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ABSTRACT

The application of Lattice Reduction techniques over the
MIMO channel matrix is known to improve the performance
of MIMO detectors. Several authors have proposed Lattice-
Reduction-Aided K-Best detectors for improving the perfor-
mance of conventional K-Best algorithms. In this paper, ef-
ficient ways of decreasing the computational complexity of
previously proposed schemes are presented. The knowledge
about how the Lattice Reduction stage affects the transmit-
ted symbols is exploited in order to significantly decrease the
complexity without performance loss.

1. INTRODUCTION

In the last years, Lattice Reduction (LR) techniques have
been proposed to transform the MIMO system model into
an equivalent one with a better-conditioned channel matrix
[1]. These techniques have been shown to improve the de-
tection performance when used previously to linear detectors
[2][3]. Recently, some other authors have also proposed LR
algorithms for working with K-Best algorithms [4], build-
ing Lattice-Reduction-Aided (LRA) K-Best detectors. The
K-Best algorithm is a suboptimal MIMO detector based on
tree search decoding [5]. LRA K-Best algorithms require
an initial estimate of the solution at each level of the tree,
generally obtained via Successive Interference Cancellation
(SIC) schemes. In order to obtain theK best candidates at
each level of the detection, these methods perform a search
of N constellation points around the solution given by the
SIC detector. In this work, we propose a low complexity pre-
processing stage that allows limiting this search around the
SIC solution without decreasing the detection performance.
In addition, a dynamic distribution of both theK andN val-
ues is proposed in order to further decrease the number of
explored candidates. Results show that these strategies can
noticeably reduce the computational cost.

2. SYSTEM MODEL.

Let us consider a block fading MIMO system withnT trans-
mit antennas,nR receive antennas (nR ≥ nT ) and a signal to
noise ratio denoted byρ. The baseband equivalent model for
such MIMO system is given by

xc = Hcsc +vc, (1)

wheresc represents the baseband signal vector transmitted
during each symbol period, which is composed by elements
chosen from the same constellationΩc, such as QAM. Vec-
tor xc in (1) denotes the received symbol vector andvc is a

complex white Gaussian noise vector. The Rayleigh fading
channel matrixHc is considered known at the receiver. This
matrix is formed bynR×nT complex-valued elements, Hi j ,
which represent the complex fading gain from thej-th trans-
mit antenna to thei-th receive antenna. For practical reasons,
it is convenient to transform the(nR×nT)-dimensional com-
plex equation (1) into an equivalent(2nR×2nT)-dimensional
real-valued representation (2) [5]:[

ℜ(xc)
ℑ(xc)

]
=

[
ℜ(Hc)
ℑ(Hc)

−ℑ(Hc)
ℜ(Hc)

][
ℜ(sc)
ℑ(sc)

]
+

[
ℜ(vc)
ℑ(vc)

]
(2)

The real-valued description of the system (2) will be
considered throughout this work, denoted byx = Hs + v.
Hence, components ofs will belong to the real constellation
Ω. For instance, a QAM constellation of 16 possible sym-
bols (16-QAM) can be represented by the real constellation
Ω= {−3,−1,+1,+3}.

3. LATTICE-REDUCTION ALGORITHMS.

If the columns of the channel matrixH are considered the
bases of a lattice, LR strategies such as the LLL algorithm
[6] can be used to transform the channel matrixH into a new
channel matrixH̃ = HT with less correlated columns [2],
whereT is a unimodular matrix (det(T) = ±1) with inte-
ger entries and called the transformation matrix. Consider-
ing the transformation matrixT into the system model (2),
the received signal vectorx can be rewritten as

x = HTT−1s+v = H̃z+v, (3)

where the symbols to be detected are nowz = T−1s. More-
over, the application of Lattice Reduction techniques before
the detection requires the constellation symbols being a set
of continuous integers, which will be called̃Ω. Therefore,
it is necessary to introduce a 2nT ×1 displacement vector
d = [1, . . . ,1]T to shift and scale the original constellation
symbols in the following way

x̃ =
(x+Hd)

