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ABSTRACT

When investigating the benefit of auditory modelling for au-
tomatic speech recognition applications typically different
features or auditory simulation models are compared. In this
work the attempt of combining several auditory model based
feature extraction schemes is pursued, as well as their further
combination with standard MFCC features.

For this purpose a regularization of the common het-
eroscedastic discriminant analysis is introduced to summa-
rize relevant information in feature spaces of lower dimen-
sion and uncorrelated single features.

Besides standard auditory model - based features also new
features are included that rely on delay computing networks
to extract relevant information from the shape of the cochlear
travelling wave delay trajectory. In an empirical study sta-
tistically significant improvements are shown by combining
standard MFCCs with the different features extracted from
the auditory simulation model. The effect of different de-
grees of regularization is investigated for this task.

1. INTRODUCTION

Auditory modelling for feature extraction in ASR applica-
tions has already been investigated in a couple of papers.
Some of them compare different features (e.g. [1], [2], [3])
others compare features based on different kinds of audi-
tory modelling (e.g. [4], [5]) as opposed to standard fea-
tures like MFCCs. But rarely the combination of differ-
ent auditory-model based feature extraction-principles is pur-
sued although it is probable that humans also make use of
several neural information coding-principles simultaneously.
The most famous coding schemes of auditory neural infor-
mation transmission are mean activity rates at different po-
sitions along the ear as well as phase locking based features
capturing periodic neural activity. Auditory modelling and
feature extraction are explained in Section 2 and 3. Besides
standard features, delay computing networks [6] are intro-
duced as a tool to extract (non-frequency) information within
the delay structure of the auditory neural response according
to observations in [7] that the shape of the cochlear travelling
wave delay trajectory also carries relevant information about
the underlying sound signal.

Regularized heteroscedastic discriminant analysis (RHDA)
as an extension of the common heteroscedastic discriminant
analysis (HDA, [8]) is presented in Section 4 to combine dif-
ferent feature sets. The results of an empirical study are given
in Section 5 and 6 and summarized in Section 7.
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Figure 1: Output of the auditory model for a vowel /a/.

2. AUDITORY MODELLING

Several well-known psycho-acoustical phenomena can be
traced back to sound processing in the auditory system, e.g.
nonlinear frequency resolution and amplitude saturation or
masking effects. An overview of the auditory processing
chain is given in [9]. Basically, the sound wave is non-
linearly bandpass-filtered along the basilar membrane (BM)
and transduced into electric impulses (action potentials, APs)
at the auditory nerve fibres (ANFs) of different center fre-
quency (CF) by inner hair cells (IHCs). In literature, dif-
ferent attempts of different degrees of biological precision
can be found to imitate human auditory sound processing.
For the application of this work a very detailed model of the
outer ear, middle ear and BM movement including the ef-
fect of the outer hair cells (OHCs) [10] is used that is specif-
ically designed to mimic human masking thresholds. The
model is coupled to a state of the art neurophysiologically
parameterized IHC/ANF model [11] resulting in the simula-
tion of exact firing times of 251 different ANFs with CF dif-
ferences of 0.1 bark along the BM. Figure 1 (bottom) shows
the simulated response of the auditory simulation model to
some vowel /a/. The ordinate represents the unrolled inner
ear (BM) while the abscissa denotes the time. The output of
the simulation model is binary and of the form

1, AP of ANF i at time ¢
Xi(1) = { 0, else.

The travelling waves of neural reaction along the cochlea are
clearly recognizable. The velocity of the travelling wave is
not constant (otherwise it would result in straight lines) but
slows down. According to observations in [7] and [12] the
shape of the cochlear delay trajectory carries information
about the underlying sound signal as the wave slows down
at the position of maximal BM resonance. It is also visible
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that different positions along the BM are differently excited
(according to the signal frequencies). Furthermore, there is
periodic structure in the response of the ANFs due to a phe-
nomenon called phase locking (the auditory neurons tend to
fire only during the positive half-waves of the signal periods).
Finally, a strong response can be observed for the onset of the
signal. For the studies in this paper, 50 repetitive simulations
of the ANFs of different type (30 HSR, 10 MSR, 10 LSR,
according to their natural distribution) are pursued. Speech
signals were presented to the auditory model at 62.5 dB SPL
representing a typical value for conversations.

3. FEATURE EXTRACTION

According to the above mentioned principles of neural in-
formation coding standard place / mean rate features (MR)
and average localized synchrony detection (ALSD) are com-
puted. Mean rates count the neural response at different
ANFs independently of its temporal fine structure, i.e.

