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ABSTRACT

In this paper, enhancements to the classical Waveform Simi-
larity Overlap-Add (WSOLA) algorithm are proposed. As a
time-domain approach, it works best for small speed changes
and quasi-periodic, monophonic signals. Some of our en-
hancements are especially effective for small, others for large
speed changes. As a consequence, significant improvements
for all scaling factors are achieved extending the usability of
the new scheme to larger speed changes and more complex
signal characteristics. The reduction in computational com-
plexity is analyzed by comparing the number of splice points
needed to time-scale the input signal. As will be shown, these
are the only points where real signal processing is performed.
Therefore, a reduction in their number results in an equiva-
lent decrease in computational demand. Additionally, they
are also the only points where artifacts may arise so that, in
many cases, a reduction in their number can serve as an indi-
cator for improvements in the signal quality, too.

1. INTRODUCTION

Time-scaling denotes the classical problem of changing the
play-out speed (or, equivalently, the duration) of an audio
signal without altering its perceived frequency characteris-
tics, i.e., its pitch and timbre. In our case, the objective was
to design an efficient algorithm for typical frame rate con-
versions found in the film industry. Another major applica-
tion in the professional domain is the generation of sound
effects for music productions. Time-scaling capabilities are,
however, also of increasing interest for consumer electronics
products, like e.g., for audio play-out during fast forward. A
more complete list of applications can be found in [2].

In America, feature films are typically recorded with a
frame rate of 24fps. To change this rate to the (nominal)
30fps of NTSC for television, four film frames are con-
verted into five video frames with a process called “3:2 pull-
down” [4]. To this end, the film frames are copied in alter-
nation into two or three video fields, which are one half of a
video frame. Finally, these ten video fields are recombined
into five complete video frames. This simple procedure re-
sults in a sawtooth pattern for moving objects and jitter. Both
artifacts are, however, typically not perceived by the viewers.
Furthermore, the overall duration is kept unchanged so that
the audio signal can stay untouched. The final adjustment of
the play-out speed to the actual 29.97fps of NTSC is neither
perceived optically nor acoustically.

The procedure for converting the frame rate from 24fps
to the 25fps found in Europe is even more straightforward:
The film is simply sped up by these approximately 4% so
that all the action happens just a little bit faster. On the video
side, this is hardly perceived. Speeding-up the audio signal

by a factor of 25
24

, however, results in an audible pitch shift
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Figure 1: Illustration of the block-based processing for the
classical WSOLA approach proposed in [6]

by about two thirds of a semitone. Especially male actors are
often not willing to accept this alteration of their voice so that
time-scaling techniques need to be employed instead.

Time-scaling algorithms can broadly be categorized into
those operating in the time-domain and those operating in
the frequency-domain [2]. Time-domain techniques are com-
putationally more efficient but typically restricted to quasi-
periodic signals, like speech or monophonic music. The un-
derlying idea is to detect individual periods in the signal that
can then be repeated or discarded as needed. As long as
the speed change is small, these time-domain techniques are,
however, also capable of producing high-quality results for
more complex signals. This is the reason why we opted for
such a time-domain approach.

The paper is organized as follows: Sect. 2 introduces the
classical Waveform Similarity Overlap-Add (WSOLA) ap-
proach, which forms the basis for our enhanced scheme de-
tailed in Sect. 3. Sect. 4 presents some quantitative and qual-
itative results for our enhancements. A further extension of
the new scheme to take the underlying signal characteristics
into account is discussed in Sect. 5. Finally, Sect. 6 provides
some concluding remarks.

2. CLASSICAL WAVEFORM SIMILARITY
OVERLAP-ADD METHOD

Figure 1 illustrates the so-called Waveform Similarity
Overlap-Add (WSOLA) approach as proposed in [6]. In this
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Figure 2: Illustration of the proposed enhancements to the
classical WSOLA approach

time-domain approach, the output signal is constructed from
blocks Bm of a fixed length N (typically around 20ms). As in-
dicated by the triangles, these blocks overlap by 50% so that
a fixed cross-fade length is guaranteed. In our opinion, this
is one of the reasons why the time-scaled signal is of higher
quality than with other Synchronous OverLap-Add (SOLA)
methods.

