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ABSTRACT
CMOS image sensors are used in most of the camera sys-

tems today. For achieving a high image quality it is essen-
tial to compensate for fixed pattern noise. Compensation can
be carried out by subtracting an estimated noise value per
pixel, either directly on the sensor or in the digital process-
ing. Unfortunately these values are different for each cam-
era and will vary for different exposure times, camera mode
settings and temperature. This poses additional challenges
for high-end moving picture camera systems. We present a
new algorithm for improved fixed pattern noise compensa-
tion that extends the currently available linear models. Mea-
surements of a real world camera system and a simulation
are used to show the improvements with our algorithm. Sig-
nificant improvement of the compensated fixed pattern noise
over a wide exposure range is shown. This allows the oper-
ation of the camera system at a much wider range of frame
rates and especially long exposures are now possible. Our al-
gorithm can be implemented without increasing the required
memory bandwidth which saves power, size and cost.

1. INTRODUCTION

With todays CMOS sensors a high image quality is possible.
Their low power consumption and cost made them popular
for a low end mass market like mobile phone cameras. This
fueled the research and even better high-end CMOS sensors
are available today. Still, the images from a CMOS sensor
suffer from various distortions and image processing for the
removal of noise is necessary for obtaining high quality im-
ages. The signal processing for removing the noise works
reliably as most of the noise is predictable.

This fixed pattern noise is mostly caused by inhomogen-
ity in the manufacturing of the silicon sensor. Tiny varia-
tions in size, position or temperature of a transistor result in
slightly different characteristic. The analog operation of the
transistors of an active pixel sensor and their non-ideal be-
havior result in the degradation of the image. Extensive sen-
sor cooling as in astro photography [6] as well as improve-
ments in sensor technology [1] both help to reduce fixed pat-
tern noise. This certainly improves image quality but does
not release the high-end market from compensation algo-
rithms. Even then additional improvements can be achieved
with compensation algorithms (see example in Figure 1).

For high-end motion picture camera systems an instant
compensation for all possible exposure times is required. The
user needs to be able to select from different exposure times
without a time consuming re-calibration. The exposure time
could even change while the camera is running. While ”over-
cranking” the camera runs faster than playback and a slow

a) b)

Figure 1: Noise removal image processing: a) uncompen-
sated image with fixed pattern noise, b) after compensation

motion effect is achieved. A seemless transition of the expo-
sure time needs to be performed.

Various methods for fixed pattern noise reduction have
been suggested: The most basic idea captures and stores a
dark frame and later subtracts it from a regular bright frame
[5]. This method is directly applied in astro photography
and some of the still photography cameras today. It does not
work for a continuous operation of a camera with variable
exposure time.

The model in [3] distinguishes only offset noise for
columns and single pixels. This helps in characterizing the
silicon structure but gives no advantage over [5] for compen-
sation of a single pixel. In [2] a setup for gain FPN calibra-
tion is shown. A model for dark current FPN compensation
with variable exposure time has been proposed in [9]. Our
simulation shows that this linear model works well on av-
erage. Still, a visually disturbing noise pattern remains as
the non-linear behaviour of a small percentage of pixels can
not be compensated. In the field of semiconductor image
sensor design more complex FPN models are used for the
analysis of design decisions [4]. Unfortunately they are too
complex for a real time compensation. FPN compensation
models also exist for high dynamic range logarithmic image
sensors [8] but these models are not applicable to linear im-
age sensors. The calibration of [7] is used for temperature
variations of offset and gain in CCD image sensors. The spe-
cific problem of dark current is not adressed there.

