
VARIABLE DENSITY COMPRESSED IMAGE SAMPLING

Zhongmin Wang†, Gonzalo R. Arce† and Jose L. Paredes?

†Dep. of Electrical and Computer Engineering,
University of Delaware, Newark, DE, 19716 USA.
e-mail:{zhongmin,arce}@ee.udel.edu

?Electrical Engineering Department,
Universidad de Los Andes, Venezuela
e-mail:paredesj@ula.ve

ABSTRACT
Compressed sensing (CS) provides an efficient way to acquire and
reconstruct natural images from a reduced number of linear pro-
jection measurements at sub-Nyquist sampling rates. A key to the
success of CS is the design of the measurement ensemble. This pa-
per addresses the design of a novel variable density sampling strat-
egy, where the “a priori” information about the statistical distribu-
tions that natural images exhibit in the wavelet domain is exploited.
Compared to the current sampling schemes for compressed image
sampling, the proposed variable density sampling has the following
advantages: 1) The number of necessary measurements for image
reconstruction is reduced; 2) The proposed sampling approach can
be applied to several transform domains leading to simple imple-
mentations. In particular, the proposed method is applied to the
compressed sampling in the 2D ordered discrete Hadamard trans-
form (DHT) domain for spatial domain imaging. Furthermore, to
evaluate the incoherence of different sampling schemes, a new met-
ric that incorporates the “a priori” information is also introduced.
Extensive simulations show the effectiveness of the proposed sam-
pling methods.

1. INTRODUCTION

By exploiting the sparsity of natural images, compressed sensing
has shown that it is feasible to acquire and reconstruct natural im-
ages from a limited number of linear projection measurements at
sub-Nyquist sampling rates [1, 2]. A key component to the success
of CS is the design of the measurement ensemble, which is based
on the evaluation of the incoherence between the measurement en-
semble and the sparsity basis. Incoherence property requires that
the components of the measurement ensemble should have a dense
representation in the sparsity basis. Due to the large scale of nat-
ural images and their high resolution, it is also required that the
generation of the measurement ensemble be both computationally
efficient and memory efficient. Furthermore, the sampling scheme
should enable fast algorithms to perform image reconstruction.

Measurement matrices where each entry is an independent and
identically distributed (i. i. d.) random variable obeying Gaussian
or Bernoulli distribution have been proposed for compressed image
sampling [1, 2]. Recently, it has been shown that the performance of
CS sampling can be improved if the random measurement matrices
are suitably optimized [3]. Due to their unstructured nature, how-
ever, large memory space and demanding computation resources are
needed, making them prohibitively expensive for a practical imple-
mentation. A more desirable way to obtain linear measurements is
by incoherent sampling in a transform domain equipped with fast
transform algorithms [4]. Measurement ensembles in the transform
domain that enable fast computations include partial Fourier ensem-
ble, scrambled Fourier ensemble (SFE), scrambled block Hadamard
ensemble (SBHE) and Noiselets [1, 4, 5]. Although these sampling
approaches have shown to obtain good performance in CS applica-
tions, their formulation do not exploit any “a priori” information of
natural images that could lead to improved CS performance [6, 7].

In this paper, we propose a new method for compressed image
sampling by exploiting the “a priori” information about the statisti-
cal distributions that natural images exhibit in the wavelet domain.
A novel family of variable density sampling patterns are designed

for compressed image sampling in the frequency transform domains
which includes Discreet Fourier Transform (DFT), Discrete Cosine
Transform (DCT) and ordered DHT. Equipped with fast transform
algorithms, the sampling process is simple, fast and easily imple-
mented. Compared with other sampling strategies, the CS perfor-
mance obtained with the proposed sampling method is significantly
improved.

To design the proposed measurement matrices, a simplified
model to describe the statistical distribution of image wavelet co-
efficients is first established. According to the subband incoherent
sampling method proposed in [4], the Fourier coefficients in the
subband where significant energy of the wavelet exits should be
sampled randomly to minimize the coherence between the sparse
wavelets and the measurement Fourier atoms. Thus, based on sub-
band incoherent sampling, we derive a variable density sampling
function p(m,n) in the frequency transform domains according to
the statistical wavelet model. Here p(m,n) indicates the probabil-
ity that the (m,n)th coefficient is sampled. The sampling pattern
in the frequency transform domain is generated randomly from the
proposed density sampling function, where samples are generated
according to the underlying probability function.

