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ABSTRACT

This paper describes a novel approach based on the sequen-
tial Monte Carlo method for tracking of multiple sources
overlapping in time. The algorithm is designed for multi-
microphone applications and manipulates GCC-PHAT mea-
surements in order to obtain robust likelihoods for all active
sources. An experimental analysis was conducted on real
data acquired with different microphone configurations. Re-
sults show the effectiveness of the proposed algorithm.

1. INTRODUCTION

Sound source localization in reverberant and noisy envi-
ronments has been investigated for decades. The problem
consists in finding the positions of active sources given the
measurements provided by a set of acoustic sensors [2]. Be-
sides background diffused noise and localized noise sources,
the main issue for a localization algorithm is reverberation
which is caused by wave reflections that typically occur in
enclosures [11]. In general the source localization problem
in multimicrophone scenarios is tackled by evaluating
and combining GCC-PHAT functions [10], also known as
CSP [14], at a set of microphone pairs.
In recent years, sequential Bayesian methods and Sequential
Monte Carlo (SMC) simulations have become very common
and have proved to provide an efficient and robust solution to
the localization problem [17, 18]. Bayesian methods offer a
general probabilistic framework by considering the posterior
density function of the target state based on all available
measurements [8]. Monte Carlo methods approximate the
posterior [1] and are also known as Particle Filter (PF)
techniques. One of the main reasons for the popularity of
PF approaches is that they can be used without assuming
linearity or Gaussianity of the problem, which hardly ever
holds in real scenarios. However, particular expedients and
proper tuning must be adopted to obtain effective solutions
in real applications where, due to the sparseness of speech,
the acoustic information may be lacking for long periods.
Monte Carlo methods have been also successfully applied to
the multisource scenario by extending in a straightforward
manner the algorithms used for single source tracking. The
idea is that either multimodal or multidimensional likeli-
hoods, for multitarget states, can be obtained from acoustic
observations when more sources are simultaneously active.
In this paper we describe a novel approach to multiple
source tracking specifically designed to handle conditions
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where strong time overlapping between sources occurs.
The method derives from the post-processing technique
presented in [4].

2. TRACKING FRAMEWORK

Sequential Bayesian methods are an alternative to exhaustive
maximization/minimization of cost functions. In such state-
space trackers we consider a state variable at timek, includ-
ing information on the position and the speed of a target in a
Cartesian coordinate system:

Sk = [xk yk zk ẋk ẏk żk]
T

The acoustic sensors provide at each time instantk a set of
measurements, which we refer to asOk, associated to the
current state. In a probabilistic framework, the state of the
target is computed using the posterior density function (PDF)
conditioned to all the available measurements, from time 1
to timek: p(Sk|O1:k), whereO1:k = {O1, . . . ,Ok}. For in-
stance the PDF mean can be used as target state estimation.
Since an analytical closed-form solution is non tractable un-
less the problem has Gaussian and linear properties, an itera-
tive approach is adopted. Let us assume thatp(Sk−1|O1:k−1)
is known at timek−1. The solution is obtained by iterating
the following equation set [8, 1, 17, 18]:

p(Sk|O1:k−1) =

∫

p(Sk|Sk−1) p(Sk−1|O1:k−1)dSk−1

p(Sk|O1:k) ∝ p(Ok|Sk) p(Sk|O1:k−1) (1)

It includes aprediction step where p(Sk|Sk−1) models the
transition between one state to the next one (motion model)
and anupdate step wherep(Ok|Sk) is called measurement
likelihood.
Given the above described framework, SMC is an approxi-
mation method that represents the PDF at timek throughN

weightsw(n)
k n = 1, . . . ,N associated to a set of samples of

the state space (particles)S
(n)
k . Starting from a set of pairs

(

S
(1:N)
k−1 ,w(1:N)

k−1

)

the PDF at timek−1 is represented as:

p(Sk−1|O1:k−1) ∼
N

∑
n=1

w(n)
k−1δ

(

Sk−1−S
(n)
k−1

)

