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ABSTRACT complex white Gaussian noise vector. The Rayleigh fading

The application of Lattice Reduction techniques over the&hannel matrid, is considered known at the receiver. This
MIMO channel matrix is known to improve the performance Matrix is formed byng > nr complex-valued elements,ijf

of MIMO detectors. Several authors have proposed Lattice/Nich represent the complex fading gain from {hi trans-
Reduction-Aided K-Best detectors for improving the perfor-Mit antenna to theth receive antenna. For practical reasons,
mance of conventional K-Best algorithms. In this paper, efit iS convenient to transform th@ x nr)-dimensional com-
ficient ways of decreasing the computational complexity of?!€X €quation (1) into an equivaleffing x 2nr)-dimensional
previously proposed schemes are presented. The knowledt2!-valued representation (2) [S]:

about how the Lattice Reduction stage affects the transmit-

ted symbols is exploited in order to significantly decrease the | O(xc) | _ | O(He) —O(He) || O(se) n O(ve)
complexity without performance loss. Oxe) | ~ | O(He) O(He) || O(se) O(ve)
)
1. INTRODUCTION The real-valued description of the system (2) will be

onsidered throughout this work, denotedsby- Hs + v.
ence, components sfwill belong to the real constellation
. For instance, a QAM constellation of 16 possible sym-
0ls (16-QAM) can be represented by the real constellation
={-3,-1,+1+3}.

In the last years, Lattice Reduction (LR) techniques hav
been proposed to transform the MIMO system model int
an equivalent one with a better-conditioned channel matri
[1]. These techniques have been shown to improve the d
tection performance when used previously to linear detecto
[2][3]. Recently, some other authors have also proposed LR

algorithms for working with K-Best algorithms [4], build- 3. LATTICE-REDUCTION ALGORITHMS.

ing Lattice-Reduction-Aided (LRA) K-Best detectors. The

K-Best algorithm is a suboptimal MIMO detector based onlf the columns of the channel matrid are considered the
tree search decoding [5]. LRA K-Best algorithms requirebases of a lattice, LR strategies such as the LLL algorithm
an initial estimate of the solution at each level of the tree[6] can be used to transform the channel matiinto a new
generally obtained via Successive Interference Cancellatiochannel matrixH = HT with less correlated columns [2],
(SIC) schemes. In order to obtain tKebest candidates at whereT is a unimodular matrix (déT') = £1) with inte-
each level of the detection, these methods perform a searger entries and called the transformation matrix. Consider-
of N constellation points around the solution given by theing the transformation matrif into the system model (2),
SIC detector. In this work, we propose a low complexity pre-the received signal vectar can be rewritten as

processing stage that allows limiting this search around the
SIC solution without decreasing the detection performance.
In addition, a dynamic distribution of both tikeandN val-

ues is proposed in order to further decrease the number of 1
explored candidates. Results show that these strategies c4here the symbols to be detected are now T *s. More-

X:HTT_ls+V:ﬁz+v, 3)

noticeably reduce the computational cost. over, the application of Lattice Reduction techniques before
the detection requires the constellation symbols being a set
2. SYSTEM MODEL. of continuous integers, which will be call€d. Therefore,

it is necessary to introduce aw2x 1 displacement vector
Let us consider a block fading MIMO system with trans-  d = [1,...,1]7 to shift and scale the original constellation
mit antennashg receive antennasig > nr) and a signal to - symbols in the following way
noise ratio denoted by. The baseband equivalent model for

such MIMO system is given by (x +Hd) u [(s+d)

2

% [+3-mE+y @

x¢ = Hese + ve, 1) 2 2 2

wheres represents the baseband signal vector transmittedtheres = (s +d)/2 andz = T~'s. After this transforma-
during each symbol period, which is composed by elementson, the signak is used for carrying out the detection and
chosen from the same constellatiQg, such as QAM. Vec- the detected vector is then transformed back to the original

tor x¢ in (1) denotes the received symbol vector ands a  formats = 2Tz — d.
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4. DETECTION IN LATTICE REDUCED MIMO this group of detectors are commonly known as K-Best de-
SYSTEMS tectors.

