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ABSTRACT

In this paper, we introduce the quantization index hierarchy,
which is used for efficient coding of quantized wavelet coef-
ficients. A hierarchical classification map is defined in each
wavelet subband, which describes the quantized data through
a series of index classes. Going from bottom to the top of the
tree, neighboring coefficients are combined to form classes
that represent some statistics of the quantization indicesof
these coefficients. Higher levels of the tree are constructed
iteratively by repeating this class assignment to partition the
coefficients into larger subsets. The class assignments areop-
timized using a rate-distortion cost analysis. The optimized
tree is coded hierarchically from top to bottom by coding the
class membership information at each level of the tree. De-
spite its simplicity, the algorithm produces PSNR results that
are competitive with the state-of-art coders in literature.

1. INTRODUCTION

Within the last two decades, wavelet-based image coders
have surpassed other transform-based coders in their coding
efficiency. An image can be well-approximated by a sparse
set of clustered significant coefficients in wavelet domain,
and intelligent coding tools can be designed to reduce the
bitrate required for coding this set. Among such tools, hier-
archical zero-trees in EZW [1] and SFQ [2], set partitioning
in hierarchical trees, i.e. SPIHT [3] and its modified versions
[4, 5], and block partitioning of wavelet subbands in EZBC
[6] are especially worth mentioning.

All of these successful wavelet coders share a similar ap-
proach in how they handle the wavelet domain information
during coding. The coefficients are partitioned/classifiedinto
significant and insignificant sets, and this partitioning infor-
mation is embedded into the coded bitstream quite efficiently
by the use of data structures such as zero-trees. As a result,
large sets of insignificant (i.e. zero-quantized) coefficients
are coded with little bitrate using this ”partitioning map”.
The remaining much smaller number coefficients are labeled
as significant and coded using scalar quantization. In other
coders [7], this partitioning is generalized to more than two
classes of wavelet coefficients. However, it is important to
minimize the additional coding cost of the classification map
for any meaningful coding gain by using multiple classes.

The side information required for any detailed classifi-
cation of wavelet subbands becomes a bottleneck for cod-
ing especially at low bitrates. On the other hand, efficient
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bit allocation within the wavelet subbands requires an accu-
rate characterization of the statistics of different regions in
each subband. For instance, EQ coder [8] makes use of local
variance estimate to model the local statistics for more accu-
rate bit allocation and superior coding efficiency. In spherical
coding algorithm [9, 10], we show that a hierarchical refine-
ment of the mean local energy achieves efficient bit alloca-
tion with no need for any side information.

In this paper, we introduce a wavelet-based coding algo-
rithm that is based on a hierarchical classification of wavelet
coefficients using their quantization indices. After scalar
quantization, wavelet coefficients are locally grouped to-
gether based on their quantization levels. A hierarchical clas-
sification map is defined in each wavelet subband, which de-
scribes the quantized data through a series of index classes.
This hierarchical quantization index tree resembles the hier-
archical energy tree of the spherical coder [9], except thatit
provides an exact knowledge of how each coefficient is quan-
tized without any ambiguity. Going from bottom to the top
of the tree, neighboring coefficients are combined to form
classes that represent some statistics of the quantizationin-
dices of these coefficients. Higher levels of the tree are con-
structed iteratively by repeating this class assignment topar-
tition the coefficients into larger subsets. At each level ofthe
tree, the class assignment of a given subset describes some
local statistics of the quantization levels of corresponding
coefficients. This tree is coded hierarchically from top to
bottom by coding the class membership information at each
level of the tree.

The use of this quantization index hierarchy achieves ac-
curate and efficient bit allocation within each subband with-
out the need for any additional partitioning information. The
bitrate required to code the class membership of a group of
coefficients is proportional to the mean quantization levelof
these coefficients. Therefore, a higher amount of bitrate is
spent for coding parts of the subband with higher number of
significant coefficients, which leads to implicit adaptive bit
allocation. For better bit allocation, the coding efficiency of
the index tree is optimized based on a simple rate-distortion
cost analysis.

