used at low SNR, less than 10dB, where the gain calynea
reach 5dB. PLEDGE is thus a possible solution to improvegthe
cision into the threshold. We also show that PLEDGE could betm
less sensitive to the correlation than MODE and naturalantR-
MUSIC which is suboptimal, to be convinced see Fig.2. Lastly
can see on Fig.1-(c) that the P-MUSIC is better than PLEDG@&at
SNR. For this SNR range, P-MUSIC follows a CRB that we named
the PLEDGE uncorrelated CRB. That CRB takes into account the
prior knowledge of uncorrelated sources and the knowleélge @r
generallyn;, known DOA'S), which are the implicit hypothesis of the
P-MUSIC algorithm. Due to the lack of space and since thisibdou
is not the key contribution of this work, no closed-form egsion

of this bound was brought in this paper. That, will be done in a
future work. These additionally assumptions on prior-infations
introduce the next reflexion.



6.2. On prior-knowledge

We develop herein a study on using prior-knowledge. We base o
reflexion on the CRBs plotted. Compared to the CRBrfgraram-
eters of interest, the PLEDGE CRB which is of reduced dim@amsi
shows that the prior-information is useful especially at IBNR.
In addition, increasing the number of known parameters Ishiod
crease that difference. Pay now attention to the CRB foruetaied
sources. Make use of this prior hypothesis leads to derigd-ti
with 2n+ 1 parameters instead of +n + 1 for the CRB. The num-
bers of FIM elements for the PLEDGEris, +n*+1. Then we could
have thought that knowing the sources are uncorrelated! dmae
improved more significantly the variance. We can verify thith
the help of Fig.1-(c). However for the 2 DOA's case, we canehav
scenario from which knowing some directions is better thaowk
ing the uncorrelation state of the sources. That fact istitated by
Fig.1-(d). We conclude by saying that the minimum variarsceb-
tained when we couple together both the assumption of ueleded
sources and the assumption of known directions. The carnesp
ing derivation leads to the PLEDGE uncorrelated CRB. Thigniab
has by far the best gain, whatever be the scenario. It is theesa
sary to give the PLEDGE for uncorrelated sources. This &nvork
will be the optimal prior-knowledge algorithm taking intecount
both the correlation and the direction. We can imagine &rrifore
that this new algorithm could be a new tool to test the assiomof
correlated/uncorrelated sources.
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Fig. 2. 10 sensors, 100 snapshots SNR = 2@B+ 10°, > = 14°
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7. UTILITY FOR MECHANICAL DIAGNOSIS

The mechanical diagnosis seems to be an attractive appticay
essence. Indeed, many rotating systems generates fréegénked

to the rotation of gears or rotor and stator in induction matd@hus,
acquiring a vibratory signal or a current signal brings atfibima-
tions on the mechanical structure and healthiness of theraysin
addition, thanks to the kinematic, some frequencies arevkrand
either do not bring out useful information or prevent theytrencies
of interest from being clearly estimated. The applicationaerned
corresponds to the second case mentioned and we will déyact t
utility of PLEDGE on the estimation of two sideband compadsen
masked by a much powerful one. Those frequencies are besfides
major importance in rotor bars diagnosis [5].