. . . . The steps proposed in [4] to carry out the detection are:
Given the received signat and before applying any LR o :
technique, the detection problem consists in determining the 1) Perform a QR @ctonzatlon.of the Iatt~|cTe-reduced
transmitted vectog with the highest a posteriori probabil- channel matrix(H = QR) and multiply (4) byQ". The
ity. This is typically carried out in practice by solving the SYStém becomes:
following least squares problem

= Qv
§=arg min ||x—Hs|?. (5) X =Rz+——. (6)
seQ2T

The Maximum-Likelihood (ML) algorithm performs an ex- 2) Calculate symbol estimate at layet 2nt using a SIC
haustive search over the totah2dimensional lattice points procedure:
s. However, such an implementation is cumbersome for real R i%nT
systems and in practice the detection is performed via al- o= |=—1|; (7)
ternative detectors, such as tree search methods [7]. These Ronr 2ny

methods obtain the solution of (5) by performing a searc
for each of the components of vectrtaking into account 3) PickN ; A

o S > K integer values arourity,. at the 2y layer
that they belong to a finite and a priori known alphabet. and calculate their Euclidean distanceﬁépr.

However, when a previous LR has been performed to the : . . .
channel matrix, the unknown vector to be detected becomes 4) Select thek candidates with the lowest Euclidean dis-

z = T !s instead ofs. Unfortunately, the set of values ances and store them.
is not predetermined in advance, since it not only depends ) Decreasd =1~ 1. For each of th&k best paths
on the constellation used but also on the mafrixt (i.e. it 4412y that were st_ored in levél+-1, generate the symbol
depends on the current channel realization). A straightforéStimate at layelrusing the SIC procedure:
ward way of determining all the possibievalues could be o )
calculating all the possible € Q'™ and afterwards trans- A {Xf - RI:IH%TAZLLZ]TJ

ﬁI,I

r?/vhereH rounds to the nearest integer.

forming them withT 1, in order to have the points of the 1= (8)
transformed lattice available. For instance, the set of possi-

ble values for symbols belonging to a QPSK constellation yherei € 1 K
pressed in its real form is known to b= {—1,1}. Once the 6) PickN > K integer values arourd] at thel layer and
shift operation is performed over it, it results@d= {0,1}.  .;iculate their Euclidean distancestfo
Considering the example for the<2 transformation matrix 7) Select thek candidates with the lowest Euclidean dis-
used in [3], that isT = [1,—1;0,1] and its inverse matrix iS  {1ces and store them

el ) . . X .
T " =[1,1,0,1], an exhaustive calculation of the possible " gy'i¢ the jteration arrives at level 1 of the tree, stop the
vectors in the transformed lattice gives the correspondencggorithm and select the best path s Transform it into
shown in Table 1. §=2T%— d, quantize the value &if it is outside the initial

lattice and give the result as an output. Otherwise go to step
Table 1: Correspondence betwe@nvectors andz vectors for a  5).
QPSK constellation and a value &f= [1,—1;0,1].
5. REDUCTION OF THE NUMBER OF

Possibles | Associatedz CANDIDATES
0,07 0,07 As said above, the set of possibleval flected
01T L s said above, the set of possiliesalues clomes affecte
Lo 21T by the inverse of the transformation matiix =, resulting in
[ 1 AT [2: oT a new vector to be detected called It is known that cal-

culating all possiblez values requires a computational cost
similar to exhaustive search detection. However, if the mini-
; ; ; um and maximum integer value of each of the components
According to the values shown |n~Ta_;1bIe 1,itcan be noted;} vectorz are known (in what follows called doundaries
that the elements of do not belong td2 in all cases. More- ¢ the transformed lattide they can be used to discard those
over, each of the components of vectanay expand a differ- - cangjdate solutions at each level of the tree that are not within

ent range of possible values, which will depend onTHe 656 minimum and maximum values, i.e. the candidates that
matrix. It is known that conventional tree search detectorgertaimy lead to non-valid solutions.

