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ABSTRACT bit allocation within the wavelet subbands requires an accu
hi . d h ization index hi h rate characterization of the statistics of different regiin
\IIChtiCE igaupseer(’:iva:r Igftfggiewt:ié dcienquintlzau;.)n 'g ex ;e{wc  each subband. For instance, EQ coder [8] makes use of local
Vi \ . ding of quantized wavelet CO€ly 4 iance estimate to model the local statistics for moreracc
ficients. A hierarchical classification map is defined in eac

¢ ; ) r}ate bit allocation and superior coding efficiency. In sjtedr
wavelet subband, which describes the quantized data thro“%oding algorithm [9, 10],pwe show th%t a hieraychicaﬁ:}ine-

aseries of index classes. Going from bottom to the top of th§ ot of the mean local energy achieves efficient bit alloca-
tree, neighboring coefficients are combined to form classetcl,on with no need for any side information

that represent some statistics of the quantization indifes
these coefficients. Higher levels of the tree are constducte |, this paper, we introduce a wavelet-based coding algo-
iteratively by repeating this class assignment to partitfte  yithm that is based on a hierarchical classification of wetvel
coefficientsinto larger subsets. The class assignmentgare coefficients using their quantization indices. After scala
timized using a rate-distortion cost analysis. The optediz gyantization, wavelet coefficients are locally grouped to-
tree is coded hierarchically from top to bottom by coding thegether based on their quantization levels. A hierarchieatc
class membership information at each level of the tree. Dejfication map is defined in each wavelet subband, which de-
spite its simplicity, the algorithm produces PSNR resligt  s¢ripes the quantized data through a series of index classes
are competitive with the state-of-art coders in literature  Thjs hjerarchical quantization index tree resembles the hi
archical energy tree of the spherical coder [9], exceptithat
1. INTRODUCTION provide_s an exact knov_vle(_jge of how each coefficient is quan-
tized without any ambiguity. Going from bottom to the top
Within the last two decades, wavelet-based image codetsf the tree, neighboring coefficients are combined to form
have surpassed other transform-based coders in theirgodiolasses that represent some statistics of the quantization
efficiency. An image can be well-approximated by a sparselices of these coefficients. Higher levels of the tree are con
set of clustered significant coefficients in wavelet domainstructed iteratively by repeating this class assignmeptte
and intelligent coding tools can be designed to reduce thgtion the coefficients into larger subsets. At each levahef
bitrate required for coding this set. Among such tools,-hiertree, the class assignment of a given subset describes some
archical zero-trees in EZW [1] and SFQ [2], set partitioninglocal statistics of the quantization levels of correspandi
in hierarchical trees, i.e. SPIHT [3] and its modified vensio coefficients. This tree is coded hierarchically from top to
[4, 5], and block partitioning of wavelet subbands in EZBChottom by coding the class membership information at each
[6] are especially worth mentioning. level of the tree.

All of these successful wavelet coders share a similar ap-
proach in how they handle the wavelet domain informatiory,,,
during coding. The coefficients are partitioned/classifitol
significant and insignificant sets, and this partitioninpin
mation is embedded into the coded bitstream quite effigientl
by the use of data structures such as zero-trees. As a res
large sets of insignificant (i.e. zero-quantized) coeffitse
are coded with little bitrate using this "partitioning map”
The remaining much smaller number coefficients are labele
as significant and coded using scalar quantization. In othgfe jndex tree is optimized based on a simple rate-distortio
coders [7], this partitioning is generalized to more thao tw < analysis
classes of wavelet coefficients. However, it is important to '

minimize the additional coding cost of the classificatiorpma  section 2 introduces the hierarchical classification con-
for any meaningful coding gain by using multiple classes. cept and describes the hierarchical index tree. Then,@ecti

The side information required for any detailed classifi-3 €xPlains the details of the coding algorithm based on the
cation of wavelet subbands becomes a bottleneck for coduantization index hierarchy. In Section 4, the perfornganc

ing especially at low bitrates. On the other hand, efficienff the coding algorithm is evaluated by using two different
classification strategies and in comparison to the codifig ef

This research was supported by Isik University BAP-05B30arG ciency of some of the state-of-art wavelet coders.