Section 2 introduces the hierarchical classification con-
cept and describes the hierarchical index tree. Then, Section
3 explains the details of the coding algorithm based on the
quantization index hierarchy. In Section 4, the performance
of the coding algorithm is evaluated by using two different
classification strategies and in comparison to the coding effi-
ciency of some of the state-of-art wavelet coders.
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Figure 1: Hierarchical index tree (J = 2).

2. HIERARCHICAL QUANTIZATION INDEX
CLASSES

Suppose thatc(m, n) represents the coefficients of the
wavelet subbandW l

k, 1 ≤ k ≤ K, of K level wavelet trans-
form of a given image. Here,l ∈ {HL, LH, HH} stands for
the horizontal, vertical and diagonal subbands. SupposeW l

k

is of size2J × 2J ; then,0 ≤ m, n < 2J . The absolute value
of each coefficient, i.e.|c(m, n)|, is scalar quantized and as-
signed to a non-negative quantization level/indexi(m, n), as
follows:

i(m, n) = Q [|c(m, n)|] , (1)

c̃(m, n) = sign(c(m, n))Q−1 [i(m, n)] . (2)

wherec̃(m, n) represents the reconstructed coefficient value
by inverse quantization.

Now, we pair different quantization indices to form the
following index classes:

Cr = {(i1, i2)|f(i1, i2) = r, ∀i1, i2, r ∈ Z+} (3)

wherei1, i2, r are non-negative integers andf(., .) represents
a class assignment function. The number of integer pairs in
each class is defined to beNr = |Cr|. The assignment func-
tion is supposed to classify similar index pairs under the same
class. Section 2.2 explains how this similarity of index pairs
could be defined.

These index classes will be used to construct a hierarchi-
cal description of the quantization indices of wavelet coeffi-
cients. The first level of the hierarchical index tree is formed
by pairing neighboring wavelet coefficients according to the
class definition given above:

Γ0,0(s, t) = i(s, t),

Γ1,0(s, t) = f(Γ0,0(2s, t), Γ0,0(2s + 1, t)). (4)

Likewise, the upper levels of the hierarchy are defined itera-
tively as follows (for0 < u ≤ J):

Γu,u(s, t) = f(Γu,u−1(s, 2t), Γu,u−1(s, 2t + 1)),

Γu+1,u(s, t) = f(Γu,u(2s, t), Γu,u(2s + 1, t)). (5)

In this paper, we propose to code this hierarchical index
tree, instead of coding the quantization index of each wavelet
coefficient individually. More specifically, from top to bot-
tom, the class assignment values,Γu,v(s, t) (0 ≤ u ≤ J ,
v ∈ {u, u − 1}, 0 ≤ s, t < 2J−u, 2J−v), will be coded.
Figure 1 shows some of the class assignment variables at dif-
ferent levels of the index hierarchy. The details of the coding
procedure will be explained in Section 3.
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Figure 2: Circular assignment classes.

2.1 Quantization Function

The quantization functionQ[.] could be selected as any scalar
quantizer. In this paper, we prefer to use a dead-zone uniform
quantizer, since the use of a dead-zone improves the coding
efficiency by fine tuning the set of insignificant wavelet co-
efficients that are to be quantized to zero. Hence;

Q[c] =

{

0 if 0 ≤ c < T
⌊

c−T
q

+ 1
⌋

if T ≤ c
(6)

whereT is the deadzone size andq is the quantization step
size. The inverse quantization is given as:

Q−1[i] =

{

0 if i = 0
iq + T − q/2 else (7)

2.2 Class Assignment Function

In classification of wavelet coefficients, the main goal is to
differentiate coefficients based on their statistical properties
or information content. Therefore, the class assignment is
supposed to represent some common statistics of the wavelet
coefficients that are assigned to the same class. In other
words, groups of coefficients with similar information con-
tent should be assigned to the same class. Depending on how
this information content is described, many class assignment
function can be designed. In this paper, we look at two differ-
ent assignment functions that provide high coding efficiency.

The first function is motivated by the local energy repre-
sentation in spherical coder, and assigns index pairs(i1, i2)
to the closest circle with integer radius (see Figure 2):

f(i1, i2) =

⌊

√

i21 + i22 + 0.5

⌋

(8)

Hence, at each level of the hierarchy,Γu,v(s, t)/2u+v, as de-
fined in Eqn. (5), will approximately represent the root mean
square of the quantization indices of underlying coefficients.
In Figure 2, the gray area shows the classC2 and the dots
in this area shows the corresponding index pairs (i.e.(0, 2),
(2, 0), (2, 1), (1, 2) andN2 = 4) for this ”circular” assign-
ment function.

