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ABSTRACT

Fractionally-spaced channel equalizers suffer from sta-
bility problems due to ill-conditioning of the input sig-
nal. Pulse shaping is the root cause of signal ill-
conditioning, which manifests itself as lack of persistent
excitation, poor convergence and coefficient drifts. The
traditional solutions to ill-conditioning involve regular-
ization of the input signal autocorrelation matrix using
a tap-leakage adaptive filter, which improves the eigen-
value spread of the input signal at the expense of in-
creased steady-state mean-squared error (MSE). In this
paper we propose a new solution based on the transform-
domain least-mean-square (TD-LMS) algorithm. The
proposed algorithm exploits the unitary transform of
TD-LMS to identify and update only the equalizer coef-
ficients that fall within the passband of the pulse shape.
The new algorithm improves the eigenvalue spread of
the input signal without compromising the MSE perfor-
mance, which in turn eliminates stability problems and
produces a much improved convergence performance.

1. INTRODUCTION

High-speed transmission of data over bandlimited chan-
nels causes undesirable signal distortion which is re-
ferred to as intersymbol interference (ISI) [1]. Chan-
nel equalization at the receiver aims to undo ISI intro-
duced by the bandlimited channel. Timing and carrier
recovery from the received signal is significantly sim-
plified if it is sampled faster the symbol (baud) rate.
The use of sampling at rates higher than the baud rate
results in so-called fractionally-spaced channel equaliza-
tion [2]. An important feature of fractionally-spaced
channel equalization is its ability to incorporate the
matched filter into the the adaptive equalizer. A ma-
jor problem with fractionally-spaced equalization when
combined with pulse shaping is the lack of persistent ex-
citation at the equalizer input, which has the potential
to lead to instability, coefficient drift and poor conver-
gence performance. Pulse shaping is employed to main-
tain a narrow bandwidth for the modulated signal and
helps avoid interference and cross-talk. Sampling of a
pulse shaped signal beyond the baud rate creates an un-
desirable spectral band with close-to-zero spectral con-
tent. This in turn significantly increases the eigenvalue
spread of the signal applied to the adaptive equalizer.

Traditional solutions to the lack of persistent ex-
citation arising from pulse shaping involve the use of
leaky-LMS (least-mean-square) type adaptive filters (see

e.g. [3, 2, 4, 5, 6, 7]) and time-domain interpolation [8].
The former algorithms, which have proved to be more
popular, essentially introduce some regularization in
order to decrease the eigenvalue spread of the input
signal autocorrelation matrix. A shortcoming of this
approach is to reduce the input signal-to-noise ratio
(SNR), leading to increased steady-state mean-squared
error (MSE). In this paper we propose a new approach
to alleviate lack-of-persistent excitation problems pred-
icated on rank reduction via transform-domain adap-
tive filtering. Using a rough knowledge of excess band-
width for the pulse shape, we implement a reduced-rank
transform-domain LMS algorithm, which uses those out-
puts of the unitary transform that correspond to the
passband of the pulse shape while discarding the other
transform outputs. By so doing the adaptive filter only
deals with the input signal in the passband of the pulse
shape, thereby entirely ignoring the higher frequencies
that carry no or little information. Consequently the
eigenvalue spread of the input signal is reduced without
necessarily causing channel noise amplification.

The paper is organized as follows. Section 2 de-
scribes pulse shaping, fractionally-spaced channel equal-
ization and persistent excitation problems associated
with fractionally-spaced equalizers. The bandwidth lim-
ited signal created by pulse shaping is shown to cause
numerical ill-conditioning and convergence problems. In
Section 3 we review the transform-domain LMS algo-
rithm and develop a modified version of the transform-
domain LMS algorithm to avoid ill-conditioning aris-
ing from pulse shaping. Section 4 presents simulation
studies to demonstrate the effectiveness of the proposed
reduced-rank transform-domain LMS algorithm.

2. FRACTIONALLY-SPACED CHANNEL
EQUALIZATION

2.1 Pulse shaping

In digital communications each symbol is replaced by a
continuous pulse during the transmission process. The
objective of pulse shaping is to comply with the band-
width requirements of the transmission channel, which
is also related to tolerable interference levels for neigh-
bouring channels. For a symbol (baud) rate of 1/T sym-
bols/s, the ideally bandlimited pulse is a sinc pulse

p(t) =
sin Wt

Wt
, W =

π

T
. (1)
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Figure 1: Baseband fractionally spaced equalization:
(a) Continuous-time model, and (b) equivalent discrete-
time model.

