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ABSTRACT 
In Automatic Speech Recognition (ASR), the presence of Out 
Of Vocabulary (OOV) words or sounds, within the speech 
signal, can have a detrimental effect on recognition 
performance. One common method of solving this problem is 
to use filler models to absorb the unwanted OOV utterances. 
A balance between accepting In Vocabulary (IV) words and 
rejecting OOV words can be achieved by manipulating the 
values of Word Insertion Penalty and Filler Insertion 
Penalty. This paper investigates the ability of three different 
classes of HMM filler models, K-Means, Mean and Baum-
Welch, to discriminate between IV and OOV words. The 
results show that using the Baum-Welch trained HMMs 
97.0% accuracy is possible for keyword IV acceptance and 
OOV rejection.  The K-Means filler models provide the 
highest IV acceptance score of 97.3% but lower overall 
accuracy. However, the computational complexity of the K-
Means algorithm is significantly lower and requires no 
additional speech training data. 

1. INTRODUCTION 

Automatic Speech Recognition (ASR) is an enabling 
technology that facilitates a speech interface to electronic 
devices or systems, permitting speech to be used as the 
primary mode of communication for an electronic device. 
One challenge that ASR systems must overcome is 
identifying command words embedded within speech. When 
interacting with an ASR system users tend to surround 
commands with extra words or sounds that are not part of 
the system’s vocabulary. The presence of OOV words within 
the user’s speech has a detrimental effect on recognition 
performance. To maintain suitable levels of recognition 
accuracy and allow users to interact with the system in a 
natural manner, ASR systems need to model both IV words 
and OOVs and manage them in an appropriate way.  
Wilpon et al. [1] [2] described this tendency to add extra 
words to commands when presenting the results of research 
into ASR across the telephone network. Rose and Paul [3] 
discuss different ways to solve this problem. ASR systems 
use language models to define the set of allowable words 
and phrases. One solution to the OOV problem is to build a 
language model that contains all possible words; however, it 
is not possible to include all words in a finite grammar. This 

method creates a very large language model, which takes 
significant effort to create, is expensive in terms of system 
resources with a large portion of the system’s vocabulary 
never used. The size of such a language model also 
precludes its use in smaller, embedded ASR systems. 
Another approach is to attempt to simplify the language 
model by restricting the words or phrases to a small closed 
grammar, but this can often feel unnatural to the user. The 
solution presented in this paper involves using filler models, 
also known as OOV models or garbage models, to absorb 
any extraneous words or sounds in the user’s speech. This 
approach, known as keyword spotting, allows the user to 
speak in a natural way, while the ASR system ignores those 
words that are not part of the desired language model.   
This paper presents a novel way of creating filler models 
using the K-Means algorithm. The recognition accuracy of an 
ASR system is measured using the K-means and alternative 
filler models. The performance of the filler models created 
using the K-Means algorithm is similar to those created using 
the Baum-Welch method.  
The cost of false positives, classifying OOVs as IVs, and 
false negatives, classifying IVs as OOVs, is different. 
Creating a system that has both a low False Positive Rate 
(FPR) and a low False Negative Rate (FNR) can be difficult. 
Bou-Ghazale and Asadi [4] have presented a system with a 
low false alarm rate, 0.55%, but a higher false rejection rate, 
15%. The filler models presented here give a balanced 
approach to dealing with IV and OOV utterances, providing 
a low false positive rate and a low false negative rate. 
The remaining parts of this paper are arranged as follows. In 
Section 2 an overview of Hidden Markov Models (HMMs) 
is provided, while in Sections 3 and 4 filler models and the 
K-Means algorithm are discussed. The simulation 
environment is described in Section 5 and the simulation 
results are provided in Section 6. Analysis of the simulation 
results are discussed in Section 7. Conclusions and further 
work are summarised in Section 8. 