Another reason is that the best interval for a cross-fade
is not only determined based on the interval itself but also
takes the future development of the signal into account. If
we assume that the block Bm has just been appended to the
output signal, the next block Bm+1 = B′′

m is determined as
follows: B′′

m is the block that is, first, most similar to the block
B′

m that would normally follow the current block Bm and that,
second, lies within a search window around the ideal position
(as determined by the scaling factor). The deviation from the
ideal position is thereby typically restricted to be less than
5ms resulting in a search window of 10ms in size.

3. ENHANCEMENTS

The classical WSOLA approach described in the last section
can be enhanced in several ways. These enhancements are
depicted in Fig. 2 and will be detailed in the following sub-
sections.

3.1 Splice Point Prediction

The first enhancement consists in realizing that it is not al-
ways necessary to find the next block Bm+1 by performing a
computationally expensive template matching (i.e., by max-
imizing a similarity function). Especially if the scaling fac-
tor is close to one, the signal block B′

m whose most similar
counterpart is searched for will often simply lie itself within
the search window. For any sensible similarity function, this
block should represent the best match, i.e., Bm+1 = B′′

m = B′
m.

Using the deviation from the ideal position of the last
best match and the additional deviation caused by appending
a consecutive block, it can easily be checked if this is the
case and the position of the block determined. It can even be
predicted for how many consecutive blocks this is going to be

the case and, thus, an input signal segment of corresponding
length can simply be appended to the output signal. This
procedure not only avoids the computations for the template
matching but also those needed to perform the cross-fades.

Let us denote the current deviation from the ideal posi-
tion with d(m) and the scaling factor with α , where α > 1
shall indicate a stretching of the input signal. Performing
the cross-fade between consecutive blocks is equivalent to

adding N
2

further samples to the output signal. On the input

side, N
2α

samples should, however, have been used instead.
This results in an additional deviation

∆d =
N

2

α −1

α
. (1)

As a consequence,

Nblocks = floor

(

sign(α −1)dmax−d(m)

∆d

)

(2)

consecutive blocks may be copied without surpassing the
maximum allowed deviation dmax. The factor “sign(α −1)”
takes into account that the deviation tends towards negative
values for scaling factors smaller than one.

This enhancement can even be taken one step further by
removing the restriction that the appended signal segment
needs to consist of entire blocks. Instead of determining
the block for which the maximum allowed deviation is sur-
passed, this can just as well be done on a sample by sample
basis. This approach leads to calculating the critical sam-
ple ncrit (indicated in Fig. 2) for which the deviation d(ncrit)
from the ideal position reaches the limit ±dmax. Analogous
to Eq. 2, the maximum number of samples to be copied
Nsamples = ncrit −n may be calculated instead as

Nsamples = floor

(

α

α −1

(

sign(α −1)dmax−d(n)
)

)

. (3)

This first enhancement can be summarized as realizing
that the processing can be divided into two phases. In the
first phase, samples are simply copied to the output signal as
long as the deviation from the ideal input sample induced by
this procedure stays in a predefined range. When the limit
is reached, the signal is spliced and a template matching is
performed in the second phase to find the most similar block
within the allowed range.

3.2 Weighted Similarity Function

The second enhancement shown in Fig. 2 consists in weight-
ing the similarity function. If there are similarly good
matches within the search window, the candidate closest to
the opposite end ∓dmax should be chosen. As described by
Eq. 1, this results in longer signal segments being appended
next so that the number of splice points is reduced. In addi-
tion to reducing the amount of template matchings, this also
reduces the points were artifacts may develop. Consequently,
an appropriately chosen bias will speed up the processing as
well as improve the signal quality. The bias should, however,
also not be chosen too high to avoid cross-fading between
dissimilar signal segments.

3.3 Lower Limit for Minimum Hop Distance

The deviation from the ideal position at the critical sample
d(ncrit) equals ±dmax. As described by Eq. 1, the subse-
quent cross-fade amounts to the signal block B′

m(whose most
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similar counterpart is searched for) lying exactly ∆d sam-
ples outside of the search window. Therefore, ∆d may be
denoted the minimum hop distance. It can be very small
if the scaling factor α is close to one. In our case of in-
creasing the play-out speed from 24fps to 25fps and a block
length of N = 20ms, the minimum hop distance becomes

∆d = 10ms · 24−25
24

≈ 0.4ms.
This is problematic as the energy of audio signals tends to

be concentrated in the low-frequency range so that any self-
similarity function will have a broad peak around zero. The
fundamental frequency of human speech typically lies be-
tween 80Hz for deep male voices and 350Hz for children [3].
Assuming a pure sine, this would be equivalent to the first
zero-crossing of the auto-correlation function lying between

1
4·350Hz

= 0.7ms and 1
4·80Hz

= 3.1ms. Now, if ∆d is smaller
than the peak, the template matching is likely to decide for
the border of the search window being closest to the ideal
point, i.e., to jump by the minimum hop distance. If, as in
our case, ∆d is even a lot smaller than the peak, the template
matching will decide for the minimum hop distance several
times in a row until the accumulated sum of ∆d surpasses the
width of the peak.

