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ABSTRACT
In this work, a classification method using a novel
approach for acoustic feature extraction is proposed.
Therefore, a multiple energy detector structure (MED)
is utilized and features called temporal MED (TMED)
features are introduced. The usage of an energy de-
tector enables a pre-classification for the differentiation
between impulsive and non-impulsive acoustic events.
The actual classification task can be performed by us-
ing a MED. Furthermore, investigations regarding the
classification accuracy using more than one microphone
are presented.

1. INTRODUCTION

There are a lot of areas, in which the acoustic scene
analysis is required. One of the most important is the
interaction between man and machine. Appropriate sit-
uations occur e.g. in scenarios, where a human cooper-
ates with a humanoid robot, or is assisted by one [1]. In
this case, several active sound sources can exist in the
robot’s proximity, for example in a kitchen, which con-
tains many different acoustically observable appliances.
Thereby, the presence of background noise normally de-
creases the performance of the detection and the classi-
fication of desired sound sources.

In real acoustic applications, the trade-off between
the recognition rate of real events and the proportion of
data rejected (background noise) is of particular impor-
tance. Because of uncertainty and noise inherent in any
pattern recognition task (classification), errors are gene-
rally unavoidable. The option to reject is introduced to
safeguard against excessive misclassification. Novelty
or event detection is a solution to this problem, because
of its ability to determine the presence of the event of
interest inside a background noise which is already cat-
egorized [5].

As the sound sources are not completely known, the
design of an appropriate detector is more difficult and
in this case energy detection is of interest. However,
as we do not know the duration of the novel event, a
multiple energy detector (MED) structure with different
time durations can be used in order to fit the window
size of the detector to the length of the novelty [3].

The MED can also provide information about the
detected event. By using the shape that one event pro-
duces when it is processed by the MED, some appropri-
ate novel features can be extracted in order to train a
Gaussian Mixture Model (GMM) [7] classifier.

This paper is organized as follows. Section 2 presents
the principles of the novelty detection . In Section 3, the
general idea of a multiple energy detector is described.
Section 4 introduces the classification approach. In Sec-
tion 5, the experimental setup is presented. Finally,
achieved results and a conclusion of our work are given
in Sections 6 and 7.

2. NOVELTY DETECTION

In this part of the paper, we deal with the particular case
of having only one known class, the background noise.
The aim thereby is to detect a possible novelty due to
the presence of an event that is to be classified. The
most appropriate criterion for this detection problem is
the Neyman-Pearson (NP), which tries to maximize the
probability of detection (PD) for a given probability of
false alarm (PFA). This hypothesis testing approach can
be defined as follows:

H0 : y = w
H1 : y = s + w,

(1)

where y is the observation vector (dimension N), s is
the signal vector and w is the background noise vector.

It is well known that the optimum NP test can be
expressed as [3, 4]:

Λ(y) =
p(y|H1)
p(y|H0)

H1
>
<
H0

λ, (2)

where p(y|Hi) is the probability density function (PDF)
of y conditioned on hypothesis Hi, Λ(y) is the so called
likelihood ratio, and λ is a threshold which depends on
the required PFA. This optimum test enhances the fact
that the detection problem depends on p(y|H1) which is
unknown and cannot be estimated from training data.
Hence (2) cannot be implemented in a practical case, but
even if p(y|H1) is known, the threshold λ must be se-
lected to fit a required PFA, and this requires knowledge
of the PDF of the likelihood-ratio Λ(y) in (2), which is
in general not available.

Taking into account the above limitations, we have
to think about other detection alternatives noting that
the PFA must be under control and that some kind of
optimality must be achieved without having knowledge
of p(y|H1). One common method for detection of un-
known signals is energy detection, which measures the
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energy in the received waveform over a specific observa-
tion time.

In this work, a simple energy detector (ED) test
given in (3) is used to distinguish between the back-
ground noise and the novel events that are to be classi-
fied [6]:

yT y
σ2
w

H1
>
<
H0

λ, (3)

where σ2
w is the noise variance and y is the observa-

tion vector supposing uncorrelated samples. The com-
ponents of the background noise are assumed Gaussian
distributed. But as real audio signals have highly corre-
lated samples, some additional preprocessing is required
to increase the detection performance significantly by
means of a whitening matrix.