Compared with other sampling patterns, such as radial sam-
pling pattern or variable density spiral that also exploit some “a
priori” information about the image of interest [1, 6], the proposed
sampling patterns are not heuristically constructed, but are based on
reliable statistical models of wavelet coefficients and thus the pro-
posed sampling patterns are analytically justified. Compared with
the method proposed in [8], which samples the signals directly in
the wavelet domain, the proposed sampling method is more general
and does not rely on any specific wavelet basis.

Image reconstruction from a reduced set of random samples is
inevitably exacerbated by the interference resulting from undersam-
pling, which depends on the incoherence of the sampling patterns.
To compare different sampling patterns, an effective metric to quan-
titatively evaluate the incoherence of the sampling patterns is desir-
able. The point spread function (PSF) and transformed point spread
function (TPSF) has been proposed in [7] to evaluate the sampling
pattern incoherence, but they do not consider the “a priori” informa-
tion of the underlying signals and thus are not suitable for this work.
Therefore, a new incoherence metric is proposed in this paper which
incorporates the underlying wavelet statistical models. Simulation
results show that there is strong consistence between the low value
of the proposed metric and the good quality of the reconstructed
image.

2. COMPRESSED SENSING IN A TRANSFORM DOMAIN

A signal x ∈RN is S sparse on some basis Ψ = [ψ1,ψ2, . . . ,ψN ] if
x can be represented by a linear combination of S vectors from Ψ
with S¿N. Thus, the signal can be expressed as: x=Ψθ , where θ
is an N×1 vector with onlySnon-zero entries. Compressive signals,
such as natural images, can be well approximated by this sparse
signal model.

For the application at hand, we consider compressed image
sampling in a transform domain Φ. To obtain the sparse signal in-
formation, we acquire a small set of transform coefficients of x in
Φ. The measurements are given by: y = ΦΩx, where ΦΩ is a M×N
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matrix with M¿N and y = [y1,y2, . . . ,yM ]T represents the M mea-
surements. Each row of ΦΩ, denoted by φ i, is taken from a subset
Ω⊂ {1, . . . ,N} of atoms of Φ. If Ψ and Φ are incoherent with each
other and φ i is randomly chosen, then given M = CS logN ¿ N,
where C ≥ 1 is an oversampling factor, x can be recovered from M
measurements with high probability [1, 2]. The incoherence prop-
erty holds for many pairs of bases (Ψ,Φ). If noise is present, the
measurements can be modeled as: yn = ΦΩΨθ + n, where n is
zero-mean additive white Gaussian noise. The reconstructed sig-
nal can be obtained by using Basis Pursuit Denoising algorithm
(BPDN) which solves the following optimization problem [9]:

min
θ
‖ΦΩΨθ −yn‖2

2 +λ‖θ‖1, (1)

where ‖θ‖1 = ∑i |θi|, yn = ΦΩΨθ +n, and λ > 0 depends on the
noise level. Note that BPDN works equally well for the approxi-
mate reconstruction of compressible signals [9]. If there exist fast
algorithms associated with both Φ and Ψ, then a fast reconstruc-
tion algorithm can be implemented for signal reconstruction [10].
A second image reconstruction algorithm widely used is the mini-
mization of total variation (min-TV) with quadratic constraints. Let
x(i, j) be a N×N image, then min-TV with quadratic constraints
aims to solve the following problem [11]:

min
x
‖x‖TV s. t. ‖ΦΩx−yn‖ ≤ ε, (2)

where ‖x‖TV =∑i, j
√

[x(i+1, j)− x(i, j)]2 +[x(i, j +1)− x(i, j)]2 is
the total variation and ε > 0 is a constant depending on the noise
level. Min-TV with quadratic constraints usually provides better
quality of image reconstruction at the cost of more computation than
BPDN.

