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ABSTRACT 

Aiming to expand the applicability of adaptive Volterra filters, 
a large number of reduced complexity implementations have 
been discussed in the open literature. Contributing to this goal, 
this paper presents a fully LMS/NLMS adaptive approach for 
implementing interpolated Volterra filters with removed 
boundary effect. The main aim here is to combine a fully 
adaptive interpolated approach, a boundary effect removal 
procedure, and the LMS/NLMS algorithm to give birth to an 
algorithm with very good steady state and transient 
performance. Numerical simulations confirm the effectiveness 
of the proposed approach. 
  

1. INTRODUCTION 

Over the last two decades, adaptive Volterra filters have been 
used in several nonlinear applications, such as control of 
nonlinear noise processes [1], acoustic echo canceling [2], 
compensation of nonlinear effects in OFDM transmitters [3], 
among others. In this context, both the increasing processing 
capacity of modern digital signal processors (DSPs) and 
significant research efforts have decisively contributed to 
overcome the main problem of implementing digital Volterra 
filters, which is its inherent computational burden. As a result, 
the search for Volterra structures with lower computational 
burden has been strongly demanded. Examples of such 
structures are the simplified [4], sparse [5], and 
frequency-domain [6] implementations. Additionally, 
interpolated Volterra filters also form an important class of 
structures with reduced implementation complexity [7]. The 
interpolated approach, which was originally considered for 
implementing linear FIR filters [8], uses a cascaded filtering 
structure composed of a sparse filter, with reduced coefficient 
number, and an interpolator filter, whose purpose is to recreate 
the zeroed coefficients of the sparse filter [7], [8]. In the 
Volterra case, the interpolated structure consists of a linear 
input interpolator followed by a sparse Volterra filter, leading 
to a structure having considerable reduction in complexity [7]. 
However, such computational savings come at the expense of 
increased minimum mean-square error (MSE). Such poor 
performance can be improved by using a fully adaptive 
interpolated structure [9] instead of a sparse filter structure [7]. 
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Another point for performance improvement in interpolated 
structures is to remove the boundary or border effect [10], since 
it is a considerable source of performance degradation in many 
cases [10]. In this context, the present paper introduces an 
interpolated Volterra implementation combining a fully 
adaptive structure with a boundary effect removal procedure, 
aiming to improve the performance. In addition, an 
LMS/NLMS adaptive setup is adopted to enhance the 
convergence characteristics at the expense of a relatively small 
computational increment. Through numerical simulations, we 
verify the performance of the proposed structure. 

This paper is organized as follows. Section 2 presents the 
interpolated Volterra filter and its main characteristics. Section 
3 discusses briefly the generalized boundary effect removal 
procedure for interpolated Volterra filters. In Section 4, the 
fully adaptive LMS/NLMS interpolated Volterra structure with 
removed boundary effect is derived. Section 5 presents the 
results of numerical simulations. Finally, the conclusions of this 
paper are presented in Section 6. 

2. INTERPOLATED VOLTERRA FILTERS 

Figure 1 shows the block diagram of an interpolated Volterra 
filter [7]. Such a filter is composed of an input interpolator filter 

,g  with memory size M  and coefficient vector [ (0)g=g  
T(1)    ( 1)] ,g g M −"  cascaded with a sparse Volterra filter 

denoted by Vsh  with memory size N  and order .P  The block 
structure of the Volterra filter is highlighted in the figure by the 
dashed box, in which each pth-order sparse block is denoted by 

s ,ph  having output signals given by ˆ ( )y nA  for 1, 2, ,P=A …  

and interpolated input vectors by ( ).p nx�  Additionally, ( )x n  

and ˆ( )y n  represent, respectively, the input and output signals 
of the interpolated structure. 

The first-order sparse coefficient vector is obtained by setting 
1L −  of each L  coefficients to zero [7], with L  denoting the 

sparsity or interpolation factor. For instance, by considering the 
full 1N ×  first-order coefficient vector 1 1 1[ (0)  (1)  h h=h "  

T
1( 1)] ,h N −  its corresponding 1N ×  sparse vector is given by 

 T
1s 1 1 1 s{ (0) 0  ( ) 0  [( 1) ] 0  0}h h L h N L= −h " " "  (1) 

with s ( 1) 1,N N L= − +⎢ ⎥⎣ ⎦  where ⋅⎢ ⎥⎣ ⎦  represents the truncation 
operation, and L is the decimation factor. The first-order input 
vector is given by 
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 T
1( ) [ ( )  ( 1)  ( 2)    ( 1)] .n x n x n x n x n N= − − − +x� � � � �"  (2) 