In order to summarize the detection performance of
the ED, the PD will be plot versus the PFA for the de-
tection problem described in (1). For a given threshold
λ we have:

PFA = Qχ2
N

(
λ

σ2
w

)
(4)

PD = Qχ2
N

(
λ

σ2
s + σ2

w

)
, (5)

where χ2
N represents a chi-squared distribution with N

degrees of freedom. In Fig. 1 the receiver operating
charasteristic (ROC) is plotted for different signal-to-
noise ratios (SNR). Each point on the curve corresponds
to a value of (PFA, PD) and by adjusting λ, any point of
the curve may be obtained. As expected, as λ increases,
PFA decreases but so does PD and vice-versa.
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Figure 1: ROC curves for different signal-to-noise ratios
(SNR).

3. MULTIPLE ENERGY DETECTORS

However, there is an issue which must be considered
for the practical application of EDs. As we ignore a-
priori the novelty duration, we do not know the most
appropriate size N of the observation vector y for im-
plementing the detector. This question is addressed in

this section leading to a method based on using multiple
ED matched to multiple novelty durations.

Let us assume that the observation vector y corres-
ponds to N time samples. In principle, the only con-
straint that we could have for fitting N , is the maximum
delay allowed by the particular application to make a de-
cision about the possible presence of a novelty. However,
if N is much larger than the duration of the novelty, the
SNR under H1 will be much lower than in the case that
N is near to the novelty duration. In consequence, the
PD will be much lower compared to an appropriate N .
Similarly, if we select a value for N being too small in
comparison to the event duration, we also have a loss in
PD. This can be verified, for example, for large N , by
using the approximation given in [3] for the performance
of an ED:

PD ≈ Q

⎛
⎝Q−1(PFA) −

√
N
2 SNR

SNR + 1

⎞
⎠ , (6)

where Q is defined as:

Q(γ) =
1√
2π

∫ ∞

γ

exp(−1
2
x2)dx. (7)

Studying the dependence of the PD with N for a SNR =
1 and a PFA = 10−4, notice that if the actual duration
of the novelty is 60 samples, and we select N = 60, the
PD is 0.978, meanwhile if we select N = 30, the PD is
reduced to 0.810.

Taking into account this consideration, a multiple
energy detector (MED) structure is presented in this
paper formed by different EDs with varying the sample
size N of y.

Many different strategies for building the initial ob-
servation vector could be used, but in the absence of any
a-priori information we will consider L layers of parti-
tions. Each partition u(l, k) corresponds to the output
of the ED in level l and to the k-th partition in this
level. At level 1, we will have the original interval of N
samples. In level 2, we have 2 non-overlapped intervals
of N/2 samples each and so on until L levels of succes-
sive divisions by 2. This produces a partition like the
one represented in Fig. 2.

We assume that PFAl = PFA, ∀l, where l represents
the number of different levels of the MED structure.
This implies that a different threshold will be required
for every different interval size Nl. In every selected in-
terval, an ED of the form given in (3) is implemented
considering the observation vector yl, which is a portion
of the initial observation vector y. Then the correspond-
ing statistic is a χ2

Nl
random variable, with Nl ≤ N the

dimension of yl. For large Nl, the χ2
Nl

PDF can be ap-
proximated by a Gaussian PDF having mean Nl and
variance 2Nl. Hence the threshold λl in (3) correspond-
ing to the l -th ED can be obtained from:

PFAl = PFA = Q

(
λl − Nl√

2Nl

)
. (8)
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Figure 2: Multiple energy detector (MED) structure
with L levels.

4. CLASSIFICATION

4.1 Pre-classification

After a detection of an event by using the MED des-
cribed in Section 3, the detected sound source is pre-
classified as an impulsive or non-impulsive event. This
is done by measuring the length of the event, counting
the detections of the energy detector in a specific time
interval. In our case, this interval has a length of 512 de-
tector windows and corresponds to approximately 2.73
seconds. An event is handled as an impulsive one if
the totalized time duration of all detections in the time
interval amounts less than one second.