This paper starts with an image formation model that dis-
tinguishes different types of CMOS image sensor noise. We
show measurements of a real world camera system in Section
3. One existing linear [9] and two new non-linear fixed pat-
tern noise models are then shown in Section 4. Calibration
procedures are explained accordingly. The models are then
compared in a simulation in Section 5.
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2. IMAGE FORMATION MODEL

When capturing an image there are many components that
show non-ideal behavior. This leads to severe image degra-
dation which can be described as noise. Our analysis de-
scribes the behavior for a single and independent pixel, and
the description thus omitts the pixel position(x,y). We want
to specifically distinguish between two types of noise for
each pixel:

I = Ĩ +Nfixed+Ndynamic (1)

The static or fixed pattern noiseNfixed desribes distor-
tions that can in some way be predicted. This does not mean
that they are fixed in general but that their dependencies are
well understood. These dependencies on temperature or ex-
posure time can then be controlled (e.g. with temperature
stabilization) or measured and accurate noise predictionscan
be made. A subtraction of the fixed noise then leads to an
improvement in image quality [5]. In general we can distin-
guish three major contributions:

Nfixed = Noffset+Ndark+Nprnu (2)

The offsetNoffset is caused by semiconductor variations. It
varies with temperatureT but is independent otherwise. The
dark currentNdark is caused by a leakage current and a pixel
will ”fill up” even without any light. It depends on the ex-
posure timeτexp and the sensor temperatureT. Examples
for typical Noffset andNdark patterns can be seen in Figure 2.
Each pixel has a slightly different sensitivity which is com-
monly called ”Photo Response Non Uniformity” noiseNprnu.
It is caused by variations in size and position of the photo site
electronics and depends on the amount of lightI . A model as
shown in [2] assumes a fixed multiplicative gainG per pixel.
The additive noise can then be written as

Nprnu = (G−1) · Ĩ (3)

In the following analysis we want to concentrate onNfixed
which is especially disturbing in dark image areas. The
PRNU noise is insignificant in these image areas andNprnu≈
0 is used throughout this paper.

The temporal dynamic noiseNdynamic changes from one
frame to another. It is caused by many effects within the
photo site and sensor readout. This includes reset noise, pho-
ton shot noise, readout noise, quantization noise and dark
current shot noise [10]. We assume an uncorrelated zero
mean dynamic noise. We might be able to model and predict
its statistics but the values itself are unknown. A reduction
by subtraction of an estimate is not possible.

3. MEASUREMENTS OF A REAL WORLD SYSTEM

For evaluating the quality of the compensated images we
need to compare them based on real world data from a cam-
era. We set up a measurement that delivers dark current for
many exposure times. This can be used for the calibration
of our models as well as the evaluation of the quality of the
models (see below).

3.1 Experimental Setup

We used a high resolution (6 MPixel) photodiode active pixel
sensor with 8.25 um pixels. Sampling was done with 12 Bits
of resolution. To avoid drift we used a temperature stabilized

Noffset Ndark

Figure 2: Typical fixed pattern noise components,τexp =
100 ms, displayed with a gain of x16
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Figure 3: Measured dark currentNdark on average and exam-
ples for non-linear pixels

sensor system. The temperature of the camera system was
kept constant as well. The sensor was covered and all of the
camera system was shielded from light.

For each exposure time we capturedM = 15 pairs of
frames withτ = τexp andτ = 0 over the range of exposure
times from 30 ms to 1 sec. The captured information of a
single pixel of thekth frame with exposure timeτ is denoted
by Ik(τ). The analysis is shown for many independent pixels.

3.2 Measurement Results

From the captured pixel valuesIk(τ) we can calculate aver-
age values for each pixel and exposure time:

Ī(τ) =
1
M

M−1

∑
k=0

Ik(τ) (4)

From this data we can calculate the dark current noiseNdark
for each pixel. According to our image formation model we
can use

Ndark(τexp) = Ī(τexp)− Ī(0) (5)

The dark current noise average across all pixels of the image
is shown in Figure 3. We can see that on average the dark
current noise rises linear with exposure time. On average
pixels can be assumed to have a constant dark currentidark
which can be represented by the linear model.

Measurements have shown that there are over 1 % of pix-
els that show a non-linear behavior. Some examples of these
pixels can also be seen in Figure 3. The overall number of
pixels with non-linear behavior is large and we should not
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classify all of these pixels as ”dead”. Although they follow
a non-linear behavior over exposure time they are still sensi-
tive to light and can contribute to the final image. A reduced
dynamic range for these pixels needs to be kept in mind.

3.3 General Validity

The reasons for this behavior of the photo site lie in the leak-
age current which depends on the remaining reverse voltage
across the photo diode [4]. We were able to measure the same
behavior for different types of CMOS sensors.