2. HIDDEN MARKOV MODELS 

Hidden Markov Models [5] [6] may be used to represent the 
sequence of sounds within a section of speech. Each 
elemental speech sound, known as a phoneme, can be 
modelled by an individual HMM. The probability of the 
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input speech feature vector matching the HMM is used to 
identify the words spoken. HMMs are stochastic state 
machines where the current state is not directly observable; 
an HMM emits an observable symbol per state. The 
probability of an HMM emitting a symbol is modelled by a 
mixture of Gaussian distributions, as described in equation 
(1). 
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Where x is the feature extracted from the speech e.g. mel 
frequency cepstral coefficient, Cmj , μmj and Umj are the 
coefficient, mean vector and covariance for mixture 
component m in state j.  
HMMs are typically created using an iterative training 
method called the Baum-Welch algorithm, which uses a set 
of training data to estimate the HMM model parameters. 
Starting with a prototype HMM, the Baum-Welch algorithm 
adjusts these parameters to maximise the likelihood of 
observing the data. The HMMs presented in this paper were 
trained using the Hidden Markov Training Kit (HTK) [7] 
and the training data was extracted from the SpeeCon UK-
English Database [8]. 

3. FILLER MODELS 

Filler models are used to represent OOV words. They allow 
an ASR system to classify incoming speech as either IV or 
OOV without having to define explicitly an OOV word. In 
the system being considered for this paper, each IV 
phoneme is modelled by a single HMM; however the filler 
model HMMs represent multiple sounds and therefore are 
more general than the IV phoneme HMMs. Filler models 
can represent the entire set of speech sounds or subsets. The 
performance of four different classes of filler model is 
evaluated in this paper. The simplest class of filler model 
contains one HMM to represent all of the speech phonemes; 
this is the “single” filler model. The next class of filler 
model uses two separate HMMs. The “VNC” filler model 
has one HMM to represent vowels and another for 
consonants. The “VUV” filler model uses an HMM for 
voiced and one for unvoiced phonemes. The final class of 
filler model uses three HMMs to represent vowels, voiced 
consonants and unvoiced consonants. This set of filler 
models was called “VCVUV”, vowel consonant voiced and 
unvoiced. When multiple filler models are available: VNC, 
VUV and VCVUV, they are used in parallel. This means 
that the system can select between the IV phonemes and 
multiple filler models simultaneously. 
The filler models have the same format as the IV phoneme 
HMMs; this allows the ASR system to process them both in 
the same way. Three methods were used to create the filler 
models. The first method was the Baum-Welch algorithm 
which was used to create the filler models labelled “Trained 
HMM”. The other two methods were the Mean method and 
the K-Means method. The Baum-Welch algorithm operates 
on features extracted from the speech contained within the 
training database. The Mean and K-Means algorithms utilise 

the IV phoneme HMM Gaussian mixture component means 
and covariances. The Mean method calculates the m-th 
component j-th state mean vector as the mean of all the m-th 
component j-th state mean vectors for the individual IV 
phonemes models. The filler model component coefficients 
and covariances are calculated using the same methodology. 
The K-Means method uses K-Means clustering to create the 
filler models; a detailed description of this method is 
provided in the next section. 
By combining the different creation methods and different 
numbers of HMMs used in the filler models, 12 different 
filler models were available for simulation. The 12 different 
filler models are listed in Table 1. 
 

