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ABSTRACT 

Space-Time Adaptive Processing (STAP) is now commonly 

used in radar engineering to detect the targets by using a 

phased array antenna system. However, the computational 

cost of the standard version and the memory storage are 

high. In addition, the detection could be more robust against 

interfering targets. To solve the above problems, autoregres-

sive (AR) modelling of the disturbances, namely the sea clut-

ter and the additive thermal noise, leads to a variant of the 

STAP. In that case, the key issue is the estimations of the 

multichannel AR process from the secondary data, i.e. the 

data received when analyzing the “cells” in the neighbour-

hood of the area under study. Off-line methods have been 

proposed, but they require a large number of secondary 

data. To reduce it, on-line method can be considered. Never-

theless, since the clutter has a K-distributed amplitude dis-

tribution, the Gaussian assumptions necessary to use Kal-

man filtering do not hold. To relax them, we suggest investi-

gating the relevance of H∞ algorithm in this paper. 

1. INTRODUCTION 

The purpose of Radar (RAdio Detection And Ranging) is 

mainly to detect and to locate targets. When a coherent 

pulse radar is used, target velocity can be also estimated. 

Nevertheless, two main problems occur when dealing with 

radar processing. Firstly, the long-range detection may be 

difficult due to the 4/1 R  decay of the reflected power. 

Secondly, target detection is disturbed by the sea or ground 

clutter, the jamming and the additive thermal noise. 

When phased array antenna system is used, multiple ele-

ments of the antenna array provide spatial information 

whereas pulse repetition periods supply temporal informa-

tion. The Space-Time Adaptive Processing (STAP), which 

takes advantage of both domains [1] is now one of the key 

tools in modern radar processing. For the last years, a great 

deal of interest has been paid to variants of the STAP to 

reduce both the computational cost and the memory storage 

and to make the detection more robust against interfering 

targets. A few months ago, it should be noted that a special 

issue was dedicated to “new trends and findings in antenna 

array processing for radar” in [10]. 

Thus, by modelling the clutter-plus-noise as a multichannel 

autoregressive (AR) process [6], [3], [8] and [7], this leads 

to variants of the STAP known as the Parametric Adaptive 

Matched Filter (PAMF), the detector proposed by Lombardo 

[6], the Normalized Parametric Adaptive Matched Filter 

(NPAMF) and the space-time autoregressive filter (STAR). 

In any case, the estimations of multichannel-AR matrices 

are required. In [6], an off-line maximum likelihood estima-

tion is proposed, but it requires a large number of data. In 

[9], Schuman uses a Kalman filter to reduce the number of 

data to be processed and to characterize the clutter-plus-

noise. Nevertheless, since sea and ground clutters have a K-

distributed amplitude distribution [12], Kalman filtering 

should not be considered since Gaussian assumptions are 

not satisfied. 

In this paper, we propose an H∞-filtering based approach 

which avoids any statistical assumption on the model noise 

in the state space representation. In addition, we suggest 

distinguishing the influence of the clutter and the additive 

thermal noise. Indeed, the variance of the additive thermal 

noise, assumed to be white and Gaussian in the temporal and 

spatial domains, is known in practical case. Therefore, the 

clutter alone is modelled as a pth order multichannel autore-

gressive process whereas the thermal noise is assumed to be 

an additive zero-mean white noise. This model has hence the 

advantage of designing a more “suited” clutter rejecter filter. 

Nevertheless, one has to compensate for the influence of the 

additive noise when estimating the multichannel-AR pa-

rameters. Therefore, the process and its parameters must be 

jointly estimated. This leads to a non-linear state space rep-

resentation of the system. To solve this problem, we suggest 

linearizing the system around a nominal value [2]. More 

specifically, as this is done in the extended Kalman filter 

(EKF), the linearization is done around the last available 

estimate of the state vector. Our on-line method has the ad-

vantage of not requiring a large number of secondary data, 

unlike the maximum likelihood approach in [6]. 