In addition to achieving a perfectly bandlimited signal
with bandwidth W , the sinc pulse does not introduce
any ISI to the digital bit stream, which is a property
obeyed by all Nyquist pulses [2]. However, being of infi-
nite length, the sinc pulse is not practical. A commonly
used Nyquist pulse is the raised-cosine pulse which also
has infinite length, but can be approximated by FIR
filters. The bandwith of the raised-cosine pulse is con-
trolled by the roll-off factor α between W and 2W . For
α = 0 it has bandwidth W (0% excess bandwidth). As
α increases from 0 to 1 the excess bandwidth increases
from 0% to 100%. For α close to 1 the raised-cosine
pulse has vanishingly small tails, allowing a good ap-
proximation by a sufficiently high-order FIR filter.

2.2 Fractionally-Spaced Equalization

The block diagram of a baseband digital communica-
tion system employing fractionally spaced equalization
is shown in Fig. 1 [9]. A fractionally-spaced equalizer
(FSE) samples the received signal at a rate higher than
the symbol rate T (usually T/2) in order to avoid alias-
ing of the bandlimited received signal for non-zero excess
bandwidth. If the pulse shape had zero-excess band-
width, then baud-rate sampling would suffice. However
this is not achievable in practice. Since the received
signal is sampled alias-free, it can be reconstructed per-
fectly from its fractionally-spaced samples. This in turn
allows for better timing and carrier recovery at the re-
ceiver. FSE combines matched filtering and adaptive
equalization, thereby doing away with the need to have
a separate matched (receive) filter. Another advantage
of FSE is that it is capable of providing perfect zero-
forcing equalization for an FIR channel with no common
subchannel zeros by using an FIR equalizer [10].

The normalized least-mean-square (NLMS) algo-
rithm for FSE with N × 1 coefficient vector θ(k) =
[θ1(k), . . . , θN (k)]T is

θ(k+1) = θ(k)+
μ

‖x(2k)‖2 + ε
e(k)x∗(2k), k = 0, 1, . . .

(2)
where μ is the step-size parameter, ε is a small pos-

itive number that avoids numerical problems with di-
vision when ‖x(2k)‖2 = xH(2k)x(2k) is close to zero.
The regressor vector x(2k) contains fractionally-spaced
(T/2-sampled) channel outputs

x(2k) = [x(2k), x(2k − 1), . . . , x(2k − N + 1)]T (3)

and e(k) is the equalizer output error

e(k) = u(k − D) − y(k). (4)

Here D is a delay for the desired equalizer response that
takes into account pulse shape and channel delays. The
FSE output is related to the fractionally-spaced regres-
sor vector through

y(k) = xT (2k)θ(k). (5)

It is clear from (2) that FSE operates as a linear adaptive
filter, but adapts its coefficients at the symbol rate as
implied by downsampling of its output in Fig. 1(b).

2.3 Lack of Persistent Excitation

As a result of pulse shaping the bandwidth of the T/2-
sampled signal applied to FSE is between π/2 and π rad.
Depending on the roll-off factor α, part of the sampled
signal spectrum between (1 + α)π/2 and π will be zero
or very small. This results in an ill-conditioned auto-
correlation matrix for the input signal since some of its
eigenvalues will be very small. To see this consider the
N × N input correlation matrix R = E{x(2k)xT (2k)}.
The eigenvalues of R, λi, are bounded by [2]

min
ω

S(ω) < λi < max
ω

S(ω) (6)

where S(ω) is the power spectral density of the input
signal. As N → ∞ the maximum and minimum eigen-
values of R are given by

λmax → max
ω

S(ω) and λmin → min
ω

S(ω). (7)

Thus if the input signal spectrum has zero regions, R
will have large eigenvalue spread λmax/λmin, adversely
affecting the convergence of the adaptive filter and in
some cases resulting in catastrophic coefficient drift.

Several solutions have been offered to address FSE
stability problems caused by lack of persistent excita-
tion. What is common to these solutions is introduction
of some regularization to R to improve its conditioning
at the expense of compromising the steady-state MSE.
We next propose a much better solution that does not
draw on regularization or tap-leakage adaptive filter im-
plementation.