Filler Model No HMMs Creation Method 
Single Mean 1 Mean 

Single K-Means 1 K-Means 
Single Trained HMM 1 Baum-Welch 

VNC Mean 2 Mean  
VNC K-Means 2 K-Means 

VNC Trained HMM 2 Baum-Welch 
VUV Mean 2 Mean 

VUV K-Means 2 K-Means 
VUV Trained HMM 2 Baum-Welch 

VCVUV Mean 3 Mean 
VCVUV K-Means 3 K-Means 

VCVUV Trained HMM 3 Baum-Welch 

Table 1 : List of Filler Models Created and Simulated 

4. K-MEANS ALGORITHM 

The K-Means algorithm is an iterative clustering algorithm. 
Cluster membership is based on a measure of the data 
points’ similarity. A measure commonly used is the 
Euclidean distance from a data point to a cluster’s mean. 
Using this measure, a data point is associated with the 
cluster closest to it. The cluster’s mean is then recalculated 
and the process continues until a predefined stop criterion is 
met. 
The K-Means algorithm uses the IV phoneme HMM 
Gaussian mixture component mean vectors, μmj, as the data 
points for the clustering process. The final cluster means are 
used as the mean vectors for the mixture components in the 
filler models. The covariances were calculated using the 
same methodology as those for the Mean filler models. The 
component coefficients were calculated to be one over the 
number of components within a mixture i.e. 1/8 for 8 
mixture components. The algorithm is run separately for 
each emitting state in the HMM and creates a filler model 
that has the same format as the IV phoneme HMMs. The 
number of clusters used by the K-Means algorithm matches 
the number of Gaussian mixture components used for each 
IV phoneme HMM state. The Gaussian mixture component 
mean vectors for groups of IV phonemes are used to create 
different filler model classes, i.e. vowels, consonants, 
voiced, unvoiced, etc.  
The K-Means algorithm has two main deficiencies: a local 
minimum, not necessarily a global minimum, is often found, 
and results are very dependent upon the choice of initial 
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cluster means. A common method of initialising the cluster 
means is to select data points randomly. The algorithm is 
then run multiple times to ensure that it converges. Two 
alternatives to this random method were investigated. It was 
found that the filler models produced by these methods gave 
higher recognition accuracies. The first method involved the 
use of Principal Component Analysis (PCA) to reduce the 
dimensionality of the data points from 39 down to 3 and then 
select data points that were evenly distributed across this 3-D 
space as the initial cluster means. The second method 
calculated the Euclidean distance of each data point from the 
origin, ordered the data points in terms of this distance, and 
then selected every nth data point as an initial cluster mean, 
where n is the number of speech phonemes used to provide 
the data points. The second method resulted in the filler 
models with the highest recognition accuracies and was the 
preferred method of choosing the initial cluster means when 
the K-Means algorithm was used. 

5. SIMULATION METHODOLOGY 

5.1 Speech File Selection 
The speech files used to test the filler models were selected 
from the SpeeCon database. This database contains a wide 
variety of words: objects, people’s names, place names, 
commands, digits and internet addresses. The recordings 
were made in several different acoustic environments and 
with a wide range of Signal to Noise Ratios. Using this 
database ensured that the filler models were tested under 
real-world conditions. The simulations used 8 different 
keywords with approximately 270 instances of each, 
resulting in 2217 different speech files being used. The 
number of instances, mean, min and max Signal to Noise 
Ratio (SNR) for each keyword are listed in Table 2 . 

 
SNR  
(dB) 

 
Keyword 

 
No of  

Instances Mean Min Max 
Assistant 285 20.3 4.2 38.0 
Battery 274 22.5 3.8 35.8 
Camera 294 23.3 4.0 37.7 

Camcorder 283 22.6 5.6 35.0 
Clock 289 23.1 5.9 36.5 

Computer 268 21.7 3.2 45.8 
Microphone 244 22.4 4.8 35.9 

Radio 280 24.7 4.9 36.6 
Total No of Files 2217    

Table 2 : Number of Speech Files per Keyword 

5.2 Filler Model Simulations 
The performance of each filler model was measured by 
determining its ability to discriminate between IV and OOV 
words. For each simulation, one keyword was selected as IV 
and the remaining keywords were classed as OOV, the 
system’s ability to discriminate between IVs and OOVs was 
measured and the process repeated for all of the keywords. 
The language model used for these simulations is provided 
in Figure 1. In this language model the speech sequence 

starts and ends with silence, (Sil); the recogniser can select 
between the keyword, filler model, silence and short pause, 
(SP). Short pause is the small period of silence between 
words. The keyword can only be spoken once but silence, 
short pause or the filler model can be repeated any number 
of times. 