would need this set of transformed candidates for performing |, this work. a novel technique for calculating the bound-

the detection. Unfortunately, this calculation requires similatyjes of the transformed lattice is proposed and will be next
complexity than ML-detection, so it is not feasible in prac- jetajled. As a first approach, let matfix* be available for

tice. In order to avoid such a complex scheme, authors igach channel realization. It can be easily seen that the maxi-
[4] proposed a detection algorithm that calculates a first esti- umz at levels! € {1 o (z 1)) appears when the
sy max

mate of the solution of (5), generally via SIC detectors, an . . 1 L .
then the candidate solutions that lie on the neighborhood di°Sitive entries of row of T~ are multiplied by the maxi-

this point are explored. For each component of the detecte®um value of€2 (Qmax) and the negative entries multiplied
signal vector, only th& best candidates are stored and con-by the minimum value of2 (Quin). A similar procedure
sidered for the rest of components to detect. For this reasonan be followed for calculating the minimum values of
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(zmin"), since they correspond to the addition of the negSIC. The first row of numbers surrounded by circles rep-
ative entries of ronl of T-1 multiplied by the maximum resent the order in which each candidate is explored when

value of 2 (Qmay) and the positive entries of the same row there is no candidate limitation. However, when the candi-

- - == . date limitation is applied, if a value for the lower boundary
multiplied by the minimum value df (Qpin). The resulting of Zyin = —3 is supposed, the value Nfis reduced tN — 4
equations can be expressed as

and the selected candidates points now range from -3 to 0.
Therefore, the proposed candidate limitation can reduce the

| A -1 A -1
Zmax() = Qmax z Tl,j + Qmin z Tl,j J (9)  number of candidates without decreasing the detection per-
jePl) jeN®) formance, as will be discussed below.
Zoin®) = Qmin 3 T} +Q T (20)
in min L max z E Zoin
jepl) jent) i
o sIC
whereP!) stands for the set dfindices where T+ > 0 and e ©— & . o o o o
N() stands for the set dfindices where fl'll <0. 5 4 3 2 4 0 1 2
Once the boundariesz () and znax!) have been calcu-  LRAK-Best @ ® ® N=8
lated, they can be stored in the following boundary vector IRACL X X G O @ ® X X N

M _ [, (1) T ( 0 T Figure 1: Representation of the order in which candidate
o= [‘Pl 2 } - [Zm'” »Zmax } (11) points are explored in the conventional LRA K-Best scheme

. . . and in the LRA-CL scheme.
Finally, a 2x 2nt matrix ® will store all these boundary vec-

tors, which will be necessary for the proposed LRA K-Best
schemes: The modifications over step 3) can be straightforwardly
3= [¢<1>,¢<2>,...,¢<2“T>} . (12)  predicted.

It can be seen that if matrist—! has already been 6.2 Dynamic LRA K-Best schemes
computed, the proposed boundary calculation according to . . . :
Egs. (9) and (10) becomes very simple. Another importan this subsection, a dynamic selection of the parameters of

fact is that this calculation is only performed once per chantn® LRA K-Best detectors is proposed. It must be noted that
nel realization. in this work, the aim is to decrease the complexity of LRA K-

Best detectors, which is subject to the two paramefeasd
6. PROPOSED LRA K-BEST SCHEMES N, with N > K. ParameteK is responsible for the number
of stored paths per level arid for the number of candidate
Once the boundaries of the transformed lattice are availablsplutions that are explored before choosingkhkest ones,
they can be used to limit the search for the solution at eachs introduced in Section 4.
level of the decoding tree of the LRA K-Best detector of [4].  As it can be seen from the proposed boundary calcula-
In this work, we propose two different approaches aimed afion, vectorg(!) allows to determine the number of valid can-
reducing the number of explored candidate solutions. Thgjdate solutions at each leviedf the decoding tree. It seems
first approach discards the candidates that fall outside th@asonable that levels with higher number of candidate solu-
boundaries, and thus, it is hereafter called LRA K-Best withtjons should not discard as many paths as levels with lower
Candidate Limitation (LRA-CL). The second strategy leadsyumber of candidates. Therefore, the computational com-
to two different Dynamic LRA K-Best schemes, which are plexity of the algorithm can be at a first approach decreased

based on choosing the values fomnd/orN dynamically. either by having both a differei andN, value at each level
_ ) o (later called as Dynamik- scheme), or keeping the num-
6.1 LRA K-Bestwith Candidate Limitation ber of stored pathk unaltered and only assigning different