The use of this quantization index hierarchy achieves ac-
ate and efficient bit allocation within each subband with
out the need for any additional partitioning informatiomer
bitrate required to code the class membership of a group of
efficients is proportional to the mean quantization lefel
ese coefficients. Therefore, a higher amount of bitrate is
spent for coding parts of the subband with higher number of
aignificant coefficients, which leads to implicit adaptivie b
llocation. For better bit allocation, the coding efficigrd
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Figure 1: Hierarchical index tred/ (= 2).

2. HIERARCHICAL QUANTIZATION INDEX Figure 2: Circular assignment classes.
CLASSES

Suppose thate(m,n) represents the coefficients of the 54 Quantization Function

wavelet subban@l’;, 1 < k < K, of K level wavelet trans- o .

form of a given image. Heré,c {H L, LH, HH} stands for The quantization functio@|.] could be selected as any scalar
the horizontal, vertical and diagonal subbands. Suppigse duantizer. Inthis paper, we prefer to use a dead-zone unifor
is of size2” x ‘2J_ then.0 < m.m < 27. The absolute value quantizer, since the use of a dead-zone improves the coding
of each coefficient i.e|’c(77_1 n)’| is scalar quantized and as- efficiency by fine tuning the set of insignificant wavelet co-

X ; S L efficients that are to be quantized to zero. Hence;
signed to a non-negative quantization level/index, n), as
follows: 0 if0<c<T
im,n) = Qlle(m,n)]], (1) QeI=1 |2 +1] #r<o (6)

é(m,n) = signc(m,n))Q ! [i(m,n)]. 2
(m,m) grie(m, m))Q" [i(m, m)] @) whereT is the deadzone size apds the quantization step
whereé(m, n) represents the reconstructed coefficient valuaize. The inverse quantization is given as:
by inverse quantization.
Now, we pair different quantization indices to form the 1r 0 ifi=0
following index classes: Q= { ig+T —q/2 else 7

Cr = {(in,i2)|f (ir,i2) = 7, Vir,ia,r € 2T} (3)

whereiy, iz, r are non-negative integers afid, .) represents o o _ _
a class assignment function. The number of integer pairs i) classification of wavelet coefficients, the main goal is to
each class is defined to B&. = |C,.|. The assignment func- differentiate coefficients based on their statistical prtips
tion is supposed to classify similar index pairs under tmeesa  Or information content. Therefore, the clas_s assignment is
class. Section 2.2 explains how this similarity of indexrpai Supposed to represent some common statistics of the wavelet
could be defined. coefficients that are assigned to the same class. In other
These index classes will be used to construct a hierarchwords, groups of coefficients with similar information con-
cal description of the quantization indices of wavelet tioef tent should be assigned to the same class. Depending on how
cients. The first level of the hierarchical index tree is fecm  this information content is described, many class assigiime
by pairing neighboring wavelet coefficients according te th function can be designed. In this paper, we look at two differ

2.2 Class Assignment Function

class definition given above: ent assignment functions that provide high coding effigienc
The first function is motivated by the local energy repre-
Loo(s,t) = i(s,t), sentation in spherical coder, and assigns index gairss)
Tio(s,t) = f(To.0(2s,t),T00(2s+1,1)). (4) tothe closest circle with integer radius (see Figure 2):
Likewise, the upper levels of the hierarchy are defined-tera oy o 9
tively as follows (for0 < u < J): fliyiz) = |4/ii +1i3 +0.5 (8)
Puu(s:t) = f(Tuu—1(s,2t), Tuu-1(s, 2t + 1)), Hence, at each level of the hierarchy, , (s, t)/2"*", as de-
Lut1u(s,t) = f(Tuu(2s,t),Dyu(2s +1,1)). (5) finedin Eqn. (5), will approximately represent the root mean

) o o square of the quantization indices of underlying coeffitien

In this paper, we propose to code this hierarchical indexn Figure 2, the gray area shows the clé@ssand the dots
tree, instead of coding the quantization index of each vedvel i this area shows the corresponding index pairs (De2),
coefficient individually. More specifically, from top to bot (2,0), (2,1), (1,2) and N, = 4) for this "circular” assign-
tom, the class assignment valués,,(s,t) (0 < v < J,  ment function.
v € {u,u—1},0 < st < 2774 2777), will be coded. Another successful choice fgf(., .) is the maximum of
Figure 1 shows some of the class assignment variables at dike two indices:
ferent levels of the index hierarchy. The details of the ngdi
procedure will be explained in Section 3. f(i1,42) = max(iy,iz) (9)
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ig evaluated and it should be determined whether to code it as
it is or assign all class indices to zero.
For that purpose, we propose a rate-distortion cost anal-
- ysis that is similar to the one described in [9]. Going from
Co the bottom to the top of the index tree, we compare the La-
grangian cost of zero-quantizing all coefficients of a given
subtree to the best alternative associated with choosing no

