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ABSTRACT

In this article, we present an improvement of a previous
singing voice detector. This new detector is in two steps.

First, we distinguish monophonies from polyphonies.
This distinction is based on the fact that the pitch estimated
in a monophony is more reliable than the one estimated in
a polyphony. We study the short term mean and variance of
a confidence indicator; their repartition is modelled with bi-
variate Weibull distributions. We present a new method to
estimate the parameters of these distributions with the mo-
ment method.

Then, we detect the presence of singing voice. This is
done by looking for the presence of vibrato, an oscillation of
the fundamental frequency between 4 and 8 Hz. In a mono-
phonic context, we look for vibrato on the pitch. In a poly-
phonic context, we first make a frequency tracking on the
whole spectrogram, and then look for vibrato on each fre-
quency tracks.

Results are promising: from a global error rate of 29.7 %
(previousmethod), we fall to a global error rate of 25 %. This
means that taking into account the context (monophonic or
polyphonic) leads to a relative gain of more than 16 %.

1. INTRODUCTION

Our work takes place in the general context of music descrip-
tion and indexation. In this process, many steps are neces-
sary, including melody extraction, instruments, genre, artist,
or singer identification. For all these tasks, it can be useful to
have a precise information about the presence or absence of
singing voice.

The singing voice detection has been a research subject
for around 10 years, it is a relatively recent subject. Recent
work have been conducted to find the best features to de-
scribe singing voice [1, 2, 3]. Other works have been ad-
dressing more specific music style contents [4], or have been
interested in the accompanied singing voice detection [5].

In a previous work [6], we presented a singing voice de-
tector based on the research of vibrato on the harmonics of
the sound: we made the tracking of the harmonics present in
the signal, and we looked for the presence of vibrato on each
harmonic tracking. In this work, we propose to first separate
monophonies from polyphonies. Since this classification is
very efficient, we aim at taking advantage of this knowledge
to improve the singing voice detection, which is still based
on the research of vibrato. The whole process is summarized
in figure 1.

The monophony/polyphony classifier is based on the fact
that the estimated pitch is more reliable in the case of a
monophony than in the case of a polyphony. We analyse a
confidence indicator issued from the YIN pitch estimator [7].

The classification process uses bivariate Weibull models. We
present a new method to estimate their parameters.

Then the singing voice detection is differentiated, de-
pending of the results of the first step. We still look for vi-
brato on the frequency tracking in polyphonic context but, in
monophonic context, we look for vibrato on the pitch.

In parts 2 and 3, we describe respectively the
monophony/polyphony classifier and the previous singing
voice detector. In part 4, we present the adaptation of the
singing voice detector to each case: monophonic and poly-
phonic. Then in part 5, we present our corpus, experiments
and results. Finally we conclude and give some perspectives
in part 6.

2. MONOPHONY/POLYPHONYCLASSIFICATION
SYSTEM

2.1 Parameters

In [7], de Cheveigné and Kawahara present a pitch estimator
named YIN. This estimator is based on the computing of the
difference function dt(τ) over each signal frame t:

dt(τ) =
N

∑
k=1

(xk− xk+τ)
2 (1)

with x the signal, N the window size and τ the shift time.

For a periodic signal, its period T should be given by the
first zero of dt(τ). This is not always possible, notably due to
imperfect periodicity [7]. The authors propose to use instead
the Cumulative Mean Normalised Difference:

d′t (τ) =











1 i f τ = 0

dt(τ)/

[

1/τ.
τ

∑
k=1

dt(k)

]

otherwise
(2)

The pitch is given by the index T of the minimum of
d′t (τ). The authors precise that the lower cmnd(t) = d′t (T )
is, the more confident the estimation of T is. So we consider
cmnd(t) as a confidence indicator.

In the case of a monophony, the estimated pitch is confi-
dent, so cmnd(t) is low and do not vary much. A contrario,
in the case of a polyphony, the estimated pitch is not reliable:
cmnd(t) is higher and varies much more. These considera-
tions lead us to use the two following parameters: the short
term mean and variance of cmnd(t), noted cmndmean(t) and
cmndvar(t), computed over 10 frames centred on frame t.
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Figure 1: Global scheme of the system.

2.2 Modelling

The bivariate repartition of (cmndmean,cmndvar) is modelled
with the bivariate Weibull distributions proposed in [8]:

F(x,y) = 1− exp
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(3)

for (x,y) ∈ R
+ × R

+, with (θ1,θ2) ∈ R
+ × R

+ the scale
parameters, (β1,β2) ∈ R

+ ×R
+ the shape parameters and

δ ∈]0,1] the correlation parameter.