Considering that the boundaries of the transformed lattic® values per level (Dynamibt scheme). The first approach
have been calculated as presented in Section 5, the only stdf§@ds to both a variable number of explored paths N, and
of the original algorithm that have to be modified in order to@ variable number of stored patks at each level, whereas
discard erroneous solutions are steps 3) and 6). Step 6) woulde second approach exploried) paths and storeis paths
be finally described as follows: ' (which is a fixed value). . _
6) PickN > K integer values arourd at thel layer fol- Following the above mentioned strategies, we propose
lowing a zig-zag strategy around the SIC solution. In caséwo different dynamic algorithms. In the Dynarmtc{Dyn-
of reaching the boundaries, follow the same direction and) algorithm there is a non-linear distribution of tHeval-
reduceN to the value ofN = [(N/2)], where[-] denotes Uues at each level of the tree, by using a generalized logistic
rounding to the higher integer. If the other boundary is alsdunction [8] rounded to the higher integer by the operator
reached, stop exploring candidates. Finally calculate the EuFhe resultingk| values are calculated according to the num-
clidean distances of the candidatesito ber of candidates at levelnd also to th& value of a same
Fig. 1 represents an example of the candidate selectigperformance fixed K-Best algorithm, as follows:
following a zig-zag strategy around the SIC solution. It will
be considered for this case a valueNf= 8 and a solution K — [14_ (K-1) W (13)
from the SIC detector equal to -2, labelled in the figure as ! (1+0.5exp(—(L —M)))2 |’
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whereL, stands for the number of candidate points at Iével In this case, only steps 3) and 6) of the above described LRA-
CL scheme should be modified in order to operate with the
L = (¢2('> — ¢1(')) +1 (14) N integer values around the SIC solution instead of with the
N values. This strategy has been shown to reduce the average
andM denotes the central point of the range of values exnumber of explored paths and to keep the average number of
panded byL. = [Ly,...,Ly,. .., Lon;] stored paths fixed, sind¢is the same for all levels.

M = (max(L) —min(L))/2. (15) 7. RESULTS AND COMPLEXITY DISCUSSION

Let this distribution ofK; values be clarified by means 1N€ computational complexity comparison has been per-
of an example. Considering a<44 complex MIMO system formed for a 4< 4 MIMO system working with 16-QAM
(8 x 8 in its real-valued representation), working with a 16-21d 64-QAM constellations. For the sake of simplicity, the
QAM constellation, 8 detection levels are necessary to obtaifimulations were carried out using the real representation
the whole detected vector. At each of these levels, the nunff theé MIMO system and an uncoded scheme, although the
ber of candidate pointsL() for a given channel realization Proposed technique can be easily adapted to a complex sys-
can be calculated by using (14) and previously related equéem' The LLL algorithm [6] was employed for the lattice-
tions. A set of possible values &f is given as an example réduction operation. _ .
in Table 2 for each level. The next step for the calculation FOr & & x 2nt MIMO system, it can be easily seen that
of the K, values is the calculation dfl, which can be easily the number of explored paths at each run of the original LRA
performed using (15) ad = (8 — 1)/2 = 3.5. K-Best algorithm equalll + (2nt — 1)NK, since every level

Once the values of; andM are available, a fixed K- needs to explor&lK candidates except the first level, wh_ere
Best algorithm to be compared has to be chosen, for instanfg'_ly N are explored. In the case considered for our simu-
5-Best K = 5). Insertingl;, M andK into (13), the val- ations, the number of levels of the decoding tree is 8, and
ues shown in the third column of Table 2, labelledkgsare  thus, the number of explored paths at each run of the algo-
achieved. It can be easily checked that the avekagalue is ~ "1thm equalsN +7NK. From now on, it will be considered
now 3.62, which is obviously decreasing thevalue of the thatN =K +1, which leads to a number of explored candi-

2
fixed 5-Best for this particular case. dates of K< 48K + 1.
P Tables 3 and 4 show the average number of expanded

nodes in the LRA K-Best algorithm proposed in [4], com-
Table 2: Example of assigne# values in a 8« 8 real-valued pared to the average number of expanded candidates of the
MIMO system, associated to the set of number of candidagtes LRA-CL. In Table 3 it can be seen that for the 16-QAM case,
for each of the 8 detection levels. simulations were run with the LRA 3-Best and LRA 5-Best
_ _ detectors. For the LRA 3-Best case, the LRA-CL scheme de-
Level () | Candidateslf) | AssignedK (K) creases the number of explored candidates in a 19%, whereas

1 3 3 for the LRA 5-Best case, the complexity is reduced in a
2 2 2 31.5%. In Table 4 the simulation was performed with a 64-

2 ‘61 ‘51 QAM constellation and with the LRA 5-Best and LRA 10-

5 3 3 Best detectors. Itcan .be seen that 'in the 5-Best sc;heme, the
6 3 3 number of candidates is decreased in a 14.4% and in the LRA
7 1 1 10-Best case the reduction is 27% of the candidates. There-
8 8 5 fore, it can be concluded that the higher the valuK ad, the

higher the percentage of reduction can be achieved.