2
= H

[
(s+d)

2

]
+

v
2

= H̃z̃+
v
2

, (4)

wheres̃ = (s+d)/2 andz̃ = T−1s̃. After this transforma-
tion, the signal̃x is used for carrying out the detection and
the detected vector is then transformed back to the original
formats = 2Tz̃−d.
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4. DETECTION IN LATTICE REDUCED MIMO
SYSTEMS

Given the received signalx and before applying any LR
technique, the detection problem consists in determining the
transmitted vector̂s with the highest a posteriori probabil-
ity. This is typically carried out in practice by solving the
following least squares problem

ŝ = arg min
s∈Ω2nT

‖x−Hs‖2. (5)

The Maximum-Likelihood (ML) algorithm performs an ex-
haustive search over the total 2nT -dimensional lattice points
s. However, such an implementation is cumbersome for real
systems and in practice the detection is performed via al-
ternative detectors, such as tree search methods [7]. These
methods obtain the solution of (5) by performing a search
for each of the components of vectorŝ, taking into account
that they belong to a finite and a priori known alphabet.

However, when a previous LR has been performed to the
channel matrix, the unknown vector to be detected becomes
z = T−1s instead ofs. Unfortunately, the set ofz values
is not predetermined in advance, since it not only depends
on the constellation used but also on the matrixT−1 (i.e. it
depends on the current channel realization). A straightfor-
ward way of determining all the possiblez values could be
calculating all the possibles ∈ Ω2nT and afterwards trans-
forming them withT−1, in order to have the points of the
transformed lattice available. For instance, the set of possi-
ble values for symbols belonging to a QPSK constellation ex-
pressed in its real form is known to beΩ= {−1,1}. Once the
shift operation is performed over it, it results iñΩ= {0,1}.
Considering the example for the 2×2 transformation matrix
used in [3], that isT = [1,−1;0,1] and its inverse matrix is
T−1 = [1,1;0,1], an exhaustive calculation of the possible
vectors in the transformed lattice gives the correspondence
shown in Table 1.

Table 1: Correspondence betweeñs vectors and̃z vectors for a
QPSK constellation and a value ofT = [1,−1;0,1].

Possiblẽs Associated̃z

[0,0]T [0,0]T

[0,1]T [1,1]T

[1,0]T [2,1]T

[1,1]T [2,0]T

According to the values shown in Table 1, it can be noted
that the elements of̃z do not belong tõΩ in all cases. More-
over, each of the components of vectorz may expand a differ-
ent range of possible values, which will depend on theT−1

matrix. It is known that conventional tree search detectors
would need this set of transformed candidates for performing
the detection. Unfortunately, this calculation requires similar
complexity than ML-detection, so it is not feasible in prac-
tice. In order to avoid such a complex scheme, authors in
[4] proposed a detection algorithm that calculates a first esti-
mate of the solution of (5), generally via SIC detectors, and
then the candidate solutions that lie on the neighborhood of
this point are explored. For each component of the detected
signal vector, only theK best candidates are stored and con-
sidered for the rest of components to detect. For this reason,

this group of detectors are commonly known as K-Best de-
tectors.

The steps proposed in [4] to carry out the detection are:
1) Perform a QR factorization of the lattice-reduced

channel matrix(H̃ = Q̃R̃) and multiply (4) byQ̃T . The
system becomes:

x̃′ = R̃z̃+
Q̃Tv

2
. (6)

2) Calculate symbol estimate at layerl = 2nT using a SIC
procedure:

ẑ2nT =

⌈
x̃′2nT

R̃2nT ,2nT

⌋
, (7)

whered·c rounds to the nearest integer.
3) PickN > K integer values around̂z2nT at the 2nT layer

and calculate their Euclidean distances tox̃′2nT
.

4) Select theK candidates with the lowest Euclidean dis-
tances and store them.