To estimate the five parameters (θ1,θ2,β1,β2,δ ) of each
bivariate distribution, we use the moment method. The mo-
ments are given by Lu and Bhattacharyya in [9]:

E[X ] = θ1Γ(1/β1 +1) (4)

E[Y ] = θ2Γ(1/β2 +1) (5)

Var(X) = θ 2
1

(

Γ(2/β1 +1)−Γ2 (1/β1 +1)
)

(6)

Var(Y ) = θ 2
2

(

Γ(2/β2 +1)−Γ2 (1/β2 +1)
)

(7)

Cov(X ,Y ) = θ1θ2.

[Γ (δ/β1 +1)Γ(δ/β2 +1)Γ(1/β1 + 1/β2 +1)

−Γ(1/β1 +1) Γ(1/β2 +1)Γ(δ/β1 + δ/β2 +1)]

÷Γ(δ/β1 + δ/β2 +1)

(8)

with Γ(x) the gamma function.

From equations 4, 5, 6 and 7, we extract θ1, θ2, β1 and
β2, the parameters of the two marginal distributions.

We have shown [10] that equation (8) is equivalent to the
following equation:

f (δ ) = δB(δ/β1, δ/β2) =C (9)

with B(a,b) = Γ(a)Γ(b)
Γ(a+b) the Beta function andC a constant de-

pending from θ1, θ2, β1, β2 andCov(X ,Y ), which are known.

From equation (9), finding δ is equivalent to finding the
zeros of the expression f (δ )−C. As we have shown that
f (δ ) is strictly decreasing function [10], we may find easily
the unique zero by dichotomy.

2.3 Classification and results

A bivariate Weibull model is learned for each class, on the
training corpus (described in part 5.1). These models are
thereafter named the reference models.

The classification is done every second. Since
cmndmean(t) and cmndvar(t) are computed every 10 ms, we
have 100 2-dimension vectors every second. The decision
is taken by computing the likelihood of 100 consecutive
vectors (1 second) to each reference model. The assigned
class is the one which maximizes the likelihood.

Results given by this method are very good: we have a
global error rate of 6.3 % on the corpus presented in part 5.1.
This is why we take this method as a preprocessing stage
before looking for the presence of singing voice.

3. SINGING VOICE DETECTION

3.1 Vibrato

Vibrato is a well-known [11, 12] property of the human
singing voice. In general, the vibrato is defined as a
periodic oscillation of the fundamental frequency. In the
specific case of the singing voice, this oscillation is at
a rate of 4 to 8 Hz. So, on a given frequency tracking
vector F , the presence of vibrato is confirmed if there is a
maximum between 4 and 8 Hz in the Fourier Transform of F .

In our work, we consider monophonic and polyphonic
extracts, so the research of the vibrato on the fundamental
frequency is not always possible. However, we note that if
the vibrato is present on the fundamental frequency, it is as
well present on its harmonics. This is why we make a track-
ing of all the harmonics present in the signal (see section 3.2).
We then look for the presence of vibrato on these harmonics.

3.2 Sinusoidal and Pseudo-temporal segmentations

3.2.1 Sinusoidal segmentation

The tracking of the harmonics (see figure 2), thereafter
named “sinusoidal segments”, is done with the method de-
scribed in [13].

The algorithm is the following one:

• compute the spectrum every 10 ms, with a 20 ms Ham-
ming window,

• convert the frequency in cent (100 cent = 1/2 tone), and
smooth it with a 17 cent window,

• detect the maxima of the spectrum: the frequencies
( f it , i = 1, ..., I) and their log amplitude (pit , i = 1, ..., I),
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• compute the distance between each pair of consecutive
maxima (at the instant t and t−1):

di1,i2(t) =

√

√

√

√

(

f
i1
t − f

i2
t−1

C f

)2

+

(

p
i1
t − p

i2
t−1

Cp

)2

(10)

• Two points (t, f i1t ) and (t + 1, f i2t+1) are connected if

di1,i2(t) < dth.

C f , Cp and dth are found experimentally: C f = 100
(1/2 tone), Cp = 3 (power divided by 2) and dth = 5 (our
experiments have confirmed the values given by [13]).