XM=y

+ € window

X;(t)/window size

A typical window size of 20 ms is used, where the speech
signal can be assumed to be stationary. According to
[13] groups of 8 neighbouring ANFs in the CF range of
[200,6400] Hz are averaged to build a 24 dimensional feature
vector. In [14] it was observed that a rather broad range of
fibres is activated by signal frequencies especially at higher
sound pressure levels. Thus, MR coding might not be the
only way of human auditory information transmission.
ALSD features as an representatitve of temporal neural in-
formation coding are computed according to:

1 i+1 .
ALSD _ GSD;
X; =3 1:21-_1 X, where €))]

oo o [ X m)) 8
X = A KO — By (- )

with X/*(¢) being the time-varying firing rate of ANF [ (es-
timated by the post stimulus time histogram of the neural
activity in time bins of ﬁ s averaged over all simulations

and 8 neighbour ANFs as for XMR). The (.) operator denotes
temporal averaging, n; is the period (in time bins) of the CF
of ANF i. Basically, the term in the denominator checks,
whether on average the neural activity is the same as it has
been one (CF-)period before. The constant § = 0.99 avoids
obtaining zeros in the denominator. § = 60spikes/s - dr cor-
rects for spontaneous neural activity and A; = 4 is a scal-
ing constant. According to eqn. (1) the XALSP representation
consists in a 22 dimensional feature vector. As phase lock-
ing decreases for high frequencies above 1 —2 kHz [15] also
temporal coding can not be the only way of carrying auditory
information but rather a combination of XM® and XALSP,

In addition to standard MR and ALSD features also features
are computed to extract information about the shape of the
cochlear travelling wave: In [16], [17] and [18] features are
investigated that are based on so called neural delay comput-
ing networks (DCNs). As such networks are less common
they are briefly explained in the rest of the Section:

DCNs [6] identify curves of different shape. Figure 2 shows
an exemplary 9 x 9 DCN. The input neurons (INs) are shown
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Figure 2: Exemplary 9 X 9 delay computing network.

in the left vertical line. At each time ¢ either a spike (AP)
appears at an IN i (i.e. X;(t) = 1) or not. At each time step
t — t + 1, the spikes of each (vertical) layer j at delay chain
(i.e. input neuron position) i are transmitted to the next layer
j+ 1 with some probability P;;(¢) or otherwise delayed for
exactly one time step. The output neurons j (ONs) integrate
all spikes that are in layer j at the same time ¢ resulting in
their instantaneous activity Y;(z).

During the learning process, the probabilities P;;(r) are
trained unsupervisedly until convergence. Finally, each ON j
corresponds to a specific delay structure within the response
of the INs according to the trained values P;;. A description
of the training algorithm is given in [6] and it is shown that
such networks are able to learn curves of different shape like
straight lines or sinusoidals. In [19] DCNs are adapted to
the output of the auditory simulation model where the ANFs
(144 ANFs starting with index 21, ~ 200 Hz CF) serve as
INs of the DCN. In [17] the implementation of several paral-
lel local (PL)DCNS of smaller size is proposed where the INs
of any local DCN cover only a small neigbourhood range of
ANFs.

Computing mean activities (Y;(r)) as features is not mean-
ingful as each layer (and thus each ON) is passed by all input
APs but at different times (see e.g. [18]). A specific shape of
the cochlear travelling wave would lead to strong temporally
concentrated activity Y;(z) of its corresponding ON ;. From a
neurophysiological point of view neurons do fire if their po-
tential exceeds some threshold 6. Thus, one could argue that
if some shape of the cochlea travelling wave is representative
for a specific sound signal (e.g some specific phoneme) for
any ¢ of different sound the corresponding (output-)neuron
should show less activity than 6, i.e. P(max,Y;(r) < 0)
is small for all + where the specific sound is not present.
Feature representations X J-DCN = max, Y;j(f) can be motivated
[17]. Note that as opposed to the formerly presented fea-
tures, XV can not be interpreted in a spectral manner. The
only implicit frequency information depends on the CFs of
the ANFs that serve as INs. Thus, PLDCNs of smaller lo-
cal network size represent smaller CF ranges. After some
experiments 10 parallel local networks each of size 18 are
implemented (starting at ANF 21). For XPN feature extrac-
tion the values max, Y;(r) of any 9 neighbour output neurons
are further grouped by summing up their values (this gave
the best results among several investigated group sizes, for
further details on parameterization of the PLDCNs see [17]).
The resulting features correspond to either simultaneous or
strongly delayed activity within the frequency region of a lo-
cal network’s input ANFs.