5) Decreasel = l − 1. For each of theK best paths
z̃i

l+1:2nT
that were stored in levell + 1, generate the symbol

estimate at layerl using the SIC procedure:

ẑi
l =

⌈
x̃′l − R̃l ,l+1:2nT z̃i

l+1:2nT

R̃l ,l

⌋
, (8)

wherei ∈ 1, . . . ,K.
6) PickN > K integer values around̂zi

l at thel layer and
calculate their Euclidean distances tox̂i

l .
7) Select theK candidates with the lowest Euclidean dis-

tances and store them.
8) If the iteration arrives at level 1 of the tree, stop the

algorithm and select the best path asẑ. Transform it into
ŝ = 2Tẑ−d, quantize the value of̂s if it is outside the initial
lattice and give the result as an output. Otherwise go to step
5).

5. REDUCTION OF THE NUMBER OF
CANDIDATES

As said above, the set of possibles values comes affected
by the inverse of the transformation matrixT−1, resulting in
a new vector to be detected calledz. It is known that cal-
culating all possiblez values requires a computational cost
similar to exhaustive search detection. However, if the mini-
mum and maximum integer value of each of the components
of vectorz are known (in what follows called asboundaries
of the transformed lattice), they can be used to discard those
candidate solutions at each level of the tree that are not within
these minimum and maximum values, i.e. the candidates that
certainly lead to non-valid solutions.

In this work, a novel technique for calculating the bound-
aries of the transformed lattice is proposed and will be next
detailed. As a first approach, let matrixT−1 be available for
each channel realization. It can be easily seen that the maxi-
mumz at levelsl ∈ {1, . . . ,2nT} (zmax

(l)) appears when the
positive entries of rowl of T−1 are multiplied by the maxi-
mum value ofΩ̃ (Ω̃max) and the negative entries multiplied
by the minimum value of̃Ω (Ω̃min). A similar procedure
can be followed for calculating the minimum values ofz
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(zmin
(l)), since they correspond to the addition of the neg-

ative entries of rowl of T−1 multiplied by the maximum
value ofΩ̃ (Ω̃max) and the positive entries of the same row
multiplied by the minimum value of̃Ω (Ω̃min). The resulting
equations can be expressed as

zmax
(l) = Ω̃max ∑

j∈P(l)

T−1
l , j + Ω̃min ∑

j∈N(l)

T−1
l , j , (9)

zmin
(l) = Ω̃min ∑

j∈P(l)

T−1
l , j + Ω̃max ∑

j∈N(l)

T−1
l , j , (10)

whereP(l) stands for the set ofj indices where T−1
l , j > 0 and

N(l) stands for the set ofj indices where T−1
l , j < 0.

Once the boundaries zmin
(l) and zmax

(l) have been calcu-
lated, they can be stored in the following boundary vector

φ
(l) =

[
φ

(l)
1 ,φ

(l)
2

]T
=

[
zmin

(l),zmax
(l)

]T
. (11)

Finally, a 2×2nT matrixΦ will store all these boundary vec-
tors, which will be necessary for the proposed LRA K-Best
schemes:

Φ =
[
φ

(1),φ (2), . . . ,φ (2nT )
]
. (12)

It can be seen that if matrixT−1 has already been
computed, the proposed boundary calculation according to
Eqs. (9) and (10) becomes very simple. Another important
fact is that this calculation is only performed once per chan-
nel realization.

6. PROPOSED LRA K-BEST SCHEMES

Once the boundaries of the transformed lattice are available,
they can be used to limit the search for the solution at each
level of the decoding tree of the LRA K-Best detector of [4].
In this work, we propose two different approaches aimed at
reducing the number of explored candidate solutions. The
first approach discards the candidates that fall outside the
boundaries, and thus, it is hereafter called LRA K-Best with
Candidate Limitation (LRA-CL). The second strategy leads
to two different Dynamic LRA K-Best schemes, which are
based on choosing the values forK and/orN dynamically.