The remainder of the paper is organized as follows. Section 

2 makes it possible to recall the theory behind the STAP and 

its variants. In section 3, we introduce the model of the sec-

ondary data we consider and the way to estimate the model 

parameters by means of H∞ filters. Finally, a comparative 

study with the maximum likelihood in Lombardo’s method 

[6] is carried out and points out the relevance of H∞ ap-

proach when dealing with real data. 

2. PROBLEM STATEMENT 

Let the radar antenna be a uniformly spaced linear array 

with N active elements, the separation distance of which is 

denoted as d. The radar transmits a coherent burst of M 
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pulses at a constant pulse-repetition frequency prf .The ra-

dar wavelength is denoted as λ . In addition, K range cells 

are studied. See figure 1. 
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Figure 1: Radar data cube. 

In the following, our purpose is to study whether there is a 

target in the 0k
th
 direction range or not. For this purpose, let 

us denote 0
,

k
nmx  the radar echo received by the n

th
 antenna 

element corresponding to the mth pulse. 

Let us introduce the 1×MN  input signal, named snapshot 

and denoted as 0kx . It is defined by: 

 [ ]TTkTkTkk
Mxxxx )()2()1( 0000 L=  (1) 

where [ ]Tk
Nm

k
m

k
m

k
xxxmx 0000

,2,1,)( L=  for Mm ,...,1= . 

The snapshot corresponds [11] to the returns of a possible 

target (Its Doppler frequency is 0k
tf  and its azimuth’s angle 

is 0k
tϕ ) and the interferences1, namely the clutter and the 

additive thermal noise. Thus, one has: 

 ncvwsx
kkkkk

++= 00000 ),(α  (2) 

where 0kα  denotes the complex target attenuation factor, 

0kc  denotes the clutter returns, n  is the additive noise, 

which is spatially and temporally white with covariance 

matrix nΣ  and ),( 00 kk
vws  is the target steering vector, as-

sociated with the spatial and Doppler parameters, denoted 

)sin(/ 00 k
t

k
dw ϕλ=  and pr

k
t

k
ffv /00 =  respectively. 

It should be noted that the target steering vector satisfies: 

 T

vMjvj

T

wNjwj

M
kkkkk

kkkk

eeee

aaawbvawbvws












⊗












=





⊗=⊗=

−− 0000

00000

)1(22)1(22

21

11

...)()()(),(

ππππ LL

(3) 

where ⊗  denotes the Kronecker product. 

To maximize the signal-to-interference-plus-noise ratio 

(SINR), the space time filter weights are defined by: 

 ),( 000 1 kkk

opt
vwsRw −= κ  (4) 

where κ  denotes a constant gain and R is the NMNM ×  

interference covariance matrix, which is unknown and hence 

needs to be estimated. 

                                                           
1
 In this paper, it should be noted that the jammer is not studied. 

The sample matrix inversion (SMI) [1] consists in estimat-

ing R by using the secondary data, i.e. { } [ ] 0,,1 kkKk
kk xy ≠∈= . 

The higher the number of secondary data is, better the esti-

mation of the matrix R should be, provided that the clutter is 

stationary
2
. Nevertheless, there are three main drawbacks: 

1. the computational cost and the memory storage are pro-

hibitive; 

2. the risk of potential targets in the secondary data in-
creases when the number of secondary data increases. 

3. when there is a large-dynamic range signal, numerical 

instability may happen when R is inverted. 
To compensate for the above problems, alternative ap-

proaches have been proposed, such as Knowledge-aided 

STAP, the higher-order methods and deterministic (single 

shot) techniques [3]. In this paper, we focus our attention on 

minimal sample support methods. This latter includes three 

kinds of approaches: 

1. element-space/beam-space, pre/post-Doppler STAP [11]. 

2. subspace techniques such as those proposed in [4]: as the 
interference covariance matrix is usually rank deficient, the 

eigenvectors corresponding to the predominant eigenvalues 

span the interference subspace, whereas the remaining eigen-
vectors span the noise subspace. Then, a projection into the 

interference-free subspace can be done. This leads to the ei-

gencanceller method (EC), whose weight vector is orthogo-

nal to the interference subspace. 