3. REDUCED-RANK
TRANSFORM-DOMAIN LMS EQUALIZER

The transform-domain LMS (TD-LMS) algorithm has
been proposed to speed up the convergence of the
LMS algorithm for strongly correlated input signals (see
e.g. [11, 12]). It is based on the intuitive notion of
pre-whitening the input signal. The whitening process
involves approximate decorrelation by a unitary trans-
form followed by power normalization. Fig. 2 shows the

667



N×N         
Unitary 

Transform T 

x(k) 

v1(k) 
× 

×
v2(k) 

×
vN(k) 

N-tap LMS  

+ 
. 
. 
. 

w1(k) w2(k) wN(k) 

Σ–1 

y(k) 

Figure 2: Transform-domain LMS.

building blocks of the TD-LMS algorithm. The input
regressor vector x(k) is applied to an N × N unitary
transform T , which is usually a fixed data-independent
matrix obtained from a discrete transform such as the
discrete Fourier transform (DFT), discrete cosine trans-
form (DCT), Hartley transform, etc. DCT is particu-
larly attractive since it is real-valued. It also provides
spectral analysis of the input signal. For example one
can determine the spectral content of a certain frequency
band by checking the corresponding transform (DCT
bin) output. The output of the transform

v(k) = Tx(k) (8)

has the approximately diagonalized autocorrelation ma-
trix Σ = E{v∗(k)vT (k)}. Power normalization of the
entries of v(k) produces an approximately pre-whitened
regressor vector with almost unit eigenvalue spread. Ap-
plying LMS to this pre-whitened regressor with adaptive
coefficients w1(k), . . . , wN (k) improves the convergence
rate dramatically for coloured x(k).

Using TD-LMS to adapt FSE coefficients in Fig. 1(b)
results in the following update equation

θ(k+1) = θ(k)+μΣ−1(k)v∗(k)e(k), k = 0, 1, . . . (9)

where

v(k) = Tx(2k)

y(k) = vT (k)θ(k)
e(k) = u(k − D) − y(k).

The diagonal matrix Σ(k) =
diag{σ2

1(k), σ2
2(k), . . . , σ2

N (k)} contains the power
estimate for each DCT bin output vi(k). Using expo-
nentially weighted averaging, the diagonal entries of
Σ(k) can be computed as

σ2
i (k) = (1−λ)|vi(k)|2+λσ2

i (k−1), k = 0, 1, . . . (10)

where 0 < λ < 1 is the exponential forgetting factor.
As we saw before, zero or small spectral content

of the input signal is responsible for large eigenvalue
spread, convergence problems and possible coefficient
drift. All these problems can be rectified by designing
the equalizer in such a way that it only deals with the
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Figure 3: Reduced-rank TD-LMS (M < N).

non-zero spectral part of the input signal and ignores the
zero spectrum. This is also equivalent to approximating
R with a smaller size autocorrelation matrix that is full
rank. This type of reduced-rank matrix approximation
is often performed when solving ill-conditioned least-
squares problems [13]. Rather than use computationally
expensive singular value decomposition (SVD) to obtain
a reduced-rank matrix approximation, we propose the
following modification to TD-LMS that achieves roughly
the same objective albeit in a much simpler way: Use
only the first M DCT bins (M < N) that cover the
passband of the pulse shape. This leads to the following
reduced-rank TD-LMS (RR-TD-LMS) algorithm:

θM (k+1) = θM (k)+μΣ−1
M (k)v∗

M (k)eM (k), k = 0, 1, . . .
(11)

where

θM (k) = [θ1(k), . . . , θM (k)]T

ΣM (k) = diag{σ2
1(k), σ2

2(k), . . . , σ2
M (k)}

vM (k) = [v1(k), . . . , vM (k)]T

yM (k) = vT
M (k)θM (k)

eM (k) = u(k − D) − yM (k).

As shown in Fig. 3, RR-TD-LMS still uses the same
N × N unitary transform T as in TD-LMS, but only
requires an M -tap LMS adaptive filter rather than the
full N -tap adaptive filter where M < N . The selection
of the rank parameter M depends on the value of α. As
a rule of thumb, we have

M ≈ (1 + α)N
2

. (12)

The rationale for this expression is explained in Fig. 4.
By using a shorter adaptive filter than TD-LMS, RR-
TD-LMS also enjoys some reduction in computational
complexity.