6.1 LRA K-Best with Candidate Limitation

Considering that the boundaries of the transformed lattice
have been calculated as presented in Section 5, the only steps
of the original algorithm that have to be modified in order to
discard erroneous solutions are steps 3) and 6). Step 6) would
be finally described as follows:

6) PickN > K integer values around̂zi
l at thel layer fol-

lowing a zig-zag strategy around the SIC solution. In case
of reaching the boundaries, follow the same direction and
reduceN to the value ofN = d(N/2)e, whered·e denotes
rounding to the higher integer. If the other boundary is also
reached, stop exploring candidates. Finally calculate the Eu-
clidean distances of the candidates tox̂i

l .
Fig. 1 represents an example of the candidate selection

following a zig-zag strategy around the SIC solution. It will
be considered for this case a value ofN = 8 and a solution
from the SIC detector equal to -2, labelled in the figure as

SIC. The first row of numbers surrounded by circles rep-
resent the order in which each candidate is explored when
there is no candidate limitation. However, when the candi-
date limitation is applied, if a value for the lower boundary
of zmin =−3 is supposed, the value ofN is reduced toN = 4
and the selected candidates points now range from -3 to 0.
Therefore, the proposed candidate limitation can reduce the
number of candidates without decreasing the detection per-
formance, as will be discussed below.

-2-3 -1 0 1 2-4-5

zmin

1 23 457 6 8

SIC 

1 23 4

LRA K-Best

LRA-CL

N=8

N=4

Figure 1: Representation of the order in which candidate
points are explored in the conventional LRA K-Best scheme
and in the LRA-CL scheme.

The modifications over step 3) can be straightforwardly
predicted.

6.2 Dynamic LRA K-Best schemes

In this subsection, a dynamic selection of the parameters of
the LRA K-Best detectors is proposed. It must be noted that
in this work, the aim is to decrease the complexity of LRA K-
Best detectors, which is subject to the two parametersK and
N, with N > K. ParameterK is responsible for the number
of stored paths per level andN for the number of candidate
solutions that are explored before choosing theK best ones,
as introduced in Section 4.

As it can be seen from the proposed boundary calcula-
tion, vectorφ (l) allows to determine the number of valid can-
didate solutions at each levell of the decoding tree. It seems
reasonable that levels with higher number of candidate solu-
tions should not discard as many paths as levels with lower
number of candidates. Therefore, the computational com-
plexity of the algorithm can be at a first approach decreased
either by having both a differentKl andNl value at each level
(later called as Dynamic-K scheme), or keeping the num-
ber of stored pathsK unaltered and only assigning different
Nl values per level (Dynamic-N scheme). The first approach
leads to both a variable number of explored pathsKl−1Nl and
a variable number of stored pathsKl at each level, whereas
the second approach exploresKNl paths and storesK paths
(which is a fixed value).

Following the above mentioned strategies, we propose
two different dynamic algorithms. In the Dynamic-K (Dyn-
K) algorithm there is a non-linear distribution of theKl val-
ues at each level of the tree, by using a generalized logistic
function [8] rounded to the higher integer by the operatord·e.
The resultingKl values are calculated according to the num-
ber of candidates at levell and also to theK value of a same
performance fixed K-Best algorithm, as follows:

Kl =
⌈

1+
(K−1)

(1+0.5exp(−(Ll −M)))2

⌉
, (13)
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whereLl stands for the number of candidate points at levell :

Ll = (φ (l)
2 −φ

(l)
1 )+1 (14)

andM denotes the central point of the range of values ex-
panded byL = [L1, . . . ,Ll , . . . ,L2nT ]

M = (max
∀l

(L)−min
∀l

(L))/2. (15)

Let this distribution ofKl values be clarified by means
of an example. Considering a 4×4 complex MIMO system
(8×8 in its real-valued representation), working with a 16-
QAM constellation, 8 detection levels are necessary to obtain
the whole detected vector. At each of these levels, the num-
ber of candidate points (Ll ) for a given channel realization
can be calculated by using (14) and previously related equa-
tions. A set of possible values ofLl is given as an example
in Table 2 for each levell . The next step for the calculation
of theKl values is the calculation ofM, which can be easily
performed using (15) asM = (8−1)/2 = 3.5.