As discussed in [7], (2) can also be expressed as 

 T
1 e( ) ( )n n=x G x�  (3) 

where T
e( ) [ ( )  ( 1)    ( 2)]n x n x n x n N M= − − − +x "  is the 

extended input vector (with 1N M+ −  samples of the input 
signal), and G  is the [( 1) ]-dimensionalN M N+ − ×  
interpolation matrix [7] given by 

 

(0) 0 0 0
(1) (0) 0 0
(2) (1) (0) 0

( 1) ( 2) ( 3) (0)
0 ( 1) ( 2) (1)
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g
g g
g g g

g M g M g M g
g M g M g

g M g

g M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= − − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

G

"
"
"

# # # % #
"
"
"

# # # % #
"

. (4) 

Thus, the output signal of the interpolated first-order block is 

 T T
1 e 1s e 1iˆ ( ) ( ) ( )y n n n= =x Gh x h  (5) 

with 1i 1s.=h Gh  Regarding higher-order blocks, the sparse 
coefficient vectors are obtained by setting those coefficients 
having at least one index not multiple of L  to zero [7]. The 
pth-order input vectors are obtained recursively from the 
general form by 
 1 1( ) ( ) ( )p pn n n−= ⊗x x x� � �  (6) 

where ⊗  denotes the Kronecker product. Thereby, the output 
signal of the interpolated second-order block is given by [7] 

 
T T T

2 2 2s e e 2s
T
2e 2 2s

ˆ ( ) ( ) [ ( ) ( )][ ]

         ( )

y n n n n

n

= = ⊗ ⊗

=

x h x x G G h

x G h

�
 (7) 

with 2e e e( ) ( ) ( )n n n= ⊗x x x  and 2 .= ⊗G G G  From (7), we 
verify that the equivalent vector for the second-order block is 

2i 2 2s=h G h . Now, generalizing the above expressions for a 
pth-order interpolated block, we have 

 e s e iˆ ( ) ( ) ( )p p p p p py n n n= =x G h x h  (8) 

with 1p p−= ⊗G G G  and i s.p p p=h G h  Moreover, one has 
T T T T

Ve e 2e e( ) [ ( ) ( ) ( )]Pn n n n=x x x x"  with e e( ) ( )p n n=x x  

( 1)e ( )p n−⊗x  and T T T T T T T
Vi 1s 2s 2 s[ ] ,P P=h h G h G h G"  which 

results in the output of the interpolated structure given by 

 T
Ve Viˆ( ) ( ) .y n n= x h  (9) 

As described in [7], the purpose of the interpolator filter is to 
recreate the zeroed coefficients of the sparse coefficient vector 
in the resulting equivalent coefficient vector. Consequently, the 
number of coefficients M  of the interpolator must be chosen in 
function of L  as 

 ( ) 1 2( 1) 2 1.M L L L= + − = −  (10) 
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Figure 1 – Block diagram of an interpolated Volterra filter. 

 
For instance, an interpolation factor 2L =  results in 3M =  and 
the interpolator filter is T

0 1 2[ ] .g g g=g  Thus, for a sparse 
Volterra filter with 5,N =  the first-order coefficient vector is 

obtained from (1) and, by using T[0.5 1 0.5]=g  (linear 
interpolator [8]), the first-order equivalent coefficient vector, 
obtained from 1i 1 1s ,=h G h  is given by 

1i 1 1 1 1 1
T

1 1 1 1

[0.5 (0) (0)  0.5 (0) 0.5 (2)  (2)
0.5 (2) 0.5 (4) (4) 0.5 (4)] .

h h h h h
h h h h

= +
+

h
 (11) 

Note, from (11), that two facts can be observed: (i) the zeroed 
coefficients of the sparse filter are recreated by interpolation 
(boxed ones) and (ii) new coefficients are created (underlined) 
as a boundary effect [7]. A similar situation occurs for the 
higher-order blocks [10]. 