The following explanations are strongly inspired from
http://www.ieee-kc.org/library/motors/motorslip.htm An induc-
tion motor consists of two basic assemblies : a stator andaa. ro
The name "induction motor” comes from the alternating cotrre
induced into the rotor via the rotating magnetic flux prodlizethe
stator. Motor torque is developed from the interaction afrents
flowing in the rotor bars and the stators’ rotating magnegtdfi In
actual operation, rotor speed always lags the magneticsfigbeed,
allowing the rotor bars to cut magnetic lines of force anddpice
useful torque. This speed difference is called slip speée. Slip is
therefore defined as = “s== expressed in percent wheveis the
actual speed and, the synchronous speed (stator). For industrial
induction motors, the slip is df% or 2%. As it is developed in [5],
a useful indicator of broken rotor bars is the sideband corapts
around the on line frequency. These sidebands are locatdtein
current spectrum at frequencigs = (1 £ 2s) fiine Where fiin. is
the network frequency, say th® Hz. Accordingly, the frequen-
cies of interest are closed from the on line frequency ancesihe
acquisition signal is the current one, the dynamic of iheHz is
very high. There is another drawback caused by the statufity
the network frequency. In France, the electrical producengany
ensures the stability of the network frequency on a day, ingan
that for a while this frequency moves. To estimate the sidéba
components, the Fourier transform needs a long obsentiento
increase the precision but the effect expected is exactlppiposite
because of the fluctuation of the Hz. The more data you acquire,
the less accurate is the estimation. That is illustratedigy8FFrom
this figure the sideband frequencies would have been visibkach
(dide of the 50 Hz lobe but due to instability of the networlgfrency

SNR, = 4 dB, 10 sensors and 100 snapshots, (c) 10 sensors, 1@De Fourier analysis is ineffective. The problem is thendguire a

snapshotsSNR, = 4 dB andSNR, = 14 dB, (d) SNR=2 dB, 6
sensors and equipower sources.
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weak number of data and to have the best precision with ggssib
get rid of the50 Hz which does not bring out information and is
awkward for the estimation. So, PLEDGE seems be exactly what
we need and even if this algorithm has been derived for theyarr



processing we will show that it is suitable in the spectralgsis
case.

7.1. Experimental conditions

8. CONCLUSION

In this paper we have proposed an optinRalor-knowl EDGE
(PLEDGE) method based on the method of direction estimation
(MODE) approach. PLEDGE exploits the information of known

We have used the current signal acquired from an induction mopOA's to better estimate the unknown ones. To show the benefic

tor (http://www.laspi.fr). The machine as a weak brokenshemd
thus two sideband components should appear at frequentj&g 5
Hz and 48,83 Hz. The experimental conditions are the fothowi

of incorporating known information we have also proposed th
corresponding stochastic CRB. The simulation results skotluat
PLEDGE could significantly help the estimation of unknown /&)

we have acquired0000 samples, say 100 revolutions, at the sampleespecially when the sources corresponding to the unknowAsDO
frequencyf. = 25,6 KHz of the current signal and we have deci- are much less powerful than those which are known. We saw that
mated of a factor 200 leading to 3 samples per revolution.IREE  p| EDGE has good performances into the threshold and is robus

needs an estimation of the signal subspace by eigendecitiopos
of the sample covariance matrix. In the context of the spétitre

search, we use an Hankel matrix formed by the data samplesdhs
and the MDL technic to estimate the dimension of the signht su
space, see [1] and the references therein. The MDL estirhator
given 30 parameters of interest. The 50 Hz network frequésicy

first estimated by MODE and we use this estimation as the known

frequency in PLEDGE.

7.2. Results

The frequencies estimated by PLEDGE are reported insideeTab
We focus on the area around the 50 Hz since the key information
the rotor bars healthiness is present in this area. firstD®E has
totally suppress the known frequency, that is to say the 5@tz
secondly the grey cells give prominence to the diagnosikebto-
ken bars since the frequencies estimated are 48.87 Hz 298l Ha.

So, we have shown that PLEDGE was able to estimate 2 freqggenci

with much less power than the one which does not carry anyrirde
tion. Consequently, PLEDGE seems to be adapted for the aliigyn
of mechanical defects, its high resolution property alltavacquire
a weak number of samples, struggling then the network frecyue
deviation and improving the computational cost of the pssogy.

to the correlation between the sources as well, even at [oR.SN
Finally, we have presented an induction motor diagnosiblpro.
The diagnosis consists of estimating to slip frequencieskat by

a close and much powerful one. PLEDGE was totally in adegnati
and we showed that PLEDGE solved this problem.
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