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ABSTRACT 

This paper proposes a modified filtered-reference / filtered-
error least-mean-square (MFxFeLMS) algorithm. In 
addition, a stochastic model for the first and second 
moments of the MFxFeLMS is derived. The proposed model 
is obtained without invoking the classic Independence 
Theory (IT), allowing for slow adaptation and Gaussian 
input signals. Numerical simulations confirm the very good 
agreement between the results obtained by the Monte Carlo 
(MC) method and from the proposed model for both white 
and colored Gaussian inputs. 
  

1. INTRODUCTION 

In active noise and vibration control a direct 
implementation of the adaptive structure is not always 
possible. A common problem is the fact that, in some 
situations, the error signal used to update the coefficients of 
the adaptive filter is not readily available or is inaccessible. 
In these cases, it is only possible to obtain a filtered version 
of either the adaptive filter output or of the error signal, as 
occurs in active noise/vibration control and other 
applications. In these applications, the family of filtered 
least-mean-square (FLMS) algorithms should then be used. 
However, such algorithms present poor behavior regarding 
convergence speed and stability issues. To circumvent such 
problems, in [1], a modification of the adaptive algorithm 
has been proposed, leading to a modified algorithm having 
a behavior equivalent to the standard LMS. That is, the 
characteristics of convergence and stability of the modified 
algorithm coincide with the standard LMS. Such an 
algorithm is termed modified FLMS (MFLMS) algorithm 
[1], [2]. 

In the open literature, there are four types of adaptive 
algorithms belonging to the family of filtered algorithms, 
namely: filtered-x (or filtered-reference) LMS (FxLMS) 
[3], [4]; filtered-error LMS (FeLMS) [5], [6]; modified 
FxLMS (MFxLMS) [2]; and modified FeLMS (MFeLMS) 
[7]. The first two algorithms are widely used in active noise 
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control applications. The other ones are modified versions, 
aiming to increase the convergence speed of the first two. 
In addition, a generalized algorithm grouping the FxLMS 
and FeLMS has been introduced in [8], [9], termed 
filtered-reference /filtered-error LMS (FxFeLMS) algorithm. 

Several statistical analyses of the different versions of the 
LMS algorithm have been accomplished under the light of 
the Independence Theory (IT) [10], [11]. However, there 
are certain situations in which such an analysis assumption 
can no longer be applied, such as modeling the FxLMS and 
MFeLMS algorithms. For instance, stochastic models for 
the first and second moments of the FxLMS and MFeLMS 
algorithms without invoking the IT are derived in [12]-[13] 
and [7], respectively. To the best of our knowledge, in the 
open literature there is neither a modified version 
FxFeLMS (MFxFeLMS) algorithm nor its stochastic 
model. Such an algorithm and model are the main 
contributions of this paper. Since the use of the 
independence assumption has been proved not adequate for 
this algorithm class (as discussed in [7],[12], and [13]), 
such an assumption is not invoked here. In this way, the 
proposed models for the mean weight behavior and learning 
curve are more accurate than those using IT. Through 
Monte Carlo (MC) numerical simulations, the performance 
of the FxFeLMS [8] and the proposed algorithm are 
compared. In addition, very good agreement between the 
MC simulation and model for the proposed algorithm is 
obtained. For all cases, both white and colored input data 
are used. 

2. MODIFIED FxFeLMS ALGORITHM 
2.1 FxFeLMS Algorithm 
Figure 1 shows the block diagram of the FxFeLMS 
algorithm in which the following notation is used: 

T
o o,0 o,1 o, 1[  ]Nw w w −=w  represents the plant impulse 

response, T
0 1 1( ) [ ( )  ( ) ( )]Nn w n w n w n−=w  denotes the 

adaptive weight vector, 
1

T
1 1,0 1,1 1, 1[  ] ,Ms s s −=s  2 2,0[s=s  

2

T
2,1 2, 1] ,Ms s −  and T

ˆ0 1 1ˆ ˆ ˆ ˆ[  ]Ms s s −=s  are filter impulse 
responses which are placed, respectively, in the adaptive 
filter output, in the error signal path, and in the input signal 
path. Note that ŝ  is an estimate of the convolution between 

1s  and 2.s  Signals ( )d n  and ( )z n  are the desired signal 
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and measurement noise, respectively. The latter is i.i.d, 
zero-mean and uncorrelated with any other signal in the 
system. In this analysis, the input vector is 