3. GENERALIZED BOUNDARY EFFECT REMOVAL 
FOR INTERPOLATED VOLTERRA FILTERS 

The boundary effect leads to a substantial loss of performance in 
different cases [7], [10], [11]. In [10], a procedure for removing 
such an effect in interpolated FIR (IFIR) and interpolated 
Volterra structures is discussed, considering the case for 2.L =  
Recently in [11], the boundary effect removal procedure has 
been extended to any value of L  and for the linear IFIR case. 
Here, the generalized procedure from [11] is extended to an 
interpolated Volterra structure using the following generalized 
transformation matrix: 

 

1 columns  columns 1 columns

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0
0 0 0 0 1 0 0
L N L− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T

" " "
" " "
" # # % # "
" " "��	�
 ���	��
 ��	�


 (12) 

with dimensions ( 1).N N M× + −  The input vector for the 
first-order sparse block (2) is replaced by a modified version, 
given by 
 T T T

1 1 1( ) ( ) ( )n n n′ ′= =x G T x G x�  (13) 

where .′ ≡G TG  The input vectors for the nonlinear sparse 
blocks are generated similarly to (6), but now considering (13), 
resulting in 
 1 1( ) ( ) ( ) .p pn n n−′ ′ ′= ⊗x x x� � �  (14) 
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Finally, defining 

 T T T T
V 1 2( ) [ ( ) ( ) ( )]Pn n n n′ ′ ′ ′=x x x x� � � �"  (15) 

the output of the removed boundary effect interpolated Volterra 
(RBEIV) filter is given by 

 T
V Vsˆ( ) ( ) .y n n′= x h�  (16) 

Moreover, as described in [11], the implementation of the 
boundary effect removal procedure adds a small computational 
burden of about 2 2L −  operations per sample, being negligible 
since L  is generally small. 

4. FULLY ADAPTIVE LMS/NLMS RBEIV FILTERS 

As discussed in [9], the implementation of fully adaptive 
interpolated Volterra structures considering adaptive 
interpolators is not a straightforward task, being more complex 
if the boundary effect removal is considered. Moreover, because 
of the high computational burden and the well-known slow 
convergence behavior of Volterra filters [12], the use of faster 
and relatively simple algorithms for adaptation, such as the 
normalized LMS (NLMS) algorithm, is very attractive. In this 
section, expressions for also adapting the interpolator filter of 
the RBEIV structure are developed. For the input linear 
interpolator, the adopted algorithm is the LMS due to the smaller 
number of coefficients as well as for mathematical simplicity. 
On the other hand, the sparse Volterra filter is adapted using the 
NLMS algorithm aiming to improve the overall convergence 
speed. Then, the goal is to obtain an adaptive Volterra 
implementation with better convergence rate and steady-state 
performance, while keeping the computational savings obtained 
by using an interpolated Volterra structure. 

4.1. LMS Interpolator Update 
To facilitate the derivation of the LMS update expression for 
the interpolator in the RBEIV structure, a representation of the 
input-output relationship of such a structure based on an input 
matrix is used as in [9]. Thus, (13) can be rewritten as 

 T
1 1( ) ( )n n′ ′=x X g�  (17) 

where 1( )n′X  is the boundaryless first-order input matrix. Such 
a matrix has the form of a non-square Hankel matrix [13] with 
dimensions ,M N×  having the first column given by 

T T
1 first-column

1

( ) [0 0 ( ) ( 1) ( )]
L

n x n x n x n M L
−

′ = − − +X " "�	
  

(18) 

and last row as 

T
1 last-row

1

( ) [ ( ) ( 1) 0 0].
L

n x n M L x n N
−

′ = − + − +X " "�	
   (19) 

Vectors (18) and (19) completely define 1( ),n′X  since a 
Hankel matrix has equal elements along any diagonal that 
slopes from southwest to northeast. From (17), the output of 
the first-order block of the RBEIV structure is given by 

 T
1 1 1sˆ ( ) ( ) .y n n′= g X h  (20) 

By using (14) and (17), the output of the second-order block is 

 

T
2 2 2s

T T
1 1 2s

T
2 2 2s

ˆ ( ) ( )

        ( )[ ( ) ( )]

         ( )

y n n

n n

n

′=

′ ′= ⊗ ⊗

′=

x h

g g X X h

g X h

�

 (21) 

with 2 = ⊗g g g  and 2 1 1( ) ( ) ( ).n n n′ ′ ′= ⊗X X X  In general, one 
has 
 T

sˆ ( ) ( )p p p py n n′= g X h  (22) 

with 1p p−= ⊗g g g  and 1 1( ) ( ) ( ).p pn n n−′ ′ ′= ⊗X X X  The 
interpolator filter update using the LMS algorithm is given by 

 2
g( 1) ( ) ( )n n e n+ = − μ ∇gg g  (23) 

where gμ  is the step size, ∇g  is the gradient w.r.t. interpolator 

coefficients, and ˆ( ) ( ) ( )e n d n y n= −  denotes the error signal 
with ( )d n  characterizing the desired signal. From the above 
definitions and making analogous derivations to [9], the 
following update expression for the coefficients of the 
interpolator is obtained: 