A set of consecutive connected points forms a sinusoidal
segment.
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Figure 2: Examples of sinusoidal segmentations for a 23 s ex-
tract of a monophonic song a Capella (a) and a 5 s polyphonic
song a Capella (b): each curve is a sinusoidal segment.

As we want to work on all the harmonics, we have intro-
duced a pseudo-temporal segmentation, which aims at group-
ing the temporaly related sinusoidal segments.

3.2.2 Pseudo-temporal segmentation

We assume that in music, for a given note, the fundamental
frequency and its harmonics begin and end approximately
at the same time. Therefore, we analyse the temporal
relations between the beginnings and the ends of sinusoidal
segments [6].

Then a limit of a segment is placed at instant t if the two
following conditions are respected:

• There are at least 2 extremities of sinusoidal segments at
the instant t.

• There are at least 3 beginnings or 3 ends between instants
t and t+1.

The resulting segmentation is presented on figure 3.

Figure 3: Temporal segmentation of the extract of figure 2 a):
the vertical lines are the temporal limits of the segments.

3.3 Extended vibrato

In our previous work [6], we defined the extended vibrato,
vibr, as follows:

vibr =

∑
s∈Γ

l(s)

∑
s∈Ω

l(s)
(11)

with:

Ω the set of sinusoidal segments present in the current tem-
poral segment,

Γ the set of sinusoidal segments with vibrato - i.e. with a
maximum between 4 and 8 Hertz,

l(s) the duration of the sinusoidal segment s.

vibr characterises each pseudo-temporal segment. For
too short pseudo-temporal segments, vibr = 0: it is not pos-
sible, considering the length of the concerned sinusoidal seg-
ments, to determine wether there is or not vibrato. The same
value vibr is attributed to each frame of the pseudo-temporal
segment.

In [6], vibrwas averaged over one second. The final deci-
sion was taken by thresholding the 1-second-averaged vibr:
a high value (> 0.3) meant the presence of singing voice,
while a low value indicated its absence.

4. FUSION

A global remark that can be done on the singing voice detec-
tion is that a singer does not sing all the time: there are very
short pauses (less then 1/2 second) for respirations. And in
the case of a polyphony, there are also long pauses (up to 1
minute or more) for instrumental parts, and short pauses (1
to 3 seconds) with instrumental transitions.
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This makes us change our decision strategy (both in
monophonic and polyphonic cases): the decision is still taken
every second, but instead of thresholding a value computed
over one second, the detection of singing voice is now based
on the fact that at one (or more) instant of one second, we
detect vibrato.

4.1 Monophonic case

In the monophonic case, the estimated pitch is reliable (see
section 2). Its value is even more reliable than the sinu-
soidal segments: the pitch found is either the fundamental
frequency or one of its harmonics, so if there is vibrato on
the real pitch, it is also present on the estimated pitch. On
the other hand, the sinusoidal segments mostly correspond to
harmonics of the fundamental frequency, but there are some
intruders which are no harmonics. The presence of vibrato
on these intruders is not linked to the presence of vibrato on
the pitch. This is why our search of vibrato is made on the
pitch in the monophonic case.

We first segment the pitch into notes: a transition be-
tween two consecutive notes is found if the pitch jumps for
more than 1/2 tone. Then, on each note, we look for the pres-
ence of vibrato. A second is classified as containing singing
voice if there is vibrato on at least 10% of the frames.

4.2 Polyphonic case

In the polyphonic case, there is a strong overlap between the
frequencies of the different instruments/singers performing.
The estimated pitch is not reliable, it does not correspond to
any instrument or singer present. However, we can assume
that each sinusoidal segment corresponds to the partial of one
instrument. We also assume that the different sinusoidal seg-
ments at a given time can come from different instruments.

The value vibr is short term averaged over 500 ms
(corresponding to 50 values of vibr), giving vibraverage. The
decision process is the following: there is singing voice
if, during 1 second, there is at least one instant for which
vibraverage > 0.15.

Note that the preprocessing step (separating mono-
phonies) allows us to have a different threshold than in [6],
which is more robust and adapted to the polyphonic case.

5. EXPERIMENTS AND RESULTS

5.1 Corpus

Our corpus is home made, and contains monophonic and
polyphonic music, with and without singing voice. We
have either single instruments or single singers perform-
ing for the monophonies, and either multiple instruments,
or singers with instrumental background performing for the
polyphonies.

The corpus contains extracts from approximately 50 mu-
sical recordings, so we consider that the results are not de-
pendant from the recording condition.