T( ) [ ( ) ( 1) ( 1)] ,n x n x n x n N= − − +x  with { ( )}x n  being a 

zero-mean Gaussian process with variance 2.xσ  The filtered 
input vector is given by f f f( ) [ ( ) ( 1)n x n x n= −x  

T
f ( 1)] ,x n N− +  with 

 
ˆ 1

f
0

ˆ( ) ( ).
M

i
i

n s n i
−

=
= −∑x x  (1) 

In this work, we consider that vectors ow  and ( )nw  have 
the same dimension, while the dimensions of vectors 1s and 

2s  may be different. 
From Figure 1, the error signal is given by 

 
1 1

T T
o 1,

0
( ) ( ) ( ) ( ) ( ).

M

i
i

e n n s n i n i z n
−

=
= − − − +∑w x w x  (2) 

The filtered error signal, used in the weight-updating rule of 
the adaptive algorithm, is given by 

 
2 1

f 2,
0

( ) ( ).
M

i
i

e n s e n i
−

=
= −∑  (3) 

Now, substituting (2) into (3), we obtain 

 

2

2 1

1
T

f 2, o f
0

1 1
T

2, 1,
0 0

( ) ( ) ( )

           ( ) ( )

M

i
i
M M

i j
i j

e n s n i z n

s s n i j n i j

−

=
− −

= =

= − +

− − − − −

∑

∑ ∑

w x

w x
 (4) 

with  

 
2 1

f 2,
0

( ) ( ).
M

i
i

z n s z n i
−

=
= −∑  (5) 

Alternatively, (4) can be rewritten as 

 

2

3

1
T

f 2, o f
0

1
T

3,
0

( ) ( ) ( )

          ( ) ( )

M

i
i
M

i
i

e n s n i z n

s n i n i

−

=
−

=

= − +

− − −

∑

∑

w x

w x

 (6) 

with 
 3 1 2= ∗s s s  (7) 

where ∗  denotes the convolution operator. Thus, the weight 
update equation of the FxFeLMS algorithm is finally given 
by [8] 
 f f( 1) ( ) ( ) ( ).n n e n n+ = + μw w x  (8) 

2.2 Modified FxFeLMS Algorithm 
The MFxFeLMS algorithm is obtained by compensating 
the filtering operations performed by the filters 1s  and 2.s  
Such compensation is achieved by including the term 

f ( )n−Λ  (named compensation term) into (6) [1]. In this 
way, the weight update and compensated error f̂ ( )e n  
expressions are, respectively, given by 

 f fˆ( 1) ( ) ( ) ( )n n e n n+ = + μw w x  (9) 
and 

 

2

3

1
T

f 2, o f
0

1
T

3,
0

f

ˆ ( ) ( ) ( )

           ( ) ( )

           ( ).

M

i
i

M

i
i

e n s n i z n

s n i n i

n

−

=
−

=

= − +

− − −

− Λ

∑

∑

w x

w x  (10) 

The compensation term f ( )nΛ  is determined by enforcing 
(10) to be equal to the error signal of the standard LMS 
algorithm [1], whereby 

 

2

3

1
T

LMS 2, o f
0

1
T

3,
0

( ) ( ) ( )

                ( ) ( ).

M

i
i

M

i
i

e n s n i z n

s n n i

−

=
−

=

= − +

− −

∑

∑

w x

w x

 (11) 

Note that in (11) the error signal now depends on the 
current value of the adaptive weight vector ( )nw  instead of 

( ).n i−w  From (10) and (11) the required compensation 
term is 

 
3 1

T T
f 3,

0
( ) [ ( ) ( )] ( ) .

M

i
i

n s n n i n i
−

=
Λ = − − −∑ w w x  (12) 

In (12), the difference T T[ ( ) ( )] 0n n i− − =w w  for 0;i =  

otherwise, T T[ ( ) ( )]n n i− −w w  is obtained from (9) as 
follows. First, note that 

 1i = ⇒  f fˆ( ) ( 1) ( 1) ( 1)n n e n n= − + μ − −w w x  (13) 

 2i = ⇒  f fˆ( 1) ( 2) ( 2) ( 2)n n e n n− = − + μ − −w w x  (14) 

f fˆ( 1) ( ) ( ) ( )i L n L n L e n L n L= ⇒ − + = − + μ − −w w x  (15) 

with 3 1.L M= −  Now, determining the algebraic 
differences between (9) and (13), (14), and (15), 
respectively, we get 

 