1236



4. COMBINING FEATURE VECTORS

To combine several feature sets, apart from simple concate-
nation linear transformations of the combined data vectors
have become popular to both reduce the dimensionality (and
thus the number of free model parameters) as well as to
decorrelate the resulting feature vectors (allowing to use di-
agonal covariance matrices for HMM back end modelling).
Standard methods for this task are principal component
(PCA) transformation as well as cepstral transformation.
Both methods are known to produce uncorrelated features.
Principal component transform returns uncorrelated features
w.r.t. some common mean (of all recognizable classes). To
be able to perform recognition, the conditional feature distri-
butions given the classes is supposed to differ. A well known
linear dimensionality reduction transform that maximizes the
average distances of the class means in the transformed space
w.r.t. their (common) covariance is linear discriminant anal-
ysis (LDA). An extension of LDA that also handles differ-
ent covariance structures of the class distributions is het-
eroscedastic discriminant analysis (HDA, [8]), where a trans-
formation matrix A is determined that maximizes the likeli-
hood (in the transformed space) y = A’x under the assump-
tion of normality. For the class specific means and covari-
ances it is further assumed

a

W = [ Zlg,,q ] and

10
Z3k<0k ngq )a

i.e. the class distributions only differ in the first g compo-
nents of the transformed space (where p > ¢ is the dimension
of the original space and k denotes the class). Finally, only
the first g components of y are used for back end estimation.
An efficient algorithm under the assumption of diagonality
in the transformed space is given in [20]. The estimates for
class means and covariances in the transformed space are
given by

L = (AP)X,

A = (APY)'R,

B¢ = diag((A?)Wi(A?)) and
357 = diag((APT9)T(APT9))

(see [8]) where the upper indices ¢ (resp. ~?) denote the first
q (last p — g) components and X, and Wy (resp. X and T)
are the class specific (resp. total) mean and covariance matrix
estimations of the features in the original space. In HDA, be-
sides the enlarged model flexibility the number of free model
parameters increases and thus finding the transformation be-
comes less stable. Therefore, in [21] regularization is pro-
posed where several components of A are fixed in advance
to be 0 (e.g. some block structure of A is required). This is
meaningful if the dimensionality reduction is desired to be
performed separately on several subgroups of variables (e.g.
the original features on one hand and their first and second
order A derivatives on the other hand in [21]). By construc-
tion, this kind of regularization is not meaningful for feature
combination. In [20] stabilization is proposed by smoothing
the estimate (in the original space)

wimeothed (3 — AW, + (1 — )W pooled

where Wpgo1eq is the common pooled equal covariance es-
timate for all classes and A € [0, 1].
Friedman [22] proposes for classification tasks:

WFried (ﬁ.) _ ()’)Nkwk + (l - )*)prooled )

k (ANe+(1—=A)N
that takes into account that covariance estimates of smaller
class sizes Nj are less stable. He furthermore proposes an
additional shrinkage of WETied towards diagonality:

tr(Wired ()1

WP, 7) = YW () + (1 -7) p

where T is the identity and (4,7) € [0,1]?. This idea goes
back to [23]. Let regularized heteroscedastic discrimi-
nant analysis (RHDA) be the transform that is obtained by
HDA with covariance estimates WEPA (1 y) in the original
space. Note that the extremes (A,y) = (1,1) and (A,7) =
(0,1) represent HDA and LDA. In [8] it is shown that the
LDA transform also maximizes the likelihood as in HDA
under equal covariance assumption of the classes. For this
work RHDA transforms are evaluated on parameter grids
(A,7) € {0,0.25,0.5,0.75,1}* and different choices of q.
The classes for training are chosen to be phoneme states of
an initial alignment using standard MFCC based recognizers
according to the results of [24] (see Section 5) in order to
provide a unified basis for all feature vectors under investi-
gation. According to [25] XA () := X (¢) — X (¢t —20ms) and
Xaa (1) are explicitly computed before transformation.

5. EVALUATION STUDY

An evaluation study is pursued on the TIMIT data base [26].
The core set is used as proposed by the developers, consisting
of training (test) sets of 576 (192) utterances (SI and SX).

o [eft-to-right HMMs are trained for each of the 61 mono-
phones, consisting of 3 states each.

e The feature distributions given the states are modelled as
gaussian mixtures.

o State initialization is done by linearly segmenting the ut-
terances.

e After any three iterations of Baum-Welch reestimation
gaussians are split into mixtures of 2 gaussians until there
were finally 8 mixtures of gaussians per state.

e Bigrams are used as grammar models.

e Prediction is done by the Viterbi algorithm.

The implemented back end corresponds to observed results
for different parameterizations described in [27]. Even if
they are observed for non-auditory feature sets it appears
meaningful to use them as an initial guess. Concerning the
number of mixtures one may suppose that it results from sev-
eral groups of subpopulations within the data that exist inde-
pendently from the explicit feature choice of features. Some
brief attempts have been made to change the number of mix-
tures or to implement generalized triphone models, but with-
out an increase in recognition rate. The latter is supposed to
result from the limited size of training data having a strong
effect on the performance [27]. As the focus of the study was
to investigate the benefit from feature combination of differ-
ent neural information coding schemes no further attention
was invested into optimizing the HMMs by additional tying
methods. Implementation is done using the HTK toolkit [28].
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Results for different degrees of regularization
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Figure 3: Recognition rates for different degrees of regular-
ization (left) and different feature sets (right).