 T
g 1 1 s

1
( 1) ( ) 2 ( ) [ ( ) ( )] ( )

P

p p
p

n n e n p n n n−
=

′ ′+ = + μ ⊗∑g g X x h�  (24) 

with 0( ) 1n′ =x�  for 1.p =  Since the interpolator is 

time-varying, 1( )p n−′x�  in (24) should be determined at each 
iteration, leading to a larger computational burden. However, 
such a vector can be approximately obtained by reusing its 
previous values and assuming slow variation of the 
interpolator coefficients (similar to [9]). This approach 
considerably reduces the computational burden at the cost of 
small convergence issues, which can be easily counterbalanced 
by properly selecting the value of the step size gμ  [9]. 

4.2. NLMS Sparse Volterra Filter Update 
The NLMS algorithm for adapting the sparse Volterra filter 
from the interpolated structure is obtained by using a constrained 
optimization approach for minimizing the Euclidean norm of 
 Vs Vs Vs( 1) ( 1) ( )n n nδ + = + −h h h  (25) 
subject to 
 T

V Vs( ) ( 1) ( )n n d n′ + =x h�  (26) 
and 
 T

Vs ( 1)n + =C h f  (27) 

where, similarly to [8] and [14], C  is a constraint matrix due to 
the sparsity of Vsh  and f  is the response vector to the 
constraints (in this case, a vector of zeros). Then, using the 
Lagrange multiplier method, the following cost function is 
obtained: 

 Vs

2 T
Vs 1 Vs V

T T
2 Vs

( ) ( 1) ( ) ( 1) ( )

         ( 1)

J n n d n n n

n

⎡ ⎤′= δ + + θ − +⎣ ⎦
⎡ ⎤+ + −⎣ ⎦

h h h x

θ C h f

�
 (28) 

where 1θ  and 2θ  are the Lagrange multipliers, the former is 
scalar and the latter a vector. By differentiating (28) with respect 
to Vs ( 1)n +h  and setting the resulting expression equal to zero, 
one obtains 
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 Vs Vs 1 V 2
1( 1) ( ) [ ( ) ].
2

n n n′+ = + θ −h h x Cθ�  (29) 

By substituting (29) into (27) and considering that T =C C I  
(identity matrix), we get 

 [ ]T
2 Vs 1 V2 ( ) ( ) .n n′= + θC h x�θ  (30) 

Applying (30) in (29) and substituting the resulting expression 
into (26), after some mathematical manipulations, we determine 

 1 2
V

2 ( )
( )

e n
n

θ =
′Px�

 (31) 

where T= −P I CC  and ˆ( ) ( ) ( )e n d n y n= −  is the error signal. 
From (29), (30), and (31), and including the control factors Vsα  
and Vs ,ψ  the NLMS expression for updating the coefficients of 
the sparse Volterra filter is  

 Vs
Vs Vs V2

V Vs

( 1) ( ) ( ) ( ).
( )

n n e n n
n
α ′+ = +

′ + ψ
h Ph Px

Px
�

�
 (32) 

Since P  is a diagonal matrix of ones with its elements zeroed in 
the diagonal positions corresponding to the elements zeroed in 

Vs( ),nh  (32) updates only the nonzero coefficients of Vs( ).nh  
It is also important to note that the normalization factor 

2
V ( )n′Px�  is obtained considering only part of the elements of 

V ( )n′x�  due to the characteristics of matrix .P  Moreover, as 

discussed for (24), V ( )n′x�  from (32) can also be approximated 
at each iteration by reusing some data, thus reducing its 
computational burden. 

4.3 Computational Complexity 
Figure 2 shows the number of operations per sample for 
implementing different adaptive second-order Volterra filters as 
a function of the memory size. From this figure, one can note 
that the proposed LMS/NLMS RBEIV filter presents a 
computational burden much smaller than the conventional 
Volterra implementations (both LMS and NLMS Volterra 
structures), which also is close to the computational burden of 
the fully adaptive interpolated LMS Volterra (LMS FAIV) 
implementation [9]. 

LMS Volterra
NLMS Volterra
LMS FAIV [9]( 2) L=
LMS/NLMS RBEIV ( 2)L=
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Figure 2 – Computational complexity for different second-order 
Volterra implementations. 