Another successful choice forf(., .) is the maximum of
the two indices:

f(i1, i2) = max(i1, i2) (9)
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Figure 3: Max assignment classes.

This timeΓu,v(s, t) will correspond to the maximum index
of the underlying coefficients. Figure 3 shows the classesCr,
r = 1, 2 and the corresponding index pairs (Nk = 2k + 1)
for this ”max” assignment function. We will compare the
performance of these two assignment functions in Section 4.

Note that, for both assignment functions,f(0, 0) = 0
andN0 = 1. These two conditions are essential for efficient
class assignment, due to reasons that will be clarified in the
next section. Section 3 describes a simple optimization and
coding strategy for efficient coding of the quantization index
hierarchy.

3. WAVELET CODING BY QUANTIZATION INDEX
HIERARCHY

The coding algorithm described in this section is applied in-
dependently in each wavelet subband,W l

k, of size2J × 2J .
The coded data are the class assignment variables,Γu,v(s, t),
plus the sign bits of each significant wavelet coefficient. En-
coding/decoding is performed hierarchically, starting from
the top of the index tree, i.e.ΓJ,J(0, 0), going down to the
coefficient level, i.e.Γ0,0(m, n).

During encoding, at level(u, u) of the index hi-
erarchy, givenΓu,u(s, t), we know from Eqn.(5) that
(Γu,u−1(s, 2t), Γu,u−1(s, 2t + 1)) should be one of the
NΓu,u(s,t) index pairs in classCΓu,u(s,t). Assuming all the
index pairs are equally probable, entropy coding this class
assignment information requireslog2(NΓu,u(s,t)) bits on av-
erage.

Note that, whenever a subtree of the index hierarchy is
assigned to zero-classC0 (i.e. Γu,v(s, t) = 0), all the sub-
sequent class assignments and hence all the wavelet coeffi-
cients belonging to this subtree should be zero, and no ad-
ditional bitrate is needed to code the remaining class indices
of that subtree. Finding which subtrees should be assigned
to C0 is essential for improving the coding efficiency of the
proposed algorithm.

Indeed, it turns out that building the hierarchical index
tree using the original index values and coding this tree does
not lead to an optimal coding result. For instance, a coef-
ficient could be individually considered as significant and
quantized to a nonzero level. However, when considered
as part of a subtree in which each nonzero class assignment
will cost additional bitrate, it might actually reduce the to-
tal rate-distortion cost to zero-quantize this coefficientand
all the other coefficients of this subtree. Hence, for optimal
performance, the total coding cost of each subtree should be

evaluated and it should be determined whether to code it as
it is or assign all class indices to zero.

For that purpose, we propose a rate-distortion cost anal-
ysis that is similar to the one described in [9]. Going from
the bottom to the top of the index tree, we compare the La-
grangian cost of zero-quantizing all coefficients of a given
subtree to the best alternative associated with choosing not
to do so. The latter is equal to the cost of coding the class
assignment of the current subtree plus the minimum costs of
the two children subtrees (See Figure 1). At the end, coeffi-
cients that belong to zero-classes are set to zero.

In more detail, the algorithm is given as follows (assume
0 ≤ m, n < 2J ):
1. Quantize wavelet coefficients using a dead-zone quan-

tizer:

Γ0,0(m, n) = Q [c(m, n)]

c̃(m, n) = sign(c(m, n))Q−1 [Γ0,0(m, n)]

2. Optimizing index tree: For each subtree, compare the
Lagrangian cost of sending class variables of the wavelet
coefficients to the cost of quantizing them all to zero. If
the latter cost is smaller, then assign that subtree toC0.
SupposeLu,v(s, t) represents the Lagrangian cost. Then,

L0,0(m, n) = (c(m, n) − c̃(m, n))
2

+ λI(m, n)

whereI(m, n) represents the sign bit cost for coefficient
c(m, n), i.e.