N
q

1 C1 ' to do so. The latter is equal to the cost of coding the class
assignment of the current subtree plus the minimum costs of
i the two children subtrees (See Figure 1). At the end, coeffi-

0 L 2 ! cients that belong to zero-classes are set to zero.

In more detail, the algorithm is given as follows (assume
0<m,n< 2‘7):
1. Quantize wavelet coefficients using a dead-zone quan-
tizer:

Figure 3: Max assignment classes.

Q [c(m,n)]
sign(c(m,n))Q ! [To.0(m, n)]

Optimizing index tree: For each subtree, compare the
Lagrangian cost of sending class variables of the wavelet
coefficients to the cost of quantizing them all to zero. If
the latter cost is smaller, then assign that subtre@ to
Supposd.,, . (s, t) represents the Lagrangian cost. Then,

This timeT',, , (s, t) will correspond to the maximum index

of the underlying coefficients. Figure 3 shows the clagses

r = 1,2 and the corresponding index pail§y = 2k + 1)

for this "max” assignment function. We will compare the 5

performance of these two assignment functions in Section 4.
Note that, for both assignment functiong0,0) = 0

andNy = 1. These two conditions are essential for efficient

class assignment, due to reasons that will be clarified in the

next section. Section 3 describes a simple optimization and

coding strategy for efficient coding of the quantizationdrd

F070 (m, n) =

é(m,n) =

Loo(m,n) = (c(m,n) — &(m,n))* + A (m,n)

hierarchy.
wherel(m, n) represents the sign bit cost for coefficient
3. WAVELET CODING BY QUANTIZATION INDEX c(m,n), i.e.
HIERARCHY
0 ifT ,n)=0
The coding algorithm described in this section is applied in I(m,n) = { 1 elseo,o(m n)

dependently in each wavelet subbafid,, of size2” x 27.
The coded data are the class assignment varidbless, t),
plus the sign bits of each significant wavelet coefficient. En
coding/decoding is performed hierarchically, startingnr
the top of the index tree, i.d; ;(0,0), going down to the
coefficient level, i.eI'g o(m, n).

During encoding, at level(u,u) of the index hi-
erarchy, givenl, ,(s,t), we know from Eqn.(5) that
(Tuu—1(s,2t), Ty u—1(s,2t + 1)) should be one of the
Nr, . (s,t) Index pairs in clas€r, (s Assuming all the
index pairs are equally probable, entropy coding this class
assignment information requir&sz, (Nr,, ,, (s.+)) bits on av-
erage.

Note that, whenever a subtree of the index hierarchy is
assigned to zero-clagb (i.e. 'y (s,t) = 0), all the sub-
sequent class assignments and hence all the wavelet coeffi-
cients belonging to this subtree should be zero, and no ad-
ditional bitrate is needed to code the remaining class aslic
of that subtree. Finding which subtrees should be assigned
to Cy is essential for improving the coding efficiency of the
proposed algorithm.

Indeed, it turns out that building the hierarchical index
tree using the original index values and coding this treesdoe
not lead to an optimal coding result. For instance, a coef-

Setu = 1. Whileu < J do,
e For0 < s < 2U-% o < ¢t < 20-utl) define
T'wu—1(s,t) according to Eqn.(5), and define the La-
grangian costs:

Lu,u—l(s, t) = Lu—17u—1(28, t)
+ Ly—1,u-1(2s+1,t)
+ Aloga(Nr, \_1(s,))

where the Lagrangian cost for coding class informa-
tion, Alogy(Nr, ,_,(s,+)), is added to the total cost
of two children subtrees in order to get the total cost
of class assignments for the current subtree. Then,
we compare this cost to the total distortion caused by
zero-quantization:

2%(s+1)—1 2%~ (t+1)—1

)RS

m=24%s n=2u—1¢

= Fu7u_1(5, ﬁ) = 0.

Lyu—1(s,t) > c(m,n)?

ficient could be individually considered as significant and
guantized to a nonzero level. However, when considered
as part of a subtree in which each nonzero class assignment
will cost additional bitrate, it might actually reduce tte t
tal rate-distortion cost to zero-quantize this coefficiant

all the other coefficients of this subtree. Hence, for optima
performance, the total coding cost of each subtree should be
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3. Encoding/Decoding: CodeT'; ;(0,0).
While v > 0 do,

e For0 < s,t < 2(/=% repeat the same procedure for
Tyu(s,t)andLy, (s, t).

e Incrementu and repeat step 2.