For bandlimited input signals TD-LMS attempts to
normalize power in all DCT bins even though some
might have zero or very small signal as a result of pulse
shaping (see Fig. 4). Consequently the channel noise
in those bins that contain almost zero signal get ampli-
fied much more than other bins. The noise amplifica-
tion in DCT bins with zero output tends to increase the
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Figure 4: Fractionally spaced equalizer input spectrum
and DCT bins from 0 to π rad. The bandwidth of the
input signal is approximately (1 + α)π/2 rad which cor-
responds to DCT bin (1 + α)N/2.

steady-state MSE level for the adaptive filter. On the
other hand, the RR-TD-LMS algorithm reduces the ad-
verse effect of noise amplification by not attempting to
power-normalize the DCT bins with almost zero output.

4. SIMULATION RESULTS

In this section we present computer simulations for
fractionally-spaced equalization using NLMS, TD-LMS
and the proposed RR-TD-LMS algorithm. The sim-
ulated channel is a T/2-sampled terrestrial microwave
channel (channel #3) obtained from the Rice Uni-
versity Signal Processing Information Base (SPIB) at
http://spib.rice.edu/spib/microwave.html. The
impulse response and frequency response of this channel
are shown in Fig. 5. The transmitted data symbols are
white and QPSK modulated. The pulse shape is an FIR
raised-cosine pulse of order 20. The roll-off factor is set
to α = 0.2. The frequency response of the T/2-sampled
raised-cosine pulse shape is shown in Fig. 6. Note that
the pulse is approximately bandlimited to 1.2W . The
additive channel noise is complex Gaussian with 25-dB
signal-to-noise ratio. The FSE length is set to N = 200
and the delay for training is D = 30. The TD-LMS
and RR-TD-LMS use a forgetting factor of λ = 0.99
for power estimation. The rank parameter for RR-TD-
LMS is set to M = 120 which is consistent with α = 0.2
(see (12)). The regularization parameter for NLMS is
ε = 10−4. All adaptive filters use centre-tap initializa-
tion given by θ(0) = [0, . . . , 0, 1, 0, . . . , 0]T .

Fig. 7 shows ensemble-averaged learning curves for
NLMS, TD-LMS and RR-TD-LMS where MSE =
E{|e(k)|2}. For ensemble averaging 200 simulation runs
were used. The step-size parameters were set to μ = 1
for NLMS and μ = 0.006 for both TD-LMS and RR-TD-
LMS. These step-sizes were chosen to ensure identical
initial convergence rates. We observe that the proposed
algorithm RR-TD-LMS outperforms both TD-LMS and
NLMS by achieving a much lower steady-state MSE.
This outcome is a result of rank reduction by discarding
zero-spectral region of the input signal, which improves

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de

Sample

0 0.2 0.4 0.6 0.8 1
−15000

−10000

−5000

0

5000

Normalized Frequency  (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.2 0.4 0.6 0.8 1
−100

−50

0

50

Normalized Frequency  (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Figure 5: Magnitude impulse response and frequency
response for SPIB microwave channel #3.

the conditioning of the input signal autocorrelation ma-
trix and alleviates noise amplification. Thanks to the
absence of regularization, RR-TD-LMS also avoids un-
desirable elevation of steady-state MSE. The extremely
slow convergence of the NLMS algorithm resulting from
a flat cost function associated with large eigenvalue
spread is clearly visible from Fig. 7.

The rank parameter M controls the steady-state
MSE achievable by the RR-TD-LMS algorithm. This
is shown for the previous microwave channel simulation
in Fig. 8. If M is chosen too small, then part of the use-
ful spectrum of the input signal is discarded, which has
the effect of increasing the steady-state MSE. The opti-
mal value for M is seen to be approximately M = 110.
If a larger M is used, the MSE begins to climb gradu-
ally. Note that M = 200 is equivalent to the TD-LMS
algorithm.

5. CONCLUSIONS

In this paper we have proposed a new fractionally-
spaced channel equalization algorithm that avoids prob-
lems arising from pulse shaping of transmitted sig-
nals. The proposed algorithm modifies the TD-LMS
by exploiting the bank-of-bandpass-filter interpretation
of the DCT unitary transform. The transform outputs
mapped to the frequencies larger than the bandwidth
are ignored, thereby improving the eigenvalue spread
of the signal and alleviating noise amplification. The
effectiveness of the new algorithm was illustrated with
simulation examples.
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Figure 6: Frequency response of the simulated
fractionally-spaced raised-cosine pulse shape with roll-
off factor α = 0.2.
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