Using the terminology distinguishing two processing
phases, there will be no copying phase. The output signal
will contain a concatenation of cross-fades between signals
being spaced ∆d apart. This not only increases the compu-
tational demand dramatically, it also results in poor audio
quality due to the induced quasi-periodic artifacts.

The weighting of the similarity function described in
Sect. 3.2 can only lessen this effect but not remove it com-
pletely. Therefore, the third enhancement consists in in-
troducing a lower limit ∆d,min for the minimum hop dis-
tance, i.e., artificially increasing the minimum hop distance
if α ≈ 1. For our implementation distinguishing two pro-
cessing phases, this can easily be achieved by increasing the
maximum allowed deviation from the ideal point during the
copying phase by the corresponding difference dx, i.e.,

Nsamples =
α

α −1

(

sign(α −1)(dmax + dx)−d(n)
)

(4)

where
dx = min(0,∆d,min −|∆d|) . (5)

4. RESULTS

The first aspect of the enhancement described in Sect. 3.1
consists in separating the block-based processing into a copy-
ing and a template matching phase. This enhancement
merely reduces the computational load without affecting the
output signal. The computational savings can, however, be
significant if, as in our case, the speed change is small so that
the copied signal segments are long. As the required number
of splice points for this approach equals the effective number
of splice points in the classical WSOLA, it shall serve as a
reference in the sequel (cf. column “Sect. 3.1a” in Table 1).

On the other hand, the second aspect of moving from
a block-based to a sample-based copying of signal seg-
ments guarantees that the allowed deviation is consistently
exploited to its maximum. As can be seen in column
“Sect. 3.1b” Table 1, the reduction in the number of splice
points is most prominent for large speed changes, i.e., when
∆d in Eq. 1 is large. In this case, only few or even no com-
plete block may be copied so that the introduction of frac-
tional blocks makes a huge difference. As artifacts may only

Table 1: Comparison between required number of splice
points for. . .

(a) 18s of male speech

α Sect. 3.1a Sect. 3.1b Sect. 3.2 Sect. 3.3

0.5 896 600 566 –
0.67 834 627 557 –
0.8 675 518 457 426

0.96 653 633 404 83
1.04 718 642 406 84
1.25 929 718 632 533
1.5 1441 1168 1028 –
2 2440 1918 1713 –

(b) 27s of pop music

α Sect. 3.1a Sect. 3.1b Sect. 3.2 Sect. 3.3

0.5 1345 875 821 –
0.67 1335 1025 967 –
0.8 1227 994 914 829

0.96 1135 1090 798 157
1.04 1206 1132 705 160
1.25 1666 1338 1198 1014
1.5 2470 2099 1896 –
2 3846 3006 2806 –

arise at splice points, reducing their number improves the au-
dio quality accordingly.

As already detailed in Sect. 3.2, weighting the similar-
ity function offers a trade-off between the number of splice
points and the similarity of the cross-faded signal blocks.
As a consequence, the number of points where artifacts may
arise is reduced but the severeness of the artifacts increased.
In informal listening tests, a linear weighting function where
the similarity values at the unfavorable border of the search
window are reduced by 30% resulted in a notable reduction
in the number of splice points (cf. column “Sect. 3.2” in Ta-
ble 1) while at the same time improving the audio quality
slightly.

Finally, Table 1 also shows the results for limiting the
minimum hop distance of Sect. 3.3. The exact value of the
limit is uncritical. It should just neither be chosen too small
to be effective nor too large to avoid jumps by two periods.
Similar considerations to the comparison with the typical
range of pitch periods in Sect. 3.3 led us to limiting the min-
imum hop distance to ∆d,min = 3ms. As this lower limit is

only effective for α ∈ [ 10
13

, 10
7

] (cf. Eq. 1), the remaining cells
in column “Sect. 3.3” of Table 1 are empty. For our target ap-
plication of changing the play-out speed from 24fps to 25fps
(i.e., α ≈ 1.04), introducing this limit for the minimum hop
distance reduces the number of splice points dramatically. In
this case, the final enhancement has a huge effect on compu-
tational efficiency as well as audio quality.