3. approaches based on a multichannel autoregressive 

modelling of the disturbances (clutter+noise). Thus, in [9], 

the AR parameters are obtained with a Kalman filter. At that 

stage, they are used in the NPAMF [7]. In a Ground Moving 

Target Indication simulation, the authors notice that the sec-

ondary data required is much smaller than MN × . 

In [6], for a given range cell k , Lombardo proposes to 

model the clutter+noise returns of the m
th
 pulse as follows: 

 ∑
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where 
pi

iA
,..,1=


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

  are the AR matrix parameters of size 

NN ×  and )(mu  is a 1×N  zero-mean white noise vector. 

Its correlation matrix is denoted uΣ  and satisfies: 
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Then, the adaptive weight matrix ARw  is defined by: 
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2 When a small number of secondary data is considered, one has to de-

sign robust detector that takes into account the influence of potential in-

terfering targets in the secondary data. In [6], Lombardo suggests vari-

ous strategies such as the median test output (MTO). 
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At that stage, target detection consists in: 

1/ evaluating ∑
−

=

=

pM

m

kT
AR

k
mXmwXq

1

* )()()( 00  

  ∑
−

=

−−=

pM

m

kT
AR

mvj
mXwe

k

1

*)1(2
)()1( 0

0π  

with 





















++

+−

−

=

)()2()1(

)1()3()2(

)()2()1(

000

000

000

0

Mxpxpx

pMxxx

pMxxx

X

kkk

kkk

kkk

k

L

MOMM

L

L

 (8) 

)(
*
mw

T
AR  and )(0 nX

k
 denote the m

th
 column of *T

ARw  and 

the n
th
 column of 0kX . 

2/ comparing )( 0kXq  to a threshold η [6]. 

As the matrix 
pi

iA
,..,1=








 and uΣ  are unknown, they have 

to be estimated. In [3], this is done by using a generalized 

version of the Square-Root Normalized Maximum Entropy 

Method (SRN-MEM). In [6], the authors suggest using the 
maximum likelihood estimates which satisfies: 

 1
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For this purpose, the secondary data are stored as follows: 
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and the estimation of interference covariance matrix YR̂  is 

partitioned as follows: 
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Nevertheless, this method requires a large number of secon-

dary data. Therefore, we propose an alternative approach. 

3. ON-LINE NOISE COMPENSATED METHODS 

A. Problem statement 

As mentioned in the introduction, we suggest modelling the 

clutter+noise as a noisy N-AR process. Thus, one has: 
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where )(muc  is a 1×N  zero-mean white noise vector. Its 

correlation matrix is denoted 
cu

Σ  and satisfies: 
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Without target, the secondary data )(0 my
k

 are hence mod-

elled as follows: 

 )()()( mnmcmy
kk +=  (15) 

If the thermal noise covariance matrix nΣ  is available, we 

can use on-line noise compensated methods to estimate 

pi

i
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 and then to apply STAP based AR-filter [6]. 

When starting the on-line estimation with the first cell, any 
initial condition can be considered. Then, the last estimates 

of the model parameters obtained with this cell serve as ini-

tial condition for the on-line estimation based on the next 

cell, and so on. 

B. State space representation of the system 

Let us first have a look on the state space representation of 

the system (13)(15).For this purpose, let us consider the col-

umn vector )(mc p  of size Np  defined by: 
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Equation (13) can hence be rewritten as follows: 
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In addition, the observation equation (15) can be expressed 

in a matrix form, as follows: 
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and satisfies in the general case: 

 )()1()( mwmm +−= θθ  (21) 

where )(mw  is a 12 ×pN  zero-mean white noise vector 

whose autocorrelation matrix is denoted wΣ . 

To estimate both the process vector and the N-AR parameter 

matrices, the extended state vector )(mz  has to be consid-

ered. It is defined by: 
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Given (17), (21) and (22), )(mz  is updated as follows: 
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In addition, given (15) and (22), the extended state vector 

and the observation vector are related by: 
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The state-space representation (23)-(24) of the system 

(13),(15)where the AR parameters are unknown is hence 
non-linear. When dealing with H∞ filter, we focus on a linear 

combination of the extended state vector )(mz : 
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Given the state-representation (23)-(25), the H∞ filter aims at 

minimising the criterion ∞J : 
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where ( ))()(ˆ)( mzmzLme −=  and )(ˆ mz  is the estimate of 

)(mz . The matrices nΣ  and Q  are weighting matrices, 

tuned by the practitioner. 