I(m, n) =

{

0 if Γ0,0(m, n) = 0
1 else

Setu = 1. While u < J do,
• For 0 ≤ s < 2(J−u), 0 ≤ t < 2(J−u+1), define

Γu,u−1(s, t) according to Eqn.(5), and define the La-
grangian costs:

Lu,u−1(s, t) = Lu−1,u−1(2s, t)

+ Lu−1,u−1(2s + 1, t)

+ λ log2(NΓu,u−1(s,t))

where the Lagrangian cost for coding class informa-
tion, λ log2(NΓu,u−1(s,t)), is added to the total cost
of two children subtrees in order to get the total cost
of class assignments for the current subtree. Then,
we compare this cost to the total distortion caused by
zero-quantization:

Lu,u−1(s, t) >

2u(s+1)−1
∑

m=2us

2u−1(t+1)−1
∑

n=2u−1t

c(m, n)2

⇒ Γu,u−1(s, t) = 0.

• For0 ≤ s, t < 2(J−u), repeat the same procedure for
Γu,u(s, t) andLu,u(s, t).

• Incrementu and repeat step 2.
3. Encoding/Decoding: Code ΓJ,J(0, 0). Set u = J .

While u > 0 do,
• For 0 ≤ s, t < 2(J−u), encode/decode the subtree

assignments,Γu,u−1(s, 2t) andΓu,u−1(s, 2t + 1).
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Table 1: PSNR comparison of different coders.

Lena PSNR (dB)
Rate (bpp) HIC SPHE SPIHT SFQ EBCOT EZBC

1.00 40.70 40.67 40.46 40.52 40.55 40.62
0.50 37.45 37.40 37.21 37.36 37.43 37.47
0.25 34.37 34.28 34.11 34.33 34.32 34.35

Goldhill PSNR (dB)
Rate (bpp) HIC SPHE SPIHT SFQ EBCOT EZBC

1.00 36.90 36.85 36.55 36.70 36.75 36.90
0.50 33.45 33.37 33.13 33.37 33.38 33.47
0.25 30.80 30.72 30.63 30.71 30.75 30.74

Barbara PSNR (dB)
Rate (bpp) HIC SPHE SPIHT SFQ EBCOT EZBC

1.00 37.05 37.00 36.41 37.03 37.38 37.28
0.50 32.14 32.06 31.40 32.15 32.50 32.15
0.25 28.34 28.22 27.58 28.29 28.53 28.25

• For 0 ≤ s < 2(J−u), 0 ≤ t < 2(J−u+1),
encode/decode the subtree assignments,
Γu−1,u−1(2s, t) andΓu−1,u−1(2s + 1, t).

• Decrementu and repeat step 3.
4. Code the sign information ifΓ0,0(m, n) > 0. At the

end of encoding/decoding, we reconstruct the decoded
wavelet coefficients:

c̃(m, n) = sign(c(m, n))Q−1 [Γ0,0(m, n)]

In the algorithm,q andT are chosen as the optimal quan-
tization step size and the optimal dead-zone interval size,re-
spectively, for best rate-distortion performance for a given
Lagrangian multiplierλ. For a given bitrate, optimalλ is
found using the convex bisection algorithm of [11].

Arithmetic coding is used to code the class assignment
variablesΓu,v(s, t). The index tree provides a natural con-
text for adaptive arithmetic coding. The coding model of
each classCΓu,v(s,t) is adapted based on the corresponding
number of index pairs,NΓu,v(s,t), and the level of the tree,
i.e. (u, v) pair. Note that, the output bitrate of the arithmetic
coder turns out to be only slightly better than the entropy esti-
mate assuming equally probable index pairs. In other words,
it is justified to use the self-informationlog2(NΓu,v(s,t)) for
estimating the bitrate required to code class assignments.

While decoding the final index tree, once the algorithm
reaches to a subtree in “zero-class” (Γu,v(s, t) = 0), all the
coefficients that belong to that subtree are set to zero and no
further bitrate is spent for coding the remaining class indices
of the subtree. Therefore, the Lagrangian cost analysis to de-
termine the subtrees in “zero-class” is essential for achieving
successful coding results.