3. VARIABLE DENSITY SAMPLING IN THE FOURIER
DOMAIN

Wavelets have well defined spectral characteristics in the Fourier
domain [12]. A coarse scale wavelet has its spectrum localized
in the low frequency band whereas a fine scale wavelet has its
spectrum widely spread out in the high frequency band. In [4],
Fourier sampling of wavelet subbands is proposed to acquire sig-
nals sparse in the wavelet domain. To minimize the coherence
between the sparse wavelets and the selected Fourier atoms, the
Fourier atoms are chosen in the region where significant energy in
the wavelet spectrum exists. Let k = 1,2, . . . ,K denote the scale
of a 1D wavelets where k = 1 is the finest scale and k = K is the
coarsest scale. Without loss of generality, it is assumed that the
1D wavelet has length N = 2K . Let ϕk,l denote the 1D wavelet at
a scale k with a shift l ∈ [0,N2−k − 1], then the discrete Fourier
transform (DFT) spectrum of ϕk,l is approximately over the band
Bk = [−N2−k,−N2−k−1]∪ [N2−k−1,N2−k]. To reconstruct ϕk,l
from its DFT samples, we need to select the DFT atoms randomly
within the band Bk [4]. The probability that a DFT atom within
Bk will be sampled depends on the size of Bk and on the num-
ber of significant wavelets over Bk. The sampling strategy can be
naturally extended to 2D image sampling.

Assuming a natural image of size N×N, we establish a statisti-
cal model to describe the distribution of the image in the 2D wavelet
domain. For mathematical tractability, we assume that the statisti-
cal distribution of 2D wavelet coefficients at each subband can be
modeled as Gaussian distributions with variance at each scale de-
creasing exponentially from coarse scales to fine scales [13, 14].
Let wB

i, j,k denotes the (i, j)th wavelet coefficient in the kth scale of
the subband B ∈ LH,HL,HH. It is assumed that wB

i, j,k obey i. i.
d. zero-mean Gaussian distribution. That is: wB

i, j,k ∼ N (0,σ2
k ).

The variance σ2
k decreases exponentially from coarse scales to fine

scales [14]:
σ2

k = 2−a(K−k), (3)

where a > 0. It was shown in [14] that a can range from 2.25 to 3.1
based on the inference from empirical studies. The coarsest scaling
coefficient of the natural image belongs to a uniform distribution
w0 ∼ U(0,1). The model used in this work is simplified where
correlations between the wavelet coefficients are not accounted for.
Although more accurate statistical models for wavelet coefficients
exist, this model is sufficiently accurate for sampling purposes and
allows us to pursue further analysis. [14, 15].

Assume that the most significant wavelet coefficients are those
whose magnitudes are larger than a given threshold µ > 0. Since
the number of wavelet coefficients at scale k < K is 3(4K−k), it
can be shown that the mean of the number of significant wavelet
coefficients at scale k is approximated as:

λk ≈ 3(4K−k)
2

σk
√

2π

∫ ∞

µ
e
− x2

2σ2
k dx = 3(4K−k)

[
1− erf

( µ√
2σk

)]
,

where erf(x) , 2√
π

∫ x
0 e−t2

dt. Furthermore, let s = max{|m|, |n|}
where −N/2 ≤ m,n < N/2. Then the (m,n)th 2D DFT atom
lies within the spectrum Bk corresponding to the wavelet scale
k = K−blog2(2s)c. It is clear that the number of DFT atoms within
Bk is approximately ςk ≈ 3(4K−k). Thus, based on the subband
incoherent principle, the probability that the (m,n)th DFT atom is
selected should satisfy:

p̃k(m,n) ∝
λk

ςk
≈ 1− erf(

µ√
2σk

). (4)

We are interested in the asymptotic behavior of p̃k(m,n) when k →
1. Note that in that case, σk ¿ 1 and thus µ√

2σk
À 1. Then, using the

fact that erf(x)≈ 1− e−x2

x
√

π , for xÀ 1, p̃k(m,n) can be approximated
as:

p̃k(m,n) ∝
σk

µ
e
− µ2

2σ2
k ≈ (2s)−

a
2

µ
e−( µ2

21−a sa) (5)

In Eq. (5), the term e−( µ2

21−a sa) determines the asymptotic behavior of
p̃k(m,n). Thus, it is clear that the decreasing rate of p̃k(m,n) alone

with the atom coordinate s depends on the the term e−( µ2

21−a sa). For
the random selection of DFT atoms, it is convenient to construct a
sampling density function in the DFT domain and generate a sam-
pling pattern according to the sampling density function.

To conform to the decaying behavior of the sampling probabil-
ity with increasing coordinates while keeping a simple form of the
sampling function, we propose a new family of sampling density
functions containing only exponential terms. Assuming the size of
the underlying image is M×N, the probability that the (m,n)th co-
efficient is sampled reduces to:

pF (m,n) = e
−

(√
( m

M )2+( n
N )2

)aF

σ2
F , (6)

where −M/2 ≤ m < M/2, −N/2 ≤ n < N/2. aF depends on the
characteristics of the underlying image and is directly related to a
in (3). From Eq. (5), it is clear that aF should be slightly larger
than a to capture the decaying behavior of the sampling probabil-
ity. If an estimation of a is not available, then setting aF = 3.5 is
recommended since this value leads to robust and satisfactory CS
performance. σF is a positive parameter which is tuned to obtain
desired number of samples.