The reverse voltage will also change if the sensor sees
light. The models and assumptions will be inaccurate for
high amounts of light and are only useful for a medium to
low range of light. As the dark current and offset noise are
only visible in low light situations anyway, these models are
still useful for this range. With a high amount of light the
photon shot noise dominates the dynamic noise and dark cur-
rent fixed pattern noise effects will be less visible.

4. FPN COMPENSATION MODELS

For compensating the fixed pattern noiseNfixed we need to
find estimates for its components. These components can
then be subtracted from the image. We will show an exist-
ing linear and two new models to estimate these components
for offset and dark current noise for each pixel of the image.
Furthermore we asume a stabilized temperature for sensor
and analog electronics.

Although these models do not seem to be overly com-
plex, one needs to be aware that they need to be evaluated
for every pixel of every frame. This limits the number of op-
erations as well as the number of parameters for a real-time
implementation. Exponential dark current models like [4]
are too complex for a real time image compensation.

4.1 Linear Model

The model in [9] assumes a dark currentidark that is constant
for each pixel (see Figure 4). This leads to a linear compen-
sation algorithm that calculates the fixed pattern noise with

Nfixed = idark· τexp+Noffset (6)

For the calibration of the camera system a set of two expo-
sures with exposure timesτ = τexp andτ = 0 can be used.
The per-pixel dark current can then be estimated by

idark =
1
τc

[Ī(τc)− Ī(0)] (7)

Noffset = Ī(0) (8)

The selection of the calibration pointτc depends on the appli-
cation. For exposure times close to the calibration the error
will be lower.

4.2 Segmented Linear Model

Our measurements have shown that although the linear
model works well on average, there are some outliers. These
pixels follow a non-linear behavior and are not well repre-
sented with the above model. Unfortuately they are visually
disturbing and need to be taken care of.

We propose a model that consists ofN segments. Within
these segments we use a linear model. The segment bound-
aries are defined by the exposure times with segmentn lying

Nfixed

τexpτc τmax0

Noffset

(idark)

Figure 4: Linear model for FPN compensation
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Figure 5: Segmented linear model for FPN compensation

betweenτn−1 andτn. An example withN = 3 can be seen in
Figure 5. For each pixel we use a set of independent param-
etersin andOn. The same segment bordersτn are used for
all pixels of an image. The compensation can be carried out
with this equation:

Nfixed =

{

i0 · τexp+O0 if n = 0
in · (τexp− τn−1)+On else (9)

This algorithm requires additional memory for storing the
parametersin andOn for each segment. The size of todays
memory chips makes this easily possible. The data rate on
the other hand is not increased as for a single image we only
need to readin andOn from memory. The decision about the
segment is done based on the exposure timeτexp only once
per image.

The calibration of a camera with this model estimates the
parametersin andOn. For each segment we need to observe
an averaged set of frames. The first segment can directly be
calibrated like a linear model:

i0 =
1
τ0

[

Ī(τ0)− Ī(0)
]

(10)

O0 = Ī(0) (11)

For the following segments we assign

in =
1

τn− τn−1

[

Ī(τn)−On−1

]

(12)

On = in−1 · τn−1 +On−1 (13)

Minor error might occur due to rounding the values for a
fixed point implementation. This calibration procedure still
guarantees a continuous dark current representation without
adding up the errors.

The segmented model can also be used with a correlated
double sampling sensor mode. This will deliver a reduced re-
set noise and cancellation of the offset noise. The calibration
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can be carried out as shown above with the result of

O0 = Ī(0)− ŌCDS ≈ 0 (14)

4.3 Quadratic Model

For comparison of non-linear models we also used a model
based on a quadratic polynom as shown in Figure 6. This
requires three parameters and two additional multiplications
per pixel:

Nfixed = a· τ2
exp+b· τexp+c (15)

The per pixel parametersa, b andc can be calculated by fit-
ting a polynom to measurementsĪ(τ) with at least 3 different
exposure times.