Once the values ofLl and M are available, a fixed K-
Best algorithm to be compared has to be chosen, for instance
5-Best (K = 5). InsertingLl , M and K into (13), the val-
ues shown in the third column of Table 2, labelled asKl , are
achieved. It can be easily checked that the averageK value is
now 3.62, which is obviously decreasing theK value of the
fixed 5-Best for this particular case.

Table 2: Example of assignedKl values in a 8× 8 real-valued
MIMO system, associated to the set of number of candidatesLl
for each of the 8 detection levels.

Level (l ) Candidates (Ll ) AssignedK (Kl )
1 3 3
2 2 2
3 4 4
4 6 5
5 3 3
6 3 3
7 1 1
8 8 5

Considering the smallest value for vectorN, Nl can be
calculated at each level asNl = Kl +1.

In the Dyn-K scheme, the fact of working with differ-
ent Kl values affects steps 4) and 7) of the above described
LRA-CL scheme. These steps should be modified in order
to operate with theKl best paths instead of with theK best
paths. In the same way, steps 3) and 6) of the above described
LRA-CL scheme should be modified in order to operate with
theNl integer values around the SIC solution instead of with
theN values. This strategy has been shown to reduce the av-
erage number of stored paths (K) and the average number of
expanded nodes of the LRA-CL algorithm, without decreas-
ing the performance, as will be presented in the next section.
Therefore, this first dynamic approach saves average power
consumption in practical implementations.

In the second dynamic scheme, called Dynamic-N algo-
rithm (Dyn-N), the value ofK remains constant and theNl
values are now calculated as follows:

Nl =
⌈

1+
(K−1)

(1+0.5exp(−(Ll −M)))2

⌉
. (16)

In this case, only steps 3) and 6) of the above described LRA-
CL scheme should be modified in order to operate with the
Nl integer values around the SIC solution instead of with the
N values. This strategy has been shown to reduce the average
number of explored paths and to keep the average number of
stored paths fixed, sinceK is the same for all levels.

7. RESULTS AND COMPLEXITY DISCUSSION

The computational complexity comparison has been per-
formed for a 4× 4 MIMO system working with 16-QAM
and 64-QAM constellations. For the sake of simplicity, the
simulations were carried out using the real representation
of the MIMO system and an uncoded scheme, although the
proposed technique can be easily adapted to a complex sys-
tem. The LLL algorithm [6] was employed for the lattice-
reduction operation.

For a 2nT ×2nT MIMO system, it can be easily seen that
the number of explored paths at each run of the original LRA
K-Best algorithm equalsN+(2nT −1)NK, since every level
needs to exploreNK candidates except the first level, where
only N are explored. In the case considered for our simu-
lations, the number of levels of the decoding tree is 8, and
thus, the number of explored paths at each run of the algo-
rithm equalsN + 7NK. From now on, it will be considered
thatN = K +1, which leads to a number of explored candi-
dates of 7K2 +8K +1.

Tables 3 and 4 show the average number of expanded
nodes in the LRA K-Best algorithm proposed in [4], com-
pared to the average number of expanded candidates of the
LRA-CL. In Table 3 it can be seen that for the 16-QAM case,
simulations were run with the LRA 3-Best and LRA 5-Best
detectors. For the LRA 3-Best case, the LRA-CL scheme de-
creases the number of explored candidates in a 19%, whereas
for the LRA 5-Best case, the complexity is reduced in a
31.5%. In Table 4 the simulation was performed with a 64-
QAM constellation and with the LRA 5-Best and LRA 10-
Best detectors. It can be seen that in the 5-Best scheme, the
number of candidates is decreased in a 14.4% and in the LRA
10-Best case the reduction is 27% of the candidates. There-
fore, it can be concluded that the higher the value ofK is, the
higher the percentage of reduction can be achieved.

Table 3:Reduction of average number of expanded candidates for
the LRA-CL detector (16-QAM case).