The sampling patterns generated from the sampling density
function are binary where 1 at (m,n) indicates a sampling point and
0 means no measurement on that point is made. With a probability
given by pF (m,n), 1 will be generated at (m,n); otherwise, 0 will be
generated at (m,n). The local density of the samples approximates
the value of the sampling density function and it can be shown that
the number of samples generated is monotonically increasing with
σF . Thus, it is easy to tune the parameters σF iteratively to get the
desired number of samples.
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Figure 1: Ordered DHT and DCT spectra of Daubechies-4 wavelets (a) at scale 4; (b) at scale 3; (c) at scale 2; (d) at scale 1.

4. VARIABLE DENSITY SAMPLING IN THE ORDERED
DHT DOMAIN

Sampling in the ordered DHT domain is suitable for image sam-
pling with hardware capable of representing binary measurement
matrices. An appealing feature of ordered DHT is that the 2D
basis images are binary and can be easily implemented by digital
micro-mirror devices (DMD) or liquid crystal spatial light modula-
tors (LC-SLM) [16]. Furthermore, ordered DHT is equipped with
fast transform algorithms. In ordered DHT, the atoms are ordered
by the number of sign changes (zero crossing) between consecu-
tive entries in a Hadamard atom [17]. Thus, ordered DHT can be
regarded as a generalized class of DFT and more specifically, a bi-
narized version of DCT sharing thus many properties of DFT and
DCT [18].

To design the incoherent sampling pattern in the ordered DHT
domain, we exploit the fact that ordered DHT can be thought of as
a binary approximation of the DCT. To this end, we first describe
the spectrum characteristics of the 1D wavelets in the DCT domain.
Let vk,l(m), 0 ≤ m ≤ N − 1 be the the DCT of a wavelet ϕk,l(n),
n = 0,1, . . . ,N−1. Define the averaged DCT spectrum of a wavelets
at scale k as:

V (m)k =
N2−k−1

∑
l=0

abs
(
vk,l(m)

)
. (7)

It can be shown that the DCT spectrum of wavelets at scale k has ap-
proximately the same shape as their Fourier spectra [19]. The DCT
spectrum band Bk of wavelets at scale k is Bk ≈ [N2−k,N2−k+1]
[19]. Much like the incoherent sampling in the Fourier domain, to
reconstruct ϕk,l from its DCT samples, we need to select the DCT
atoms randomly within the band Bk. Now consider the incoherent
sampling in the ordered DHT domain. We can define the averaged
ordered DHT spectrum of wavelets at scale k as:

H(m)k =
N2−k−1

∑
l=0

abs(hk,l(m)), (8)

where hk,l(m), 0≤ m≤ N−1 is the ordered DHT of ϕk,l(n). Since
ordered DHT is the binary approximation of the DCT, H(m)k can be
approximated as: H(m)k ≈ V (m)k. To further illustrate this point,
Fig. 1 shows H(m)k for k = 1 to 4 where N = 256 and Daubechies-
4 wavelets are used. The corresponding DCT spectrum at k scale is
also shown. It can be seen that the averaged ordered DHT spectrum
and the averaged DCT spectrum are similar, which indicates that
the principles of sampling in the DCT domain should be equally ap-
plied to the sampling in the ordered DHT domain. Such conclusion
also hold for 2D DCT and 2D ordered DHT. Following a similar
procedure to that described in Sec. 3, the variable density sampling
function in 2D ordered DHT domain is designed as follows:

pH (m,n) = e
−

(√
( m

M )2+( n
N )2

)aH

σ2
H , (9)

where 0≤m≤M−1, 0≤ n≤N−1. aH depends on the parameter a
in the image statistical model (3) and σH > 0 depends on the number

of samples. The sampling patterns are then obtained as realizations
of the statistical model pH (m,n).

5. EVALUATION OF INCOHERENCE SAMPLING

Undersampling in the transform domain inevitably brings aliasing
interference in signal reconstruction. However, if the sampling is
incoherent, the aliasing interference has noise-like effect and can
can be removed by compressed sensing without degrading the im-
age quality [7]. To evaluate the incoherent sampling patterns for
natural images we consider the interference in the wavelet domain
resulted from undersampling in the measurement transform domain
Φ. To this end, we extend the TPSF analysis in [7] and incorporate
the statistical model of signal distribution in the wavelet domain.