(2)

whereδ (·) is the Dirac impulse. The iterative prediction-
update process introduced above allows to compute a new

set of weighted particles
(

S
(1:N)
k ,w(1:N)

k

)

, approximating the
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new PDF, through which the target state can be estimated for
instance as weighted average:

Ŝk =
N

∑
n=1

w(n)
k S

(n)
k . (3)

One of the approaches that best fits the acoustic tracking
problem is based on the Sampling Importance Re-sampling
(SIR) method described by the following steps [8]:

i A set of particlesS̃(1:N)
k is computed by propagating with

a proper motion model the previous setS
(1:N)
k−1 .

ii A weight w(n)
k is associated to each new particle accord-

ing to the measurement likelihood. Weights are normal-
ized to sum up to 1.

w(n)
k =

w(n)
k−1p

(

Ok|S̃
(n)
k

)

∑N
n=1 w(n)

k−1p
(

Ok|S̃
(n)
k

) (4)

iii The target state is estimated using equation (3).

iv Given the PDF approximated by
(

S̃
(1:N)
k ,w(1:N)

k

)

, as in

(2), a new set of particles is obtained by resampling.

2.1 Measurement Likelihood

Traditional PF implementations compute the measurement
likelihood either using the output of a steered beam-
former [13] or considering the distance between the hypoth-
esized time differences of arrivals and the estimated ones
at several microphone pairs [17]. In this paper we instead
adopt an approach derived from acoustic map analysis such
as the Global Coherence Field (GCF) [5], also known as
SRP-PHAT [2]. In traditional source localization methods
based on GCF, GCC-PHATs are combined in order to com-
pute maps of enclosures, representing the plausibility that a
source is active in a given point. Localization is then car-
ried out by maximizing the resulting map. Therefore, given
a grid of pointss defined over the area of interest andM mi-
crophone pairs, a GCF acoustic map is computed for each
point as follows [5]:

GCF(k,s) =
1
M

M−1

∑
m=0

Cm (k,ψm (s)) (5)

whereCm (k,τ) is the GCC-PHAT function computed at pair
m and time instantk, while ψm (s) is the geometrically com-
puted time difference of arrival at pairm if the source is ins.
In our implementation, the measurement likelihood for each
particle is computed as:

p
(

Ok|S̃
(n)
k

)

= GCF
(

k, S̃(n)
k

)

(6)

Notice thatψm(·) depends only on the first three compo-
nents of the particle state, i.e. it does not depend on speed.
Other types of acoustic maps are suitable to be adopted as
likelihood measurements. For instance the Oriented Global
Coherence Field [3] allows one to deduce also information
about the orientation of the source and is more effective when
microphones are distributed along the perimeter of a room.
In order to use such a likelihood in a PF implementation,

an extra dimension must be added to the state space which
accounts for the orientation of the source [7]. A further alter-
native is represented by the use of multiplication rather than
summation in equation (5) [15].

2.2 PDF approximation

SIR works properly when information for likelihood compu-
tation is available. But it may fail when the source is silent
or the observationsOk are not reliable due to background
noise or reverberation. Even if the method can deal with
short time pauses thanks to the motion model, small changes
in the propagation model may affect the overall performance
considerably. Moreover, during the above mentioned lacks
of information a different speaker may take turn. The PDF
approximation presented in equation (2) is hence modified in
order to address the above mentioned issues. First of all we
consider two hypotheses, based on GCF information:
• H0: the target is silent;
• H1: the target is active;

In H1, the original SIR algorithm is used. Conversely, in
H0 a uniform distribution over the particles is adopted, i.e.
all weights are forced to the same value to approximate the
PDF. In practice particles only propagate according to the
motion model and no resampling occurs. Therefore the PDF
is approximated as follows:

p(Sk|O1:k) = ηk

N

∑
n=1

w(n)
k δ

(

Sk −S
(n)
k

)

+ (1−ηk)
1
N

N

∑
n=1

δ
(

Sk −S
(n)
k

)