In order to maximise the performance of each filler 
model simulations were performed with a range of Word 
Insertion Penalty (WIP) and Filler Insertion Penalty (FIP) 
[9]. The values of WIP and FIP that gave the highest 
combined keyword and OOV accuracy, for that particular 
filler model, were identified and used in the filler model 
performance comparisons.  

 

 
Figure 1 : Language Model for Filler Model Simulations 

5.3 Calculation of Accuracy 
The HResults function, from HTK, was used to compare a 
reference file with the output of the ASR system and 
determine if the keyword or OOV was correctly identified. 
The recognition accuracy of correctly recognised keywords 
and rejected OOVs were then calculated separately. A 
Receiver Operating Characteristics (ROC) curve was used to 
compare the performance of the different filler model types 
by plotting False Positive Rate (FPR) against True Positive 
Rate (TPR).   

6. SIMULATION RESULTS 

The percentages of correctly identified keywords and 
rejected OOVs are listed in Table 3 and displayed in Figure 
2. The false positive rate and true positive rate for each of 
the filler models are listed in Table 4 and used to create the 
ROC curve plotted in Figure 3. 

 
 

Filler Model 
Correctly 
Identified 
Keywords 

Correctly 
Rejected 

OOVs 

Combined 
Accuracy 

Single Mean 76.5% 89.3% 82.9% 
Single K-Means 91.8% 94.4% 93.1% 

Single Trained HMM 94.3% 97.6% 96.0% 
VNC Mean 86.9% 94.7% 90.8% 

VNC K-Means 97.3% 94.0% 95.7% 
VNC Trained HMM 97.0% 96.9% 97.0% 

VUV Mean 85.0% 94.5% 89.8% 
VUV K-Means 92.8% 95.5% 94.2% 

VUV Trained HMM 95.2% 97.5% 96.4% 
VCVUV Mean 93.2% 94.8% 94.0% 

VCVUV K-Means 96.8% 95.6% 96.2% 
VCVUV Trained HMM 97.0% 97.0% 97.0% 

Table 3 : Filler Model Recognition Accuracy 
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Figure 2 : Keyword Acceptance vs OOV Rejection 

 
Filler Model FPR TPR 
Single Mean 0.11 0.76 

Single K-Means 0.06 0.92 
Single Trained HMM 0.02 0.94 

VNC Mean 0.05 0.87 
VNC K-Means 0.06 0.97 

VNC Trained HMM 0.03 0.97 
VUV Mean 0.05 0.85 

VUV K-Means 0.04 0.93 
VUV Trained HMM 0.02 0.95 

VCVUV Mean 0.05 0.93 
VCVUV K-Means 0.04 0.97 

VCVUV Trained HMM 0.03 0.97 

Table 4 :  FPR and TPR for Filler Models 
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Figure 3 : ROC Curve for Filler Models 

The highest scoring keyword for each filler model and 
corresponding keyword accuracy score are listed in Table 5. 
In Table 6 the number of phonemes, the number of voiced to 
unvoiced or unvoiced to voiced phoneme transitions and the 
mean keyword accuracy for each keyword are tabulated. 
Figure 4 plots keyword accuracy against the number of 
phonemes in the keyword, while Figure 5 plots the keyword 
accuracy against the number of voiced unvoiced transitions 
in the keyword. 
 
 
 
 

 
Filler Model 

Highest 
Scoring 

Keyword 

Highest 
Keyword 
Accuracy  

Single Mean Assistant 95.1% 
Single K-Means Assistant 99.6% 

Single Trained HMM Assistant 99.0% 
VNC Mean Assistant 99.3% 

VNC K-Means Assistant 99.3% 
VNC Trained HMM Assistant 98.2% 

VUV Mean Microphone 95.9% 
VUV K-Means Microphone 98.0% 

VUV Trained HMM Camcorder 98.6% 
VCVUV Mean Assistant 98.2% 

VCVUV K-Means Assistant 99.0% 
VCVUV Trained HMM Battery 98.5% 

Table 5 : Highest Performing Keyword for Filler Model 

 
Keyword 

No 
Phonemes 

No  
V/UV 

Transitions  

Mean  
Keyword 
Accuracy 

Assistant 8 5 97.7% 
Battery 6 2 94.4% 

Camcorder 7 3 95.6% 
Camera 6 1 79.0% 
Clock 4 2 81.6% 

Computer 8 5 94.4% 
Microphone 8 4 97.2% 

Radio 5 0 96.0% 

Table 6 : Mean Accuracy for Keywords 
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Figure 4 : Accuracy vs Number of Phonemes 
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7. DISCUSSION 