Nfixed

τexpτmax0

c

a,b

Figure 6: Quadratic model for FPN compensation

5. EXPERIMENTAL RESULTS

For evaluating the performance of the algorithms we per-
formed an offline compensation for the measured real world
data. Only few (see below) of the measured data points were
used to calculate the compensation parameters for all pixels
and models. For the remaining samples we then performed
the compensation. Fitting the models to many more data
points could further reduce the error but is clearly imprac-
tical for a real world calibration of camera systems.

For the linear model we usedτc = 750 msec to calibrate
the model. This gives a low average error but generates a
good compensation only for this exposure time. Calibrating
for a typical exposure time of e.g.τc = 30 msec is desirable
for typical operation modes but this would lead to even worse
compensation for long exposure times. We can clearly see
the limits of a linear model.

For the segmented model we choseN = 4 which is still
practical for an implementation and gives reasonable com-
pensation quality. We used the segment bordersτ0 = 65
msec,τ1 = 257 msec,τ2 = 590 msec andτ2 = 955 msec.

For the quadratic model we used the same 5 data points
and fitted a polynomial model of order 2 with the Matlab
polyfit function.

In Figure 7 we can see the resulting error over exposure
time for all pixels from an example region of the image. The
first row shows the mean error for each exposure time. We
can see that the error for bad pixels is reduced compared to
the linear model. The second row shows error histograms and
the average error as well as the outliers are significantly re-
duced. These outliers are visually disturbing and prevented
the use of a linear compensation for a large range of expo-
sure times. This is confirmed by looking at the third row. It
shows the remaining fixed pattern noise for an exposure time
of τexp = 100 msec. Especially the few but disturbing pixels

are reduced. For a numeric comparison of the algorithms the
mean and variance of the compensated images is shown in
Table 1. We can see that our segmented method reduces both
the mean error and variance by a factor of over 3 compared
to the linear compensation.

Method mean error variance
Linear 0.90 5.70
Segmented linear 0.27 1.50
Quadratic 0.29 1.89

Table 1: Remaining image noise (mean and variance) for
simulated compensation, average over all exposure times

For this system we measured the average dynamic noise
variance to Ndynamic = 1.88. Both the segmented and
quadratic approach can reduce the fixed noise below this
level. In contrast to the linear compensation both of these
methods will be able to generate compensated images where
a fixed pattern noise is not noticable any more. The few re-
maining pixels that will still be visible can now be classified
as dead pixels.

This increased compensation quality is possible without
additional memory bandwidth which is currently the limit-
ing factor in mobile camera systems. The additional storage
for a 6 MPixel camera amounts to only 75 MBytes, which
is easily available with current memory ICs. The number
of additional computations is small and typical camera im-
plementations can easily be adjusted. This leads to a larger
usable range of exposure times without increasing the cost of
a camera system.

6. CONCLUSIONS

We show measurements of the fixed pattern noise behavior of
a real world CMOS sensor. Specifically the non-linear dark
current of some of the pixels is analyzed.

Based on the observed non-linearities we extend existing
linear dark current compensation models with a new non-
linear model. We propose a segmented linear compensa-
tion that allows a wide range of exposure times. We also
show the calibration computations that guarantee a continu-
ous model even with rounding necessary in fixed point im-
plementations.

We compare the models based on a simulated compensa-
tion which is based on measured dark current behavior and a
calibration of the models. Results for the compensation qual-
ity are shown and the real-time implementation requirements
are analyzed. The new segmented model is able to both re-
duce the average compensation error as well as the variance
by a factor of 3. The error reduction of outliers is especially
important as these pixels are highly visible in the final image.
For our system we can reduce the fixed pattern noise below
the dynamic noise which is essential for using the camera
modes.

Our model enables the compensation quality of a
quadratic model without increasing the hardware resources
compared to a linear model. This reduces the hardware costs
for a camera system and enables an increased image quality.
This enables additional camera modes with longer exposure
times and a high image quality without further increasing the
cost of the system.
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Figure 7: Simulated compensation error for linear (left a),d), and g)), segmented linear (center b), e) and h)) and quadratic
model (right c), f) and i)). The mean compensation error overexposure time is shon in a), b) and c), overall error histograms can
be seen in d), e) and f) and g), h), and i) show the remaining noise in compensated image areas (gain of x128,τexp= 100 msec)
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