4.2 TMED features

The information provided by the MED can be used to
classify different events that take place in the robot’s
proximity. Therefore, we propose appropriate novel fea-
tures, which can be extracted from the MED structure.
They are calculated in the following way:

H(l) =
2l−1∑
k=1

u(l, k) ∀l = 1, . . . , L (9)

V (k) =
L∑

l=1

u
(
l,

⌈
k

2L−l

⌉) ∀k = 1, . . . , 2l−1, (10)

where H(l), ∀l = 1, . . . , L, is the representation of the
energy distribution of the event in each level of the pyra-
mid, and V (k), ∀k = 1, . . . , 2l−1, provides information of
the temporal distribution of the event detected.

Subsequently, the actual training vector in each time
step is formed by applying the Discrete Cosine Trans-
form (DCT) on (9) and (10) in order to reduce the di-
mensionality of the feature vector. Afterwards, the first
10 coefficients from both are concatenated. This way of
proceeding results in a 20-dimensional vector x, consis-
ting of features which we call temporal MED (TMED)
features.

4.3 Statistic modeling

The individual sound sources can be distinguished on
the basis of their specific feature vectors. Therefore, an

individual statistical model is required for each sound
source. Over the past decades, the Gaussian Mixture
Model (GMM) approach [7] has become the method
par excellence for the classification task with context-
independent sound data.

Thereby, for a statistical sound source model with
M mixtures, a GMM probability density function can
be defined as

f(x|λ) =
M∑
i=1

pibi(x), (11)

with pi the probability for the mixture i, a Gaussian
density function bi(x)

bi(x) =
1

(2π)D/2|Σi|1/2
· e− 1

2 (x−μi)
T (Σi)

−1(x−μi), (12)

with the mixture-dependent mean vector μi and the co-
variance matrix Σi, and

λ = (pi, μi, Σi), i = 1, . . . , M (13)

representing the parameters of the GMM. By f(x|λ),
the probability is given that an unknown feature vector
x is generated by a specific GMM.

In order to determine the model parameters of the
GMM for each sound source, a training phase is re-
quired. For this purpose, we drew on the Expectation-
Maximization (EM) algorithm [2]. The parameters of
GMMs are determined on the basis of TMED feature
training vectors by the iterative application of the EM
algorithm. The general GM modeling supports full
covariance matrices. Contrary to that, we used di-
agonal covariance matrices only. On one side, this
way of proceeding resulted in a higher computational
efficiency; on the other side, empirical investigations
showed that diagonal-matrix GMMs normally outper-
form full-matrix GMMs.

If S sound source models {λ1, . . . , λS} are avail-
able after the training, the identification of the observed
source source can be executed based on a new feature
vector x. The sound source model ŝ is determined,
which maximizes the a posteriori probability P (λs|x).
The mixed form of the Bayes rule yields the following
result:

ŝ = max
1≤s≤S

P (λs|x) = max
1≤s≤S

f(x|λs)
f(x)

P (λs) . (14)

Assuming the equal probability of all sound sources
and the statistical independence of the observations, the
decision rule for the most probable sound source can be
redefined:

ŝ = max
1≤s≤S

f(x|λs), (15)

with f(xt|λs) given by Equation (11).

4.4 Channel combination

Due to the fact that the robot is equipped not only with
one microphone, but with a microphone array, our in-
vestigations concentrated on the redundancy of acquired
audio signals, with a view to improving the classification
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accuracy. For this purpose, we evaluated a channel com-
bination approach. Thereby, the channel combination
was applied on the result level, to wit: after training
of a separate GMM per channel, one global classifica-
tion decision is calculated by combining the classifica-
tion results from all channel-based classifiers. In so do-
ing, Equation 15 is expanded to:

ŝ = max
1≤s≤S

C∑
t=1

log f(x|λs), (16)

with C representing the number of channels.
The energy detector handles all channels indepen-

dently. This way of proceeding leads to the fact that
the prewhitening matrix is estimated for each channel
separately. This behavior leads to dissimilar detector
outputs on different channels for the same event. In
order to deal with this, a synchronization step was re-
quired. Thereby, only detections within a maximum de-
lay of 53 ms (according to 10 detector steps) are handled
as the same event and taken into account while forming
a TMED feature vector in one processing step.

5. EXPERIMENTAL SETUP

In order to evaluate the classification accuracy for im-
pulsive and non-impulsive sound sources, recordings
were done with and without background noise. Different
signal-to-noise ratios are of particular interest because
of various noise sources, which can exist in the proximity
of a humanoid robot. In our application, such a typical
case is represented by the cooling fans of the robot.