Let wi, j , (i, j)∈ [0,N−1]× [0,N−1], be the simplified notation
of the (i, j)th 2D wavelet coefficient of a natural image that obeys
the proposed model in Sec. 3. Incoherence is measured by the inter-
ference in the wavelet domain caused by the undersampling in Φ.
Without loss of generality, let Φu be the undersampled ordered DHT
operator and Φ+

u be the back-projection ordered DHT operator. Let
Ψ be the sparse wavelet transform and Ψi, j be the (i, j)th wavelet
atom. For an image of size N ×N, we define a weighted TPSF
as: T i, j

w = |wi, j|ΨΦ+
u ΦuΨi, j . T i, j

w is the interference in the wavelet
domain caused by the undersampling of |wi, j|Ψi, j in ordered DHT.
T i, j

w is the distribution of the energy of |wi, j|Ψi, j to other wavelets
through back-projeciton. A nonzero value of T i, j

w at (m,n) 6= (i, j)
means that the wavelet component at (m,n) suffers from the inter-
ference caused by the undersampling of the wavelet component at
(i, j). Note that if test image is available, wi, j can also be drawn
from the test image directly. The incoherence of the sampling pat-
tern can be evaluated by the following metric ξ defined as:

ξ =
1

N2×N2 ∑
(i, j)

∑
(m,n)

|T̃ i, j
w (m,n)|2, (10)

where T̃ i, j
w (m,n) is defined as: T̃ i, j

w (m,n) = T i, j
w (m,n) for (m,n) 6=

(i, j) and T̃ i, j
w (m,n) = 0 for (m,n) = (i, j). ξ can effectively mea-

sure the strength of the aliasing interference. The smaller the ξ , the
smaller the incoherent interference. As will be shown in the simula-
tions, among several sampling patterns, ξ can be used to select the
sampling pattern that yields the lowest incoherence interference.

6. SIMULATIONS

Due to the space constraints, only compressed image sampling in
the 2D ordered DHT domain is illustrated. The proposed sampling
method is applied to acquisition and reconstruction of the natural
image “Boat” shown in Fig. 2(a) with size 256×256. The test im-
age is assumed sparse in the Daubechies-8 wavelet domain and the
pixel values are scaled within interval [0,1]. It is also assumed that
each measurement is corrupted by additive white Gaussian noise
with variance σ2 = 1e−4. The BPDN algorithm and min-TV with
quadratic constraints algorithm are used for image reconstruction.
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Figure 2: (a) The original “boat” image. (b) Part of the original im-
age. (c) Proposed variable density sampling pattern. (d) Part of the
reconstructed image from the proposed sampling pattern. (e) Radial
sampling pattern. (f) Part of the reconstructed image from the radial
sampling pattern. (g) Logarithmic spiral sampling pattern. (h) Part
of the reconstructed image from the Logarithmic spiral sampling
pattern.

Figure 2(c) depicts a realization of the proposed variable den-
sity sampling pattern in the ordered DHT domain that contains
20000 sampling points generated from Eq. (9) with aH = 3.5 and
σH = 0.501. To illustrate more details of the reconstructed im-
age, we compare part of the original image and part of the recon-
structed image corresponding to the region within the white frame
in Fig. 2(a). The framed area of the original image and the framed
area of the reconstructed image are shown in Fig. 2(b) and Fig. 2(d),
respectively. It is clear that with an undersampling ratio of 30.5%,
the test image is reconstructed with only small distortion.

Table 1: Reconstruction of images in ordered DHT domain. The
performance is measured by PSNR (dB). “P. VD” is the proposed
variable density sampling.

No. P. VD Radial Log-spiral Noiselet SFE SBHE
boat

5000 22.75 19.88 19.79 18.51 19.27 18.62
10000 24.93 22.93 22.77 20.78 21.39 20.74
15000 26.70 25.09 25.03 22.67 23.25 22.69
20000 28.36 26.96 26.95 24.19 24.93 24.56
25000 29.55 28.79 28.64 25.58 26.27 26.18

Lena
5000 25.51 21.28 21.51 20.14 21.25 20.05

10000 27.91 25.33 25.49 23.10 23.87 23.10
15000 29.77 28.24 28.04 25.06 25.77 25.45
20000 31.24 30.07 29.91 26.76 27.56 27.43
25000 32.57 31.82 31.54 28.48 29.17 29.01
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Figure 3: Reconstruction results of image “Boat” and “Lena” from
the proposed sampling patterns generated by different aH . The num-
ber of measurements is 20000.