The simulation results presented in Table 3 confirm that it is 
possible to create filler models with high recognition 
accuracy and balanced rates of IV acceptance and OOV 
rejection. The VNC Trained HMM and VCVUV Trained 
HMM models have similar IV acceptance and OOV 
rejection rates, approximately 97%. These two filler models 
also have the lowest difference between the two rates; 0.1% 
for VNC and 0.0% for VCVUV. This balance was achieved 
by manipulating the values of WIP and FIP to change the 
operating point of the ASR system. The highest keyword 
accuracy is achieved by the VNC K-Means filler, 97.3%, 
however this is off-set by a lower OOV rejection rate of 
94%. The lowest keyword accuracy comes from the Single 
Mean model which also has the lowest OOV rejection rate, 
76.5% and 89.3% respectively.  Comparing the combined 
accuracy values of the different implementation methods for 
each filler model type it can be seen that the highest 
performance is achieved by the trained HMM models; 
higher IV acceptance and OOV rejection rates. Conversely 
the Mean method filler models have the lowest performance. 
The VNC K-Means filler model is the exception to this trend 
as it has higher IV acceptance than the VNC trained but 
lower OOV rejection than the VNC Mean. Using a filler 
model with more than one HMM can improve the 
recognition performance. The VNC and VUV models have 
higher accuracies than the single model for all 
implementation methods and the VCVUV filler model is the 
best performing model for Mean and K-Means but is 
marginally worse for the Trained HMM method. 
The selection of an appropriate keyword has an impact on 
the recognition performance of the ASR system. Table 5 
shows that the longest keywords generally have the highest 
recognition accuracy, i.e. Assistant and Microphone. When 
keyword recognition accuracy is plotted against the number 
of phonemes present in the keyword, Figure 4, keywords 
with increasing phoneme length exhibit higher recognition 
accuracy. When the keyword recognition accuracy is plotted 
against the number of voiced to unvoiced transitions within 
the keyword, Figure 5, there is a similar relationship. This 
would suggest that to maximise recognition accuracy a long 
keyword with 5 or more phonemes and 3 or more voiced to 
unvoiced phoneme changes should be selected.  

8. CONCLUSIONS 

This paper presents the results from a series of experiments 
evaluating the performance of a keyword speech recognizer 
using 12 different HMM based filler models. Three different 
methods of generating the filler model HMMs were 
evaluated: Mean, K-Means and Baum-Welch. Each of the 
three methods was used to create filler models with 1 or 
more HMMs: Single, VNC, VUV and VCVUV.  The VNC 
and VCVUV filler models created using the Baum-Welch 
algorithm have superior overall performance compared to 
the filler models created using either the Mean or K-Means 
algorithms.  However, the Baum-Welch trained HMMs 
performance advantage was only 0.8% to 2.9% over the    
K-Means generated HMMs. The VNC K-Means filler 

models offered the highest keyword detection score of 
97.3%.   The filler models created using the Mean method 
had the lowest performance, as much as 13.1% lower than 
the Baum-Welch trained HMMs. The K-Means algorithm is 
much less computationally intensive compared to the Baum-
Welch algorithm, assuming the trained speech phonemes are 
available, as there is no additional training requirement. This 
provides the flexibility and simplicity of producing high 
quality OOV filler models when the original speech training 
data is not available. When considering the selection of a 
keyword,  5 or more phonemes and a minimum of 3 voiced 
to unvoiced phoneme transitions (and vice versa) were 
found to consistently offer superior performance. 
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