According to Lee and Hon [29] for recognition 39 phone
classes are defined from the original 61 phones. Besides
comparing the recognition correctness on the test data statis-
tical tests are implemented to investigate significance of the
difference of the observed results. 5 x 2 fold cross-validation
is used for testing as it is proposed in [30] with additional
Bonferroni corrections for multiple testing [31].

6. RESULTS AND DISCUSSION

A first investigation concerned dimensionality reduction
methods evaluated on standard mean rate features. Using
RHDA shows the strongest improvements (60.18%) as op-
posed to HDA (55.83%), LDA (57.60%) and cepstral trans-
formation (57.97%). Figure 3 (left part) shows the results for
different parameters (A,7) and dim(y) = 21. Consistently
optimal results (for different dimensionalities and original
feature sets) are obtained for parameter choices (A,y) ~
(1,0.5). This underlines the importance of modelling class
specific covariance matrices. Box M test (see e.g. [32], ex-
emplarily performed on different subsamples of variables
and classes) either strongly refuses the hypothesis of equal
covariance matrices of the classes or runs into matrix inver-
sion difficulties due to nearly collinearity of the covariance
matrix estimation in the original space. The latter leads to
high variance of the estimates ([23]) and might explain the
benefit of regularization as it is done by a parameter y < 1.
Figure 4 shows an example of the covariance matrix esti-
mates for two different classes in the original feature space.
Class specific covariance matrices are clearly recognizable.
Due to their nature components with similar indices show
strong correlations.

Figure 3 (right part) shows the performance of ASR sys-
tems based on different feature sets: the combination of
XMR (56.98%) and XALSP (60.25%) significantly improves
the recognition performance (61.11%) by means of the sim-
ple convex combination (X]" = 0.15- XMk +0.85 - X15P)
of the standardized original features. Adding PLDCN fea-
tures (53.35%) leads to further statistically significant im-
provements (62.13%). The small recognition performance
of PLDCNs alone can be explained by the fact that relevant
frequency information has been dropped away in this case.
Standard hamming windowed MFCC features result in
64.90% correctness (which corresponds to the results in [27]
for similar amounts of training data, similarly, using PLPs re-
sulted in 64.27%). This good performance of MFCCs alone
might be explained as they already imitate several phenom-
ena of auditory sound processing like mel-scaled frequency

Figure 4: XMR Covariance matrices for different classes.

transformation or logarithmic amplitude saturation [4].
Finally, performing RHDA on the combined MFCC + MR
+ ALSD + PLCDN (auditory extended feature, aef) vector
strongly improved the recognition rates up to 68.72% This
result shows the benefit of combining different auditory and
non-auditory features and underlines the hypothesis that the
auditory neural response contains additional relevant infor-
mation for automatic speech recognition. Statistical tests un-
derline significance of difference in recognition performance
of four compared pairs of feature sets under investigation:

feature set 1 | feature set 2 | p-value
MR MR (RHDA) 0.0067
MR MR/ALSD 0.0046
MR/ALSD MR/ALSD/PLDCN (RHDA) 0.0429
MEFCC auditory extended feature set | 2.11-1073

Table 1: p values for tests on equal performance.

7. SUMMARY AND OUTLOOK

Different principles of feature extraction from a detailed neu-
rophysiologically parameterized auditory simulation model
are compared in this paper. Furthermore, motivated by the
fact that humans are probable to make use of several ways
of auditory neural information encoding, the combination of
different auditory model based feature sets is investigated.
For this purpose the method of regularized heteroscedastic
discriminant analysis is introduced to condense relevant in-
formation of several different feature sets in an uncorrelated
vector of lower dimension. Especially the aspect of regular-
ization showed to be beneficial while at the same time allow-
ing to model heteroscedastic covariance matrices of different
classes. An increased recognition performance has been ob-
served for the combination of different auditory model based
information encoding schemes (i.e. place/mean rates, phase
locking, delay computing). Moreover, it has been shown that
extended recognizers based on combined MFCC / auditory
model based features can significantly improve the recogni-
tion rate compared to the simple use of the common MFCCs.
The results lead to the conclusion that there is additional rel-
evant information included within the auditory model based
features. For further studies emphasis should be laid on back
end optimizing by implementing tying approaches on larger
data bases. Furthermore, the behavior of the combined fea-
ture sets under adverse conditions like noise or reverberation
should be investigated.
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