(7)

where ηk is a flag indicating whether the observations at
time k are generated by the target. If we denote asw′

k the
maximum non-normalized weight at timek and introduce a
thresholdϑR, ηk is defined as:

ηk =

{

1 if w′
k ≥ ϑR

0 otherwise

In a similar way one may use an energy-based function for
ηk, as in [13], or adopt a fuzzy approach. In order to guar-
antee quick reaction to speaker turn taking and ensure a fast
convergence when the user moves while being silent, the mo-
tion model is not used when hypothesisH0 lasts for more
than nD consecutive frames and a Gaussian distribution is
used instead:

p(Sk|O1:k) = (1−ρk)ηk

N

∑
n=1

w(n)
k δ

(

Sk −S
(n)
k

)

+ (1−ρk)(1−ηk)
1
N

N

∑
n=1

δ
(

Sk −S
(n)
k

)

+ ρkN (µk,σ) (8)

whereµk = argmax{GCF(k,s)} andσ is a parameter of the
algorithm. Whenρk = 1 both measurements and motion
model are not used since the particle filter information is as-
sumed to be out-of-date and not reliable. At a given timek,
ρk is a function ofnD and ofkR that is the last time index at
which ηk = 1.

ρk = ⌊
k− kR

nD
⌋ (9)
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2.3 Motion Model

Assuming that particle trajectories along different coordi-
nates are independent each other, the propagation step of
the PF process is handled by adopting a variation of the
Langevin model [13, 17]. In our implementation an adaptive
motion model controlled by the value of(k− kR) is imple-
mented. In practice, ifH0 holds particles are encouraged to
explore a larger area until, after some steps, they are spread
over the whole state space. On the contrary, when speech
activity is detected, particles follow the dynamics estimated
by the model.

3. OVERLAPPING SOURCE TRACKING

In this section we present our approach for performing track-
ing of sources overlapping in time. Without loss of gener-
alization, we limit our analysis to two simultaneous sources.
The proposed algorithm can be extended to deal with a larger
number of sources in a straghtfoward way, even though gen-
erally GCC-PHAT fails to perform when more than 3 sources
overlap.
Under ideal conditions,when two sources are active GCC-
PHAT shows two evident peaks at the time lags correspond-
ing to the two real time differences of arrivals. Unfortunately,
in real conditions the two peaks hardly ever appear at the
same time since one of the two tends to absorb the over-
all coherence. This phenomenon is due to different spectral
contents and to different nature of signals produced by the
sources as well as to distance from microphones and source
orientation. Therefore, it is more likely to observe two al-
ternating peaks and in this case short-term spatio-temporal
clustering may be a convenient approach [6, 12]. How-
ever this method fails when constructive interferences be-
tween sources occur generating fake peaks or when one of
the sources is dominant in the long term preventing the infor-
mation associated to the second one from appearing. In [4]
a method for highlighting weak peaks in GCF maps is pre-
sented which attempts to de-emphasize the dominant peak at
GCC-PHAT level. The idea presented here is to embed that
technique in a PF framework in order to guarantee availabil-
ity of measurements for all sources.

3.1 Proposed Approach

For tracking of two simultaneous sources we use two par-
allel filters instead of extending the dimension of the state
by adding coordinates and speed of the second target [16].
The reason is purely implementative as with this solution the
GCC-PHAT de-emphasis can be easily embedded. The two
filters are identified by two separate and independent popula-

tions of particlesS(1:N,i)
k , i = 0,1 whose estimation output is

defined aŝS(i)
k . The proposed approach needs a multimodal

PDF that in general is not available for the reasons explained
above. Hence, the weight of each particle is computed by
applying beforehand the GCC-PHAT de-emphasis process
presented in [4] in order to remove the contribution of the
competitive target.

Let us consider the target state estimationŜ
(1)
k−1 obtained from

the setS(1:N,1)
k−1 . Before computing the weights of eachS̃

(n,0)
k

the theoretical time delayψm(Ŝ
(1)
k−1) is used to modify all the
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Figure 1: Example of functionsφ(·) for different values ofb
whenν = 18 andp = 1. The normalization factorα guaran-
tees thatφ(·) sums up to 1.