4. SIMULATIONS

Hierarchical index coder is implemented using 9/7 biorthog-
onal linear phase filter pair in a 6-level dyadic decomposi-
tion. Sameq andT are used in all subbands. Optimalq andT
are chosen among the set{t : t = 0.1kπ, k = 1, 2, ..., 150}.
Low-pass subband is arithmetic coded, after applying an
(8 × 8) DCT, using optimal scalar quantizer for a givenλ.

In Table 1, the performance of the index coder is com-
pared to that of some of the best performing coders in the lit-
erature, including SPHE [10], SPIHT [3], SFQ [2], EBCOT

Table 2: PSNR results for HIC using circular and max as-
signment functions.

HIC PSNR (dB)
Lena Goldhill Barbara

Rate (bpp) Max Circ. Max Circ. Max Circ.
1.00 40.69 40.70 36.88 36.90 37.08 37.05
0.50 37.45 37.45 33.44 33.45 32.17 32.14
0.25 34.37 34.37 30.80 30.80 28.35 28.34
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0  
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Figure 4: Comparison of bitrates for max and circular assign-
ments (highest frequency bands ofLena at 1 bpp).

[12] and EZBC [6].Lena, Goldhill andBarbara images are
used for comparison. All results are for the 9/7 filter pair.
In this first set of simulations, the index coder is using the
circular assignment function.

The hierarchical index coder, called as HIC in Table
1, outperforms SPHE, SPIHT and SFQ, and is as good as
EBCOT and EZBC in most cases. Except forBarbara, the
performance of HIC is better than that of EBCOT, which
is the algorithm used in JPEG2000 standard. Note that,
EBCOT uses sophisticated contextual models which can
adapt well to the local frequency content of textured regions
in images such asBarbara. Considering the simplicity of
the coding choices we have made in the index coder, these
results are rather encouraging for our future efforts in devel-
oping highly efficient and adaptive coding methods based on
the index assignment functions.

Next, the performance of max assignment function is
evaluated. Table 2 shows PSNR results of HIC using both
max and circular assignment functions. With max func-
tion, PSNR is almost the same as that of circular assign-
ment for all the tested sequences. Figure 4 plots the percent-
age of bitrate spent at different levels of the index hierarchy
(lev = u + v) for the highest frequency subbands ofLena at
1 bpp. The dotted line shows the ratio of the bitrates for max
assignment and circular assignment at different levels. Since

max(i1, i2) ≤
⌊

√

i21 + i22 + 0.5
⌋

, the class assignment val-

uesΓu,v(s, t) of max function become increasingly smaller
at higher levels of the hierarchy. Therefore, the bitrate spent
at upper levels are comparably smaller (i.e. the ratio is less
than 1) when max class assignment is used. On the other
hand, sinceNr for max assignment is generally greater than
Nr for circular assignment at equal values ofr (see Figures
2 and 3), a higher bitrate is spent to code the lowest levels of
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the max assignment hierarchy, where the assignment values
are more or less similar for both functions. In other words,
the max function moves the uncertainty in quantization in-
dices from higher levels to the lower levels of the hierarchy,
and the overall bitrate stays about the same.

5. CONCLUSION

In this paper, we have introduced the quantization index hi-
erarchy as a convenient and flexible data structure for classi-
fying and coding wavelet coefficients based on their quanti-
zation levels. This index tree is optimized for rate-distortion
efficiency and coded hierarchically using two different class
assignment functions. The competitive results attained bythe
index coder point towards the potential of such hierarchical
descriptions in coding wavelet subbands.

The computational complexity of the algorithm is low,
for a given set of parameters(q, T, λ). For building the hier-
archy, the cost calculations require simple addition and com-
parison operations at each node. Encoding/decoding is per-
formed using table look-up for class assignments. A signifi-
cant portion of the coding complexity is due to context-based
arithmetic coding of class assignments. We are currently
working on modeling the relationships between the param-
etersq, T , andλ, to estimate their values without needing
any exhaustive search.

In future, we plan to investigate other class assignment
functions, and try adaptive selection of class assignmentsat
different hierarchy levels and by using inter-scale dependen-
cies between neighboring wavelet subbands. In particular,
wavelet coefficients could be further partitioned into multiple
subsets depending on the type of assignment function chosen
for optimal coding efficiency.
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