Setu = J.

e For 0 < s,t < 2/-% encode/decode the subtree
assignmentd;,, ,,—1(s, 2t) andl’,, ,,—1(s, 2t + 1).



Table 1: PSNR comparison of different coders. Table 2: PSNR results for HIC using circular and max as-
signment functions.

[ Lena PSNR (dB) |
Rate (bpp)|| HIC |SPHE [SPIHT | SFQ |EBCOT |EZBC HIC PSNR (dB)
1.00 40.70 | 40.67 | 40.46 | 40.52 | 40.55 | 40.62 Lena Golahill Barbara
0.50 37453740 | 37.21 | 37.36 | 37.43 | 37.47 Rate (bpp)|| Max | Circ. Max | Circ. Max | Circ.
0.25 3437 [ 3428 | 34.11 | 3433 [ 3432 | 34.35 1.00 740.69 | 40.70 || 36.88 | 36.00 || 37.08 | 37.05
0.50 3745 | 3745 || 33.44 | 3345 || 32.17| 32.14
[ GoldRill_| PSNR (dB) | 0.25 3437 3437 30.80| 30.80 | 28.35| 28.34
Rate (bpp)|| HIC |SPHE [SPIHT | SFQ [EBCOT |EZBC
1.00 36.90 | 36.85 | 36.55 | 36.70 | 36.75 | 36.90 : ‘
0.50 3345 | 33.37 | 33.13 | 33.37 | 33.38 | 33.47 Loh @ e Domax ||
0.25 30.80 [ 30.72 | 30.63 | 30.71 | 30.75 | 30.74 ® e . o e e
o,
[Barbara || PSNR (dB) | 8o} ®.e
Rate (bpp)|| HIC |SPHE [SPIHT | SFQ [EBCOT |EZBC ® e
1.00 37.05 | 37.00 | 3641 | 37.03 | 37.38 | 37.28 ol LI |
0.50 3014 [ 32.06 | 31.40 | 32.15 | 32.50 | 32.15 < 1
0.25 7834 [ 2822 | 2758 | 2820 | 28.53 | 28.25 .

eFor0 < s < 20w o < t < 2U-uth
encode/decode the subtree assignments,
Fu,l,u,1(2s, t) andru,17u71(28 +1, t)
e Decrement; and repeat step 3. 2 3 6 8 10 12 14
4. Code the sign information iF o(m,n) > 0. At the e
end of encoding/decoding,
wavelet coefficients:

E(mv n) = Sign(c(mv n))Q_l [F070(m7 n)]

In the algorithmg andT" are chosen as the optimal quan- [12] and EZBC [6]. Lena, Goldhill andBarbaraimages are
tization step size and the optimal dead-zone interval size, used for comparison. All results are for the 9/7 filter pair.
spectively, for best rate-distortion performance for aegiv In this first set of simulations, the index coder is using the
Lagrangian multipliers. For a given bitrate, optima\ is  circular assignment function.
found using the convex bisection algorithm of [11]. The hierarchical index coder, called as HIC in Table

Arithmetic coding is used to code the class assignment, outperforms SPHE, SPIHT and SFQ, and is as good as
variablesl',, (s, t). The index tree provides a natural con- EBCOT and EZBC in most cases. Except RBarbara, the
text for adaptive arithmetic coding. The coding model ofperformance of HIC is better than that of EBCOT, which
each clas€r, (s, is adapted based on the correspondings the algorithm used in JPEG2000 standard. Note that,
number of index pairsNr, ,(s,),» and the level of the tree, EBCOT uses sophisticated contextual models which_can
i.e. (u,v) pair. Note that, the output bitrate of the arithmetic adapt well to the local frequency content of textured region
coder turns out to be only slightly better than the entropiy es in images such aBarbara. Considering the simplicity of
mate assuming equally probable index pairs. In other wordghe coding choices we have made in the index coder, these
it is justified to use the self-informatidog, (N, ,(s.)) for ~ results are rather encouraging for our future efforts inetiev
estimating the bitrate required to code class assignments. 0ping highly efficient and adaptive coding methods based on