For comparison purposes, we also reconstruct the “Boat” image
from the samples taken from the radial sampling pattern and loga-
rithmic spiral sampling pattern shown in Fig. 2(e) and Fig. 2(g), re-
spectively. The number of measurements taken from both sampling
patterns are the same as that of the proposed sampling pattern. Part
of the corresponding reconstructed images are shown in Fig. 2(f)
and Fig. 2(h), respectively. Both reconstructed images show more
aliasing artifacts, which indicates that exploiting the “a priori” in-
formation about the distribution of the wavelet coefficients in the
design of the projection operator leads to a better image reconstruc-
tion.

More extensive simulations are applied to images boat and
Lena with size 256× 256. Simulation results are summarized in
Table 1, where the number of measurements ranges from 5000 to
25000 and the best results as the average of ten runs is also high-
lighted. For each test image, it is shown that the proposed variable
density sampling achieves much better performance than logarith-
mic spiral patterns and radial patterns. The performance gain is
2 ∼ 4 dB with 5000 samples and 0.5 ∼ 0.8 dB with 25000 sam-
ples. To verify that the proposed sampling pattern, which exploits
the a priori information of natural images, achieves better perfor-
mance than methods that do not exploit the a priori information,
the simulation results using the Noiselet ensemble, SFE and SBHE
under different number of measurements are also presented in Ta-
ble 1. To acquire the image information, samples of the Noiselets,
SFE and SBHE are taken randomly. The proposed sampling method
achieves the best performance in all simulations. Such comparison
clearly shows the performance gain achieved by exploiting the a
priori information.

The incoherence of the proposed sampling patterns can also be
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evaluated by using the proposed incoherence metric proposed in this
paper. We test three sampling patterns in the ordered DHT domain
using the image “Boat” and take 5000 measurements. The inco-
herence metrics are 0.0034, 0.0062 and 0.0078 for the proposed
variable density sampling pattern, radial sampling pattern and log-
arithmic spiral sampling pattern, respectively. The lowest metric
value is yielded by the proposed variable density sampling pattern
leading to the least aliasing interference, which, in turn, is in accor-
dance with the best reconstruction performance.

Finally, we show that the reconstruction performance is not very
sensitive to the parameters aF or aH in the sampling functions. Here,
we test the reconstruction performance as the parameter aH changes.
Figure 3 shows the reconstruction of images “Boat” and “Lena”
with 20000 measurements. Images “Boat” and “Lena” have differ-
ent curves and textures, thus have different statistical model param-
eters. The sampling patterns are constructed from sampling density
functions with aH ranging from 2 to 5. It is shown in Fig. 3 that
the sampling patterns lead to similar performance for both images
when aH ranges from 2.5 to 4.5. For both images, the difference
of performance measured by PSNR is within 0.3 dB with different
aH . Thus, the image reconstruction is robust to variations over aH .
Interestingly, note also that the reconstruction performance tends to
become worse as aH increases. Since larger aH means that more
low frequency samples are taken, the simulation shows that sam-
pling only low frequency components is not a good strategy.
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x 10
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P
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N
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dB

)

 

 

Proposed variable density sampling
Logarithmic spiral
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Figure 4: Reconstruction results for image “Boat’ using min-TV
algorithm with quadratic constraints.

Figure 4 shows the simulation results of image recovery us-
ing min-TV. For illustrative purposes, only the following sampling
schemes are considered: the proposed variable density sampling,
logarithmic spiral sampling and SBHE [5]. The simulation results
show that the proposed variable density sampling again achieves the
best performance, which is more obvious when the sampling ratio is
low. It can be concluded that the advantages of using the proposed
variable density sampling does not depend on a specific reconstruc-
tion algorithm.

7. CONCLUSIONS

In this paper, a family of variable density sampling patterns are pro-
posed for compressed sensing of natural images in the Fourier do-
main, DCT and ordered DHT domain, which are based on the sta-
tistical model of natural images in the sparse wavelet domain. Com-
pared with other sampling scheme, our proposed method is simple,
fast and can be extended to a wide range of applications. Further-
more, the “a priori” information needed is pretty general and no
data training for parameter estimation is needed. The proposed met-
ric, along with extensive simulation study, show that the proposed
sampling pattern leads to the least coherent interference.
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