5. SIMULATION RESULTS 

In this section, considering a system identification problem [12], 
comparisons of the fully adaptive LMS/NLMS RBEIV structure 

with conventional Volterra implementations and also other 
interpolated Volterra approaches are presented for performance 
assessment. Such evaluations are accomplished in terms of the 
MSE obtained from Monte Carlo simulations (average of 100 
runs). The simulated structures are second-order 
implementations of the following adaptive filters: (i) 
conventional LMS Volterra, (ii) conventional NLMS Volterra, 
(iii) LMS interpolated Volterra (LMS AIV) [7], (iv) fully 
adaptive LMS interpolated Volterra (LMS FAIV) [9], and (v) 
fully adaptive LMS/NLMS RBEIV (proposed here). The sparse 
Volterra filters from all interpolated implementations present 
interpolation factor 2L =  and the same memory size of the 
plants to be modeled. The fixed interpolator used by the 
LMS AIV is given by T[0.5 1 0.5] ,=g  and the adaptive 
interpolator of the LMS FAIV and LMS/NLMS RBEIV 
structures is initialized with T(0) [0.5 1 0.5] .=g  For the filters 
using the LMS algorithm, the step size is max / 2μ = μ  ( maxμ  is 
the maximum step-size value for algorithm convergence 
obtained experimentally), and for the NLMS Volterra filter the 
control parameters are 0.5α =  and 610 .−ψ =  The parameters 
used for the LMS/NLMS RBEIV are Vs 0.5,α =  Vs 10,ψ =  and 

g g max / 2μ = μ  ( g maxμ  experimentally determined). Moreover, 

a white Gaussian noise with variance 2 610z
−σ =  is added to the 

output of the plant. 

Example 1: In this example, the plant taken from [10] 
(Example 1) is a conventional Volterra filter presenting a 
memory size 11N =  and coefficients with decaying exponential 
values. In Figure 3, the MSE curves obtained from simulations 
for white Gaussian data with unit variance are shown. In this 
figure, the convergence rate and steady-state performance of the 
proposed algorithm in comparison with the other considered 
algorithms is observed. Furthermore note that in this case, the 
proposed algorithm presents a performance comparable with the 
conventional Volterra implementations, demanding smaller 
computational burden (see Figure 2). To give more insight into 
the convergence behavior, Figure 4 shows simulation results by 
using a correlated input signal for the conventional Volterra 
implementations as well as for the proposed algorithm. Such an 
input signal is obtained from an AR process given by 

2( ) ( 1) 1 ( ) ,x n x n u n= β − + − β  where ( )u n  is a white 
Gaussian noise process with unit variance and 0.5.β =  Again 
very good performance of the proposed algorithm is verified 
with reduced computational burden. 

Example 2: The plant for this example is the conventional 
Volterra filter with memory size 11N =  from [10] (Example 2). 
The MSE curves obtained by using white Gaussian input data 
with unit variance are shown in Figure 5. In this figure we again 
observe a better performance of the proposed algorithm as 
compared with other adaptive interpolated Volterra 
implementations. On the other hand, comparing the proposed 
algorithm with the conventional Volterra ones, we observe better 
convergence characteristics and worse steady-state performance 
(the steady-state responses for both conventional Volterra 
implementations are not completely presented in Figure 5 for 
scaling reasons). This worse steady-state performance is a direct 
consequence of the plant characteristics used in this example 
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[10], presenting both lower correlation between the coefficients 
and smaller boundary coefficient values than the plant in 
Example 1. As a rule of thumb, the LMS/NLMS RBEIV 
exhibits a steady-state response at least equal to that of the 
LMS FAIV [9], being closer to the conventional Volterra steady 
state, depending on the correlation level between plant 
coefficients. In Figure 6, the curves from simulations using a 
correlated input data obtained in the same way as in Example 1 
are presented. Again, we observe satisfactory performance of the 
proposed reduced-complexity algorithm. 
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Figure 3 – Example 1. MSE curves for white input data. 
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Figure 4 – Example 1. MSE curves for correlated input data. 
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Figure 5 – Example 2. MSE curves for white input data. 
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Figure 6 – Example 2. MSE curves for correlated input data. 

6. CONCLUSIONS 

In this paper, a novel approach for implementing adaptive 
interpolated Volterra filters is discussed. Such an approach is 
based on combining the fully adaptation of the interpolated 
structure, a boundary effect removal procedure, and also an 
adaptive LMS/NLMS setup. The obtained algorithm outperforms 
other adaptive interpolated Volterra implementations in terms of 
transient and steady-state MSE performance. Simulation results 
attested the effectiveness of the proposed approach. 
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