While decoding the final index tree, once the algorithmthe index assignment functions. _ o
reaches to a subtree in “zero-clasE},(,(s,t) = 0), all the Next, the performance of max assignment fun_ctlon is
coefficients that belong to that subtree are set to zero and ryaluated. Table 2 shows PSNR results of HIC using both
further bitrate is spent for coding the remaining classdedi Max and circular assignment functions. With max func-
of the subtree. Therefore, the Lagrangian cost analysis-to dtion, PSNR is almost the same as that of circular assign-
termine the subtrees in “zero-class” is essential for aimge ~ ment for all the tested sequences. Figure 4 plots the percent

we reconstruct the decOdeIgigure 4. Comparison of bitrates for max and circular assign
ments (highest frequency bands.@ha at 1 bpp).

successful coding results. age of bitrate spent at different levels of the index hidmgrc
(lev = u + v) for the highest frequency subbandd.eha at
4. SIMULATIONS 1 bpp. The dotted line shows the ratio of the bitrates for max

] o o ) ) assignment and circular assignment at different levelxesi
Hierarchical index coder is implemented using 9/7 biorthog . = ,
onal linear phase filter pair in a 6-level dyadic decomposifax(i1,i2) < {V it O'5J’ the class assignment val-
tion. Samey andT are used in all subbands. OptingalndT”  uesr’,, , (s, t) of max function become increasingly smaller
are chosen among the det: ¢t = 0.1km, k = 1,2,...,150}.  at higher levels of the hierarchy. Therefore, the bitraensp
Low-pass subband is arithmetic coded, after applying aat upper levels are comparably smaller (i.e. the ratio is les
(8 x 8) DCT, using optimal scalar quantizer for a given than 1) when max class assignment is used. On the other
In Table 1, the performance of the index coder is com-hand, sinceV, for max assignment is generally greater than
pared to that of some of the best performing coders in the litV,. for circular assignment at equal valuesrafsee Figures
erature, including SPHE [10], SPIHT [3], SFQ [2], EBCOT 2 and 3), a higher bitrate is spent to code the lowest levels of
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the max assignment hierarchy, where the assignment values
are more or less similar for both functions. In other words,

images,” IEEE Trans. Image Processing, vol. 6, pp.
1473-86, Nov. 1997.

the max function moves the uncertainty in quantization in- [g] S, M. LoPresto, K. Ramchandran, and M. T. Orchard,

dices from higher levels to the lower levels of the hierarchy
and the overall bitrate stays about the same.

5. CONCLUSION

In this paper, we have introduced the quantization index hi-
erarchy as a convenient and flexible data structure forielass
fying and coding wavelet coefficients based on their quanti-
zation levels. This index tree is optimized for rate-distor

“Image coding based on mixture modeling of wavelet
coefficients and a fast estimation-quantization frame-
work,” in Proc. Data Compression Conf., Snowbird,
UT, March 1997, pp. 221-30.

[9] H. Ates and M. Orchard, “Wavelet image coding using

the spherical representation,” Rroc. |[EEE Int. Conf.
Image Processing, vol. 1, Genova, Sept. 2005, pp. 89—
92.

efficiency and coded hierarchically using two differenssla [10] ——, “Spherical coding algorithm for wavelet image

assignment functions. The competitive results attainetidy
index coder point towards the potential of such hierardhica
descriptions in coding wavelet subbands.

The computational complexity of the algorithm is low,
for a given set of parametefg, 7', \). For building the hier-
archy, the cost calculations require simple addition and-co

compression,accepted to | EEE Trans. Image Process-
ing, 2009.

[11] Y. Shoham and A. Gersho, “Efficient bit allocation for

an arbitrary set of quantizersfEEE Trans. Acoust.,
Speech, Sgnal Processing, vol. 36, no. 9, pp. 1445-53,
Sept. 1988.

parison operations at each node. Encoding/decoding is pgft2] D. Taubman, “High performance scalable image com-

formed using table look-up for class assignments. A signifi-
cant portion of the coding complexity is due to context-loase
arithmetic coding of class assignments. We are currently
working on modeling the relationships between the param-
etersq, T', and A, to estimate their values without needing
any exhaustive search.

In future, we plan to investigate other class assignment
functions, and try adaptive selection of class assignmants
different hierarchy levels and by using inter-scale depend
cies between neighboring wavelet subbands. In particular,
wavelet coefficients could be further partitioned into riplét
subsets depending on the type of assignment function chosen
for optimal coding efficiency.
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