LRA 3-Best LRA 5-Best
[4] LRA-CL Reduction (%) [4] LRA-CL Reduction (%)
88 71 19 216 148 31.5

Table 4:Reduction of average number of expanded candidates for
the LRA-CL detector (64-QAM case).

LRA 5-Best LRA 10-Best
[4] LRA-CL Reduction (%) [4] LRA-CL Reduction (%)
216 185 14.4 781 570 27

Tables 5 and 6 show the average number of expanded
candidates for the LRA-CL algorithm and for the two pro-
posed dynamic versions of this method, labelled as Dyn-K
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and Dyn-N. It can be seen that dynamic schemes can further
reduce the complexity.

Table 5:Average number of expanded candidates for the LRA-CL,
Dyn-K and Dyn-N detectors (16-QAM case).

LRA 3-Best LRA 5-Best
LRA-CL Dyn-K Dyn-N LRA-CL Dyn-K Dyn-N

71 66.2 54.2 148 131.8 124.3

Table 6:Average number of expanded candidates for the LRA-CL,
Dyn-K and Dyn-N detectors (64-QAM case).

LRA 5-Best LRA 10-Best
LRA-CL Dyn-K Dyn-N LRA-CL Dyn-K Dyn-N

185 155 143 570 473 486.7

Table 7 shows the comparison between the averageK val-
ues for some fixed K-Best detectors and the averageK values
for the Dynamic-K detection scheme that achieves the same
performance. Also, the relative reduction ofK in % obtained
with the dynamic scheme is presented. It can be observed
that the Dyn-K detector reduces the averageK value and,
thus, the average number of stored paths of the algorithm.

Table 7:Reduction of the averageK values with a Dyn-K detector.

16-QAM 64-QAM
Fixed Dyn-K Reduction (%) Fixed Dyn-K Reduction (%)

3 2.8 6.7 5 4.3 14
5 4.4 12 10 8.1 19

Finally, Fig. 2 shows the performance of two of the pro-
posed LRA K-Best schemes, concretely the LRA-CL and
Dyn-K with K = 3, on a 4× 4 MIMO system using 16-
QAM, compared to conventional 3-Best, LRA 3-Best and
ML detectors. It can be seen that the BER curves of the pro-
posed lower complexity detectors overlap the BER curve of
the LRA 3-Best detector proposed in [4], and all of them
improve the performance of conventional 3-Best detector for
ρ ≥ 20dB. Therefore, the proposed schemes can decrease
the average complexity without modifying the performance
at all. It has been checked that the BER curve for the Dyn-N
algorithm also overlaps the curves of LRA K-Best, LRA-CL
and Dyn-K.

On the other hand, for values ofρ < 20dB, the conven-
tional 3-Best detector slightly outperforms the LRA 3-Best
schemes. As it can be observed in [3], the ZF-SIC detector
also decreases its performance for low SNR regimes when it
is combined with lattice reduction. Since the LRA K-Best
method uses as starting point the ZF-SIC solution, it seems
reasonable to find a similar performance decrease in the pro-
posed LRA K-Best schemes.

8. CONCLUSION

Throughout this paper, several schemes for decreasing the
computational complexity of already existing LRA K-Best
detectors have been proposed. The first one has been called
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Figure 2: BER curves of the proposed LRA K-Best schemes
(LRA-CL and Dyn-K) on a 4× 4 MIMO system using 16-
QAM, compared to conventional 3-Best, LRA 3-Best and
ML detectors.

as LRA K-Best scheme with Candidate Limitation (LRA-
CL). This approach calculates the boundaries of the trans-
formed lattice in order to discard in the LRA K-Best scheme
those candidates that are for sure outside the transformed lat-
tice. The LRA-CL has been shown to decrease the average
computational complexity. In addition, two schemes with
a dynamic distribution of the parametersK and/orN have
been proposed. The dynamic distribution of the parameters
is based on the number of possible candidates existing in
the transformed lattice. The computational complexity can
be further decreased by means of these last schemes without
performance loss.
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