T T T T

T T T T

T T T T

T T T T

f

( 1) ( ) ( ) ( 1)

( 1) ( 1) ( ) ( 2)

( 1) ( 2) ( ) ( 3)
                           

( 1) ( 1) ( ) ( )

ˆ             ( )

n n n n

n n n n

n n n n

n n L n n L

e n

⎡ ⎤ ⎡ ⎤+ − − −
⎢ ⎥ ⎢ ⎥

+ − − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+ − − = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ − − + − −
⎣ ⎦ ⎣ ⎦

+ μ

w w w w

w w w w

w w w w

w w w w

xT T
f f f
T T
f f f
T T
f f f

T T
f f f

ˆ( ) ( 1) ( 1)

ˆ( ) ( 2) ( 2)

ˆ( ) ( 3) ( 3) .
                

ˆ( ) ( ) ( )

n e n n

n e n n

n e n n

n e n L n L

⎡ ⎤ ⎡ ⎤− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥

− μ − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x

x x

x x

x x

 (16) 

Now, applying (13)-(15) to determine, respectively, 
T

f fˆ ( 1) ( 1)e n n− −x  to T
f fˆ ( ) ( ),e n L n L− −x  and substituting 
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the resulting expressions into (16), after some 
straightforward algebra, we get 

 

33

T T
1 f

TT T
12 f

f

TT T
21 f

  0( 1) ( )
( )( 1) ( )ˆ ( )

           
( )( 1) ( )MM

n n
nn ne n

nn n−−

⎡ ⎤ ⎡ ⎤⎡ ⎤+
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥+ ⎢ ⎥⎢ ⎥= + μ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎣ ⎦

α x
αα x

αα x

 (17) 

with 
 T T T

3( ) ( ) ( ),  1, 2, ..., 1.j n n n j j M= − − = −α w w  (18) 

Expression (17) can be rewritten as 

f f

1 f f 3

ˆ ( ) ( ),      1
( 1)

ˆ( ) ( ) ( ),  2  1.
j

j

e n n j
n

n e n n j M−

⎧μ =⎪+ = ⎨
+ μ ≤ ≤ −⎪⎩

x
α

α x
  (19) 

Finally, substituting (18) into (12) and the resulting 
expression into (10), the compensated error signal is 
determined as follows: 

32

3

11
T T

f 2, o 3,
0 0

1
T

3, f
1

ˆ ( ) ( ) ( ) ( )

           ( ) ( ) ( ).

MM

i i
i i
M

i i
i

e n s n i s n i n i

s n n i z n

−−

= =
−

=

= − − − −

− − +

∑ ∑

∑

w x w x

α x

  (20) 

3. ANALYSIS 

To determine model expressions for the MFxFeLMS 
algorithm, we make the following assumption A1: the 
correlations between input vectors at different lags are 
much more important than the correlations between the 
input and weight vectors. The same assumption is used for 
the correlations between input and jα  vectors. 

3.1 Mean Weight Behavior 
In this section, a model expression for the first moment of 
the adaptive weight vector is derived. Taking the expected 
value of both sides of (9), one has 

 f fˆ[ ( 1)] [ ( )] [ ( ) ( )].E n E n E e n n+ = + μw w x  (21) 

The term f fˆ ( ) ( )e n nx is obtained by post-multiplying both 
sides of (20) by f ( ).nx  Then, substituting (1) into all r.h.s. 
terms of the resulting expression, taking the expected value, 
and according A1, we obtain 

 

2

3

3

ˆ 11

f f 2, o
0 0
ˆ 11

3,
0 0

ˆ 11

3,
0 1

ˆ ˆ[ ( ) ( )]  

ˆ                         [ ( )]

ˆ                        [ ( )]

MM

i j j i
i j
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i j j i
i j
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i j j i j
i j

E e n n s s

s s E n j

s s E n

−−

−
= =

−−

−
= =

−−

−
= =

=

− −

−

∑ ∑

∑ ∑

∑ ∑

x R w

R w

R α

 (22) 

where the autocorrelation matrix j i−R  in (22) is obtained 

according to the general form 
T[ ( ) ( )].E n nβ−α = − α − βR x x  

In (22), the term [ ( )]jE nα  is determined by taking the 
expected value of (19). Thus, 

f f

1 f f 3

ˆ[ ( ) ( )],                       1
[ ( 1)]