According to Hassibi and al. [5], as a closed-form solution to 

the above optimal H∞ estimation problem does not always 

exist, the following suboptimal design strategy is usually 

considered: 

 2γ<∞J  (27) 

where 0>γ  is a prescribed level of disturbance attenuation. 

In the following, let us denote )/(ˆ lmz  the estimation of the 
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Equation (23) is not linear and the standard H∞ filter cannot 

be considered. To solve this problem, we use the same lin-

earization used in the EKF, based on the 1
st
-order Taylor 

expansion of ϕ  around the last available estimate of the 

state vector, namely )1/1(ˆ −− mmz . 

C. Recursive solution of H∞ filter. 

When H∞ filter is used, the a priori estimation of the state 

vector is obtained from the a priori estimate )1/1(ˆ −− mmz  

by using (23): 
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There is an H∞ estimator for a given 0>γ  if there exists a 

stabilizing symmetric positive definite solution 
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The gain )(mK  of the H∞ filter is defined as follows: 
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It is the state vector is updated as follows: 
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4. SIMULATIONS 

We have carried out various simulation tests. The radar 

works in X bandwidth and on sidelooking configuration. It 

has N=4 antennas and provides M=64 coherent pulses. 

K=410 range cells are available and there are at most three 

targets (angle 0=ϕ  deg) in the data cube, defined by: 

• Target 1: range cell 2161 =k , speed smv /41 = ; 

• Target 2: range cell 2562 =k , speed smv /42 = ; 

• Target 3: range cell 2963 =k , speed smv /43 −= . 

The signal to clutter ratio (SCR) is set to -5dB and the clut-

ter noise ratio (CNR) is 20 dB. In all this section, figures 

described the output Z of each filter estimated as follows: 
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In fig. 2, one provides the results obtained in the range cell 

k2, with the identity SMI, i.e. NMIR =ˆ . The target and the 

clutter can be identified in the angle-Doppler domain. Thus, 

the clutter disturbs the detection and increases the probabil-

ity of false alarms. 
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Figure 2: Output Z (dB) after SMI where MNIR =ˆ . 

In the following, K=4 range cells are used around k2. Fig. 3 

is obtained with angle set to zero. We apply the method pro-

posed by Lombardo [6] and use two methods to estimate the 

AR parameters: the maximum likelihood estimation pro-

posed in [6] which is an off-line approach and the H∞ filter. 
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Figure 3: Output Z with Lombardo’s method and H∞ filter and K=4. 

Unlike the maximum likelihood approach, with K =4, the 

H∞ filter makes it possible to detect the target. 

When K is chosen higher, targets 2 and 3 have more chance 

to be in the secondary data and hence may disturb the clutter 

rejection. To avoid it, Lombardo [6] uses the MTO. This 

technique consists in dividing secondary data in five groups 

and in searching the one which gives the best clutter rejec-

tion. Thus, a scaling factor )(Yµ  is defined for each one: 

 ∑
= Σ

Σ
=

5/

1
**

2
**

)(

)(5
)(

K

k u
TT

k
u

TT

i
HSHSTr

HYHSTr

K
Yµ , [ ]5,1∈i . (34) 

In our case, the MTO is described in fig. 4, with 

),(

),(
),(

vw

vwZ
vwT

i
i

µ
=  and K=20 for each group. The median 

value of Ti is then conserved. In our simulation protocol, 

since T3 provides the median value, we present the corre-

sponding results. They are detailed in fig. 5. 

5. CONCLUSIONS 

Due to the K-distributed clutter, using algorithm such as H∞ 

has the advantage of avoiding Gaussian assumptions. We 

show the relevance of this method with few secondary data. 

In addition, combining H∞ with MTO makes the detection 

more robust against contamination of secondary data. We 

are currently investigating how to address CFAR properties 

in that kind of approaches. 
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Figure 4: Principle of  MTO 
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Figure 5: Output Z of MTO with H∞ filter. 
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