GCC-PHAT functions by means of a notch mask as follows:

C(0)
m (k,τ) = φ

(

τ,ψm

(

Ŝ
(1)
k−1

))

·Cm (k,τ) . (10)

Weights are then computed using the new functionC(0)
m (k,τ)

in (5). The same process is used to remove contributions

associated tôS(0)
k−1 before computing weights of eachS̃(n,1)

k :

C(1)
m (k,τ) = φ

(

τ,ψm

(

Ŝ
(0)
k−1

))

·Cm (k,τ) (11)

In our implementation the functionφ(·) was chosen to be-
long to the following class:

φ(τ,ν) = α
[

1− e−
|τ−ν|

b

p
]

(12)

Parametersb and p determine the sharpness of the notch,
while α is a normalization factor that guarantees that:

τmax

∑
τ=−τmax

φ(τ,ν) ·Cm(τ) =
τmax

∑
τ=−τmax

Cm(τ) (13)

whereτmax is the maximum allowed time delay. As shown
in Figure 1, in practice a null is set around the lag that cor-
responds to the time difference of arrival of the source to
remove. Small values ofb andp correspond to very selective
functions. On the other hand, large values of the parameters
enlarge the notch. In general a trade-off is needed to obtain
functions that ensure the removal of one of the peaks without
affecting the other one. When applied to acoustic map based
localization, de-emphasis proved to be an efficient tool for
locating two simultaneous sources [4].
Notice that if only one source is present, one of the filters
“captures” the target and the second one either randomly dis-
tributes its particles as if there is no acoustic activity ortracks
ghosts if any is present. Conversely, if de-emphasis were not
performed both filters would track the first available source
and would neglect the other one.

4. EXPERIMENTAL ANALYSIS

The proposed algorithm is evaluated on real data acquired
with two different sensor settings: the first one makes up a
Distributed Microphone Network (DMN), while the second
one consists of a linear array. In order to simulate overlap-
ping sources, a human speaker is recorded while pronounc-
ing a phonetically rich sentences at 5 different positions
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and orientations. Each sentence is about 10 second long.
Recorded signals from each single source session are then
summed up assuming a linear sound propagation model and
source independence, which are both acceptable hypotheses
in the given context. A set of 10 position combinations was
considered for evaluation in both the settings under analy-
sis. Experiments are restricted to bi-dimensional horizontal
localization due to limited vertical coverage of the given mi-
crophone configurations and due to constant speaker height.
The sampling rate is 44.1 kHz in the DMN case and 48 kHz
in the linear array setting. The analysis window is 214 sam-
ples long with a 25% overlap. The number of particles is set
to 900 andnD = 5 while the thresholdϑR depends on the ex-
perimental set up in use. Those values have been defined in
a heuristic way in order to optimize performance.
The capabilities of our localization algorithm are measured in
terms of average RMS error computed on both sources. Let

us define asp(i)
k the actual position of thei-th source (i = 0,1)

at time framek. The localization error in estimating the posi-
tion of thei-th source is expressed as the Euclidean distance
between the estimated and the actual position:

e(i)
k = ‖Ŝ

(i)
k −p

(i)
k ‖ (14)

the average RMS error is computed as follows:

rms=

√

√

√

√

√

∑Nt
k=1

[(

(

e(0)
k

)2
+

(

e(1)
k

)2
)

/2

]

Nt
(15)

whereNt is the overall number of processed frames. Since
no source label is available in the localization estimation, es-
timates are associated to sources on a minimum distance cri-
terion in an exclusive way.
For comparison we consider an upper bound defined as the
performance of a PF implementation for single source track-
ing based on GCF likelihood when sources do not overlap.
The outputs are then combined in order to generate the upper
bound localization performance for the double-talk case.
As further metric, we consider also the tracking rate, defined
as the percentage of localization frames for which the origi-
nal PDF is used (i.e.ηk(1−ρk) = 1).