ˆ[ ( )] [ ( ) ( )],   2  1.
j

j

E e n n j
E n

E n E e n n j M−

⎧μ =⎪+ = ⎨
+ μ ≤ ≤ −⎪⎩

x
α

α x

(23) 
3.2 Steady-State Value of ( )nw  

By substituting (22) into (21) and taking the limit as 
n → ∞  of the resulting expression, we have 

2

3

3

ˆ 11

2, o
0 0

ˆ 11

3,
0 0

ˆ 11

3,
0 1

ˆlim [ ( 1)] lim [ ( )]  

ˆ                         lim [ ( )]

ˆ                          lim [ ( )]

MM

i j j in n i j

MM

i j j i ni j

MM

i j j i jni j

E n E n s s

s s E n j

s s E n

−−

−→∞ →∞ = =

−−

− →∞= =

−−

− →∞= =

+ = + μ

− μ −

− μ

∑ ∑

∑ ∑

∑ ∑

w w R w

R w

R α .

(24) 
Now, assuming algorithm convergence, the steady-state 
value of the weight vector is obtained from the following 
condition: 

 
lim [ ( 1)] lim [ ( )]

                        lim [ ( )] .
n n

n

E n E n j

E n
→∞ →∞

∞→∞

+ = −

= =

w w

w w
 (25) 

Then, using the result of (25) in (24) and considering a 
system identification problem as illustrated in Figure 1, we 
get 

 

3 2

3

ˆ ˆ1 11 1

3, 2, o
0 0 0 0
ˆ 11

3,
0 1

ˆ ˆ

ˆ lim [ ( )].

M MM M

i j j i i j j i
i j i j

MM

i j j i jni j

s s s s

s s E n

− −− −

− ∞ −
= = = =

−−

− →∞= =

μ = μ

−μ

∑ ∑ ∑ ∑

∑ ∑

R w R w

R α

 (26) 

From (18), note that T Tlim{ [ ( )] [ ( )]}
n

E n E n j
→∞

− − =w w  

Tlim [ ( )] 0 ,jn
E n

→∞
=α  thereby canceling the effect of the 

compensating term f ( ).nΛ  Then, using such a relation in 
(26), one obtains 

 
3 2

1ˆ ˆ1 11 1

3, 2, o
0 0 0 0

ˆ ˆ .
M MM M

i j j i i j j i
i j i j

s s s s
−− −− −

∞ − −
= = = =

⎛ ⎞
= ⎜ ⎟
⎜ ⎟
⎝ ⎠
∑ ∑ ∑ ∑w R R w  (27) 

3.3 Learning Curve 
To determine the model expression for the learning curve of 
the MFxFeLMS algorithm, we substitute (12) into (10), and 
after simple mathematics, we find 

32 11
T T

f 2, o 3, f
0 0

ˆ ( ) ( ) ( ) ( ) ( ).
MM

i i
i i

e n s n i s n n i z n
−−

= =
= − − − +∑ ∑w x w x

(28) 
Now, squaring (28), taking the expected value of both sides 
of the resulting expression, and according to A1, we obtain 
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                 2 [ ( )]
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                 .
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M M

i j j i
i j

M
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i
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− −

−
= =
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−
= =

− −

−
= =

−

=

=

−

+

+ σ

∑ ∑
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∑

w R w

w R w

R w w

   (29) 

To complete the derivation of (29), we should obtain the 
second moment of ( ).nw  For such, allowing for the slow 
adaptation condition, the following approximation can be 
used [14]: 
 T T[ ( ) ( )] [ ( )] [ ( )].E n n E n E n≅w w w w  (30) 

4. SIMULATION RESULTS 
In this section, two examples are presented; the first 
compares the performance of the FxFeLMS algorithm with 
the proposed MFxFeLMS algorithm and its model, for 
white Gaussian input data, under two situations: the same 
convergence speed and the same minimum steady–state 
error. In the second example, the proposed model is also 
assessed for colored Gaussian input data. For the two 
presented examples, a system identification problem is 
used. Also, we assume that the input signal path filter 
estimate is given by 3 1 2ˆ .*= =s s s s  

4.1 Example 1 
In this example, the unknown plant is the length-17 vector 

o [ 0.457 0.086 0.100 0.071 0.107 0.231 0.347= − − − −w
0.429 0.458 0.429 0.347 0.231 0.107 0.071 0.100− − − −

T0.086 0.457] .− −  The input data is white with variance 
2 1,xσ =  and T

1 [0.801 0.535 0.266] ,=s  2 [0.122 0.468=s  
T0.623 0.519 0.274 0.169 0.055] ,  and ˆ [0.977 0.441=s  