The corpus contains also various styles (rock, opera, re-
naissance, jazz, country. . . ), various instruments (piano, vio-
lin, recorder, cello, guitar, brass. . . ), and 12 different singers.
Some styles, instruments, and singers are present in the test
set and are not in the training set. This allows us to consider
also that the results are not dependant from the music type,
instrument, and singer.

Table 1: Corpus repartition (training and test sets).
Class Train Test Nb. of

Duration Duration tests

Single 25 s 2 min 57 s 177
instrument
Single 25 s 4 min 38 s 278
singer

Monophony 50 s 7 min 35 s 455

Multiple 25 s 3 min 23 s 203
instruments
Singers and 25 s 3 min 10 s 190
instruments
Polyphony 50 s 6 min 33 s 393

Total 2 min 5 s 18 min 41 s 1121

The composition of the corpus is summarized in table 1
in terms of duration and of number of test (seconds) for each
class.

5.2 Results with a handmade monophony/polypony
classification

The previous method, in which we did not distinguish mono-
phonies from polyphonies, gave a global error rate of 29.7%.

First, we propose to consider a handmade mono-
phonic/polyphonic classification, in order to evaluate our
proposal to differentiate the decision process and to obtain a
superior limit of the performances.

The results of this experiment are presented in table 2 for
the monophonic case, and in table 3 for the polyphonic case.

The global error rate is 21.7 %.

Table 2: Confusion matrix - Monophonic context.
Singing No singing
voice voice

Single singer 0.83 % 0.17 %
Single instrument 0.20 % 0.80 %

Table 3: Confusion matrix - Polyphonic context.
Singing No singing
voice voice

Singers and instruments 0.66 % 0.34 %
Multiple instruments 0.16 % 0.84 %

We first note that having a knowledge on the number
of sources performing (one or more) improves the singing
voice detection in every cases. The global error rate is
improved by more than 8.5 %.

As we could have predicted, it is more difficult to detect
the presence of singing voice in polyphonic context. The
missed occurrences are due to low singing voice compared
to the accompagning instruments.
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In the monophonic context, the false alarms are due to
wind instruments, on which the performer voluntarily pro-
duces a vibrato as a musical effect.

5.3 Results with an automatic monophony/polypony
classification

We conduct a second experiment, to evaluate the whole
system: the monophonic/polyphonic decision is taken with
the method presented in part 2. Then, depending of the
output of the first system, the singing voice detection is run
with either one or the other method.

The results are presented in table 4. The global error rate
is now 25 %. Even with the imprecision introduced by the
monophonic/polyphonicdetector, the singing voice detection
is still better than in the previous system, since it is improved
by more than 5 %.

Table 4: Confusion matrix - Whole system.
Singing No singing
voice voice

Single singer 0.79 % 0.21 %
Single instrument 0.26 % 0.74 %

Singers and instruments 0.65 % 0.35 %
Multiple instruments 0.18 % 0.82 %

We see that the singing voice is always more difficult to
detect in polyphonic context. Most errors are due to the same
causes than in the previous experiment, adding the impreci-
sion of preprocessing step.

6. CONCLUSION AND PERSPECTIVES

In this article, we presented an improvement of our singing
voice detector, based on a differentiated strategy depending
of the monophonic/polyphonic character of the music. We
first presented the monophonic/polyphonic classifier, then
the two strategies we adopt to detect the presence of singing
voice. The singing voice is detected by the presence of vi-
brato either on the pitch (monophonic context) or on the fre-
quency trackings (polyphonic context).

The method we propose needs a training phase which is
done once for all, to learn the parameters of the models and
the classification thresholds. All these parameters are then
considered universal. This assumption is confirmed by the
very little size of the training set: 50 seconds of monophonic
signal and 50 seconds of polyphonic signal.

The results are very promising, since the global error
rate falls from 29.7 % to 21.7 % with a handmade separation
between monophonic and polyphonic. When the whole
system is used, the global error rate is still improved since it
falls to 25 %.

Our next work will be now to improve the detection of the
singing voice in polyphonic context, which is at the moment
the more critical case.

This system could be used in many applications. It can
for example be added to speech/music separation systems. In
these systems, the singing voice is the cause of many errors,
which are mainly solo singing voice recognised as speech.
An other application is the music structuration: some parts

of a song, such as the chorus, almost always contain singing
voice, whereas others, such as transitions, or interludes do
not.
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