4.1 Distributed Microphone Network

As a first study case we consider a DMN as the one adopted
in the CHIL project1 where a set of microphones is dis-
tributed all around a room, typically grouped in small ar-
rays. A DMN consisting of 7 arrays with 3 microphones
in a row is used for recordings in a room whose dimensions
are 5.9×4.8×5 m. The environmental noise is low but the
reverberation time is quite challenging and is equal to 0.7 s.
The positions of the 7 arrays are shown in Figure 2 where
they are labeled with “T”. Since we do not combine micro-
phones belonging to different arrays, the resulting number
of used pairs isM = 21. Figure 2 shows also the positions
where the sources were recorded and, by means of arrows,
their orientation.

Figure 3 reports performance for different configuration
of the de-emphasis function when the speech activity thresh-
old ϑR is 0.6. The tracking rate is always between 87% and

1For further details see: http://chil.server.de
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Figure 2: Microphone array (T) and source (P) positions
in the DMN setting. Arrows indicate the orientation of the
speaker. Arrays are represented by boxes.

90% of the overall processed frames. Notice how the pro-
posed method permits to almost reach the upper bound when
specific parameters of the de-emphasis function are selected.
Best performance is obtained whenp = 1 andb = 3.5 corre-
sponding torms= 152.9 mm, with an upper bound of 129.2
mm.
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Figure 3: Performance of a multispeaker tracker in a DMN
set up for different parameters of the de-emphasis function.
Full circles indicates the upper bound.

It is worth noting that accurate tuning is needed in the
given scenario. Using very small values ofp and/orb does
not work because the notch would miss the GCC-PHAT
peaks to remove. Conversely, very wide functions corre-
sponding to large values ofb seem to be too invasive and
affect also some useful information. Good parameters for
the proposed method arep > 0.7 andb ∈ [2.5,4].

4.2 Linear Array

In a second experiment a linear array consisting of 7 micro-
phones placed at 32 cm distance was used, resulting inM = 6
pairs of adiacent microphones. It is part of the more complex
harmonic array adopted in the DICIT project2. The posi-
tions of the array and of the 5 sources are described in Fig-
ure 4 which shows also the orientations of the speakers. The
recordings were carried out in a 3.5×5×4 m room whose
reverberation time is about 0.35 s.

Although the distance estimation is more prone to errors
when using a linear array, localization results obtained inthis
configuration are very satisfactory as reported in Figure 5 and
the best performance is very close to the upper bound. In
these conditions the best value forϑR is 0.45 which results
in a tracking rate of about 90%. The best performance is

2For further details see: http://dicit.fbk.eu
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Figure 4: Scheme of the source positions under investigation.
The bar on the right represents the linear array.

rms= 144 mm whenp = 1.5 andb = 5.5 against an upper
bound equal to 102.7 mm. Notice that in this setting, larger
values ofp are needed (1.5, 2) because it is not possible to
take advantage from a more effective spatial distribution of
the microphones in space as in the DMN case.
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Figure 5: Performance of a multispeaker tracker in a linear
array set up for different parameters of de-emphasis function.

5. CONCLUSIONS AND FUTURE WORK

This paper presented a sequential Bayesian approach for
tracking of two sources overlapping in time. Since in these
conditions likelihoods do not show a clear multimodal na-
ture, the proposed method attempts to highlight weak modes
to ensure good tracking. Experiments on real data acquired
with different microphone configurations show the very good
capabilities of the described method which allows one to ob-
tain performance close to the considered upper bound.
Including birth and death processes through Random Finite
Sets [9] should permit to deal with tracking of a varying num-
ber of sources in a more efficient way by allocating and de-
allocating filters. Therefore a future activity will be towards
this direction. However, the current implementation does not
affect tracking in case a single source is active and there is
no need of knowing the exact number of sources but just the
maximum number.
Finally, a deep comparison between different likelihoods de-
rived from acoustic map analysis, as for instance Oriented
Global Coherence Field, is needed in an attempt to improve
the tracking performance of the proposed method.
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