T0.783 0.874 0.664 0.421 0.208 0.074 0.014] .  The 
(experimentally determined) maximum step-size values 

maxμ  for algorithm stability are 0.006 and 0.014 for the 
FxFeLMS and MFxFeLMS, respectively. Monte Carlo 
(MC) simulations are obtained from averaging 400 
independent runs. Figure 2 shows the learning curves for 
both the algorithms (FxFeLMS and MFxFeLMS) enforcing 
the same convergence speed ( 0.003),μ =  as well as the 
proposed model (29). From these curves, we observe that 
the FxFeLMS presents larger mean-square error (MSE) in 
steady state than the MFxFeLMS. On the other hand, now 
enforcing the two algorithms to have the same steady-state 
MSE (see Figure 3), the MFxFeLMS exhibits faster 
convergence than the FxFeLMS. This latter converges only 
after 510  iterations. Moreover in Figures 2 and 3, we 
observe very good match between MC simulation and the 
proposed model of the MFxFeLMS algorithm using white 
input data. 

+
Σ

+( )nx ( )d n

( )z n

f ( )e n

ow

( )nw 1s

LMS

( )e n

f ( )nx

2s
ŝ

 
Figure 1 – Block diagram of the FxFeLMS algorithm. 

4.2 Example 2 
In this case, colored input data is used, obtained from an 
AR(2) process, given by 

 1 2( ) ( 1) ( 2) ( )x n a x n a x n u n= − + − +  (31) 

where ( )u n  is white noise with 2 0.39uσ =  and the 
coefficients are 1 0.5833a =  and 2 0.75a = −  with an 
eigenvalue spread of the input autocorrelation matrix equal 
to 63. The plant vector and path filter parameters are the 
same as in the previous example. The (experimentally 
determined) maximum step-size values for this case are 

max 0.013μ =  and 0.023 for the FxFeLMS and MFxFeLMS 
algorithms, respectively. For this example, 0.0006μ =  and 
0.006  are, respectively, used for the FxFeLMS and 
MFxFeLMS. Figure 4 shows the mean weight behavior and 
learning curve (MSE) obtained from MC simulations and 
the theoretical model. From these figures, we observe very 
good agreement between MC simulations and the proposed 
model of the MFxFeLMS algorithm. In addition, 
comparing the curves in Figure 4(b), we notice that, for the 
same steady-state MSE, the MFxFeLMS algorithm 
achieves the fastest convergence.  

M
SE FxFeLMS

MFxFeLMS

Iterations
0 1000 2000 50003000 4000

-310

-210

-110

010

110

MFxFeLMS model

 
Figure 2 – Example 1. White input data. MSE curves enforcing 
the same convergence speed for both the FxFeLMS and 
MFxFeLMS algorithms, and proposed model (29), for 0.003.μ =  
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M
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0 1000 2000 50003000 4000
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110

MFxFeLMS model

 
Figure 3 – Example 1. White input data. MSE curves enforcing 
the same steady-state MSE for both FxFeLMS and MFxFeLMS 
algorithms, using, respectively, 0.0006μ =  and 0.006,  and 
proposed model (29). 
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0 1000 2000 50003000 4000
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E
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[
(

)]
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(a) 

FxFeLMS

MFxFeLMS

M
SE

-310

-210

-110

010

110

Iterations
0 1000 2000 50003000 4000

MFxFeLMS model

 
(b) 

Figure 4 – Example 2. Colored input data. (a) Mean weight 
behavior of the MFxFeLMS algorithm using 0.006 :μ =  (gray 
lines) simulation, (dashed-dark lines) proposed model (21). (b) 
MSE curves: FxFeLMS algorithm simulation with 0.0006,μ =  
and MFxFeLMS algorithm simulation and proposed model (29) 
using 0.006.μ =  

5. CONCLUSIONS 

In this paper, the modified fitered-reference / fitered-error 
LMS (MFxFeLMS) algorithm is proposed. In addition, 
analytical expressions for the first moment and the learning 
curves have been derived considering slow adaptation and 
without invoking IT. Through numerical simulations, the 
performance of the proposed algorithm was compared with 
that of the FxFeLMS. Also, curves of simulation and the 
proposed model of the MFxFeLMS algorithm were shown, 
attesting very good accuracy achieved by the analytical 
model. 
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