5. SIGNAL-AWARE TIME-SCALING

As already detailed in the introduction, time-domain ap-
proaches work best for quasi-periodic, monophonic signals
where sequences of similar signal segments exist so that in-
dividual segments may be repeated or discarded as needed.
Due to the lack of temporal structure, noise-like and silent
signals are well suited to be time-scaled, too. On the other
hand, transients should be kept unchanged as no similar sig-
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Figure 3: Amount of sample-wise similarities needed to de-
termine the best match a) for one single point (dark gray area)
and b) within a whole region (light gray area)

nal segments can be found by nature [5].
The classical WSOLA method is, however, agnostic

of the underlying signal characteristics. Splice points are
merely determined by constraining the allowed temporal de-
viation. For this reason, it was already proposed in [1] to
determine the type of a signal segment before time-scaling
it with an adjusted scaling factor. The main disadvantages
of this approach are that signal segmentation is itself not a
trivial task and that the difference in treatment of the various
segments needs to be tuned manually.

Our approach distinguishing two processing phases
opens up a straightforward alternative where the splicing of
the signal is inherently restricted to positions where a good
match can be found. Instead of determining one critical sam-
ple ncrit where the signal is spliced and a template matching
performed, the best match may be searched for within a small
region around this critical sample. This provides the neces-
sary flexibility to cope with instances where ncrit happens to
fall in the middle of a transient so that looking for a similar
match is futile. In such a case, a sample just before or after
the transient should be chosen instead.

This procedure not only avoids both of the disadvan-
tages mentioned above, the similarity between signal seg-
ments should also be the single most important factor in de-
termining where a signal is spliced. In addition to this, the
splice points merely need to be restricted to an approximately
uniform distribution in time to avoid audible speed changes,
i.e., flutter.

Finding the best match within a whole region instead
of for one single point sounds like a dramatic increase in
computational complexity. At first sight, a one-dimensional
search is replaced by a two-dimensional one. On the other
hand, practically any similarity function between audio sig-
nals is based on averaging sample-wise similarities. As in-
dicated by the thick arrows starting at the “splice point” in
Fig. 3, moving from one sample to the next will typically
simply mean to remove one of these sample-wise similarities
while adding another one. As a consequence, the complexity
does not increase quadratically but merely linearly.

In Fig. 3, ncrit is the critical sample and nopt the corre-
sponding optimal sample. Dmax denotes the maximum al-

lowed deviation from the critical sample, i.e., the given splice
region is of length 2Dmax. Finally, shifting ncrit by Dmax cor-
responds to shifting nopt by D′

max = αDmax. As a conse-
quence, the size of the dark gray area is A = N · 2dmax and

that of the light gray area B = N · (2dmax + 2Dmax

√
1 + α2).

Therefore, the computational demand only increases by B
A

=

1 + Dmax
dmax

√
1 + α2 ≈ 1 +

√
2 (for Dmax = dmax and α ≈ 1).

6. CONCLUSIONS

A thorough analysis of the Waveform Similarity Overlap-
Add (WSOLA) method leads to the development of a new
scheme distinguishing two processing phases: a copying and
a splicing phase. This shift in point of view paves the way
for several improvements.

First, the block-based processing is switched to a sample-
based one resulting in a consistent exploitation of the maxi-
mum allowed temporal deviation. The effect of this improve-
ment is especially pronounced if the typical length of copied
signal segments is short, i.e., for large speed changes.

Second, a weighting of the similarity function is intro-
duced to achieve a bias towards long copying phases. This
allows for a trade-off between the number of points where
artifacts may occur and the severeness of these artifacts.

Third, the minimum hop distance is restricted to stay
above a lower limit to avoid quasi-period artifacts for small
speed changes. This improvement is especially important for
our target application as it not only improves the signal qual-
ity significantly but also has a dramatic effect on the compu-
tational complexity in this case.

Finally, our new scheme also allows for an alternative ap-
proach to make the time-scaling algorithm aware of the un-
derlying signal characteristics. Instead of an explicit segmen-
tation of the input signal, the signal characteristics are taken
into account implicitly during the splicing phase by maxi-
mizing the similarity function for a whole splice region. As
the computational