For the evaluation, real experiments were carried out
in a typical office room and a sound source database was
collected using all six microphones of the robot (Figure
3, 4). Two of the microphones are placed on the posi-
tions of the human’s ears, one on the forehead, one on
the chin, and finally two further microphones are located
on the back of the robot’s head. The distance between
the two ear microphones is 19 cm, between the front
and back microphones 23 cm, between both front micro-
phones 6 cm, and 4.5 cm between both microphones on
the back of the head, respectively. To simulate the back-
ground noise emitted by the cooling fans of the robot, a
12 cm fan was placed near the microphone array.

Impulsive sound sources like putting a cup on the
table, opening and closing a door, and dropping a spoon
on a table were used. Additionally, a mixer and human
speech were analyzed as non-impulsive sound sources.
Thereby, three different data sets were generated: with-
out background noise for the training process, without
background noise for the evaluation, and with back-
ground noise for the evaluation. Each data set consisted
of recordings of all sound sources in three different room
positions. For each position and each sound source, 30
events were recorded with the sampling frequency of 48
kHz. Hence 1620 events (3 data sets, 6 sound sources,
3 positions, 30 events) were recorded in total.

For the sample frequency selected, a MED structure
of 10 levels was used. This leads to 5.46 seconds of time
samples for the highest level and to an energy detector
of a window size of 256 samples (5 ms) for the lowest
one. The PFA was set to 10−8.

Figure 3: Front view of the head of the humanoid robot
ARMAR III.

Figure 4: Lateral view of the head of the humanoid
robot ARMAR III.
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Depending on the pre-classification result, GMMs
were trained with different numbers of mixtures for im-
pulsive and non-impulsive sources. Thereby, 6 mixtures
were used for impulsive events and 10 mixtures for non-
impulsive ones, respectively.

6. RESULTS

In this section, experimental results are presented. Ta-
ble 1 summarizes the correct classification rates using
two different techniques (single channel, channel combi-
nation) for the evaluation without (a) and with back-
ground noise (b), as described in Section 4. As men-
tioned before, the training phase was performed using
the training sound data set without background noise.

The given results are averaged over three room posi-
tions. At first, the results for the single channel case are
given. Thereby, the worst and the best individual clas-
sification rates from all channels are presented. It can
be seen, that the choice of a “bad” channel can result in
a really poor classification performance. This situation
reflects the challenge of selecting the right microphone
for the classification task, especially in cases when the
robot moves its head.

However, using the channel combination approach
presented in 4.4, the classification reliability can be in-
creased significantly. It can be seen, that the classifica-
tion rate is always higher for the channel combination in
comparison to the worst classification rate in the single
channel case. This circumstance ensures reliable classi-
fication results for all sound sources and each situation
without taking the knowledge of the robot’s head posi-
tion into account.

source
single channel channel
worst best combination

cup 0.97 0.99 1.00
door opening 0.98 1.00 1.00
door closing 0.54 0.66 0.65

spoon 0.72 0.82 0.89
mixer 0.68 0.90 0.93
speech 0.77 0.98 0.88

(a) evaluation without background noise

source
single channel channel
worst best combination

cup 0.98 0.99 0.98
door opening 0.82 0.92 0.86
door closing 0.48 0.82 0.80

spoon 0.29 0.73 0.79
mixer 0.57 0.80 0.86
speech 0.82 0.95 0.98

(b) evaluation with background noise

Table 1: Correct classification rates for the single chan-
nel approach, in comparison to the channel combination,
for the case without (a) and with background noise (b).
The results are averaged over three different room posi-
tions.

7. CONCLUSION

In this paper, a classification method for impulsive and
non-impulsive sound sources by means of a multiple en-

ergy detector (MED) structure for forming novel tem-
poral acoustic features (TMED features) was proposed.
The classification using only one microphone could not
achieve reliable results for all sound sources. A partially
significant improvement, especially in comparison to the
single channel case with a non-optimal channel choice,
was achieved using the channel combination approach.

Future work will investigate the possibility of using
not only the temporal features generated by the MED,
but also in combination with other ones.
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