Considering the smallest value for vectdr N, can be i )
calculated at each level & — K| + 1. Table 3:Reduction of average number of expanded candidates for
In the DynK scheme, the fact of working with differ- 1€ LRA-CL detector (16-QAM case).
entK, values affects steps 4) and 7) of the above described
LRA-CL scheme. These steps should be modified in order LRA3-Best LRAS-Best
to operate with thé; best paths instead of with the best [45]3 LRACL REd“i"o” (%) 5]6 LRﬁg'— Red%‘i“g” (%)
paths. In the same way, steps 3) and 6) of the above describ & '
LRA-CL scheme should be modified in order to operate with
the N, integer values around the SIC solution instead of with
theN values. This strategy has been shown to reduce the av-
erage number of stored path§)(@nd the average number of Table 4:Reduction of average number of expanded candidates for
expanded nodes of the LRA-CL algorithm, without decreasthe LRA-CL detector (64-QAM case).
ing the performance, as will be presented in the next section.

Therefore, this first dynamic approach saves average powet [RA 5-Best [RA 10-Best
consumption in practical implementations. [4] T LRA-CL | Reduction (%)| [4] | LRA-CL | Reduction (%)
In the second dynamic scheme, called Dynahiatgo- 216 185 14.4 781 570 27

rithm (Dyn-N), the value ofK remains constant and ti¢

values are now calculated as follows:
Tables 5 and 6 show the average number of expanded

N |1 (K=1) 16 candidates for the LRA-CL algorithm and for the two pro-
= |t (14 0.5exp(—(L; —M)))2 (16) posed dynamic versions of this method, labelled as Dyn-K
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and Dyn-N. It can be seen that dynamic schemes can further
reduce the complexity.

Table 5:Average number of expanded candidates for the LRA-CL,
Dyn-K and Dyn-N detectors (16-QAM case).

Bit Error Rate

LRA 3-Best LRA 5-Best )
[RA-CL | Dyn-K | Dyn-N | LRA-CL | Dyn-K | Dyn-N 10
71 66.2 54.2 148 131.8 124.3 )
10° —A— LRA 3-Best detector
—7— LRA-CL 3-Best detector|
10 | —=— Dyn-K 3-Best detector
—&— 3-Best detector \
, —— ML detector %
Table 6:Average number of expanded candidates for the LRA-CL, g 0 15 20 2 30

p(dB)

Dyn-K and Dyn-N detectors (64-QAM case).

LRA 5-Best LRA 10-Best Figure 2: BER curves of the proposed LRA K-Best schemes
LRA-CL | Dyn-K | Dyn-N | LRA-CL | Dyn-K | Dyn-N (LRA-CL and Dyn-K) on a 4x 4 MIMO system using 16-
185 155 143 570 473 | 486.7

QAM, compared to conventional 3-Best, LRA 3-Best and
ML detectors.

Table 7 shows the comparison between the avefags-
ues for some fixed K-Best detectors and the avekagalues ) ) o
for the Dynamic-K detection scheme that achieves the sams LRA K-Best scheme with Candidate Limitation (LRA-
performance. Also, the relative reductiontofn % obtained ~ CL). This approach calculates the boundaries of the trans-
with the dynamic scheme is presented. It can be observd@rmed lattice in order to discard in the LRA K-Best scheme
that the Dyn-K detector reduces the aver&gealue and, those candidates that are for sure outside the transformed lat-
thus, the average number of stored paths of the algorithm. tice. The LRA-CL has been shown to decrease the average
computational complexity. In addition, two schemes with
a dynamic distribution of the parametefsand/orN have
been proposed. The dynamic distribution of the parameters
is based on the number of possible candidates existing in
the transformed lattice. The computational complexity can

Table 7:Reduction of the averagdé values with a Dyn-K detector.

16-QAM 64-QAM .
Fixed | Dyn-K | Reduction (%)| Fixed | Dyn-K | Reduction (%)| be further decreased by means of these last schemes without
3 2.8 6.7 5 43 14 performance loss.
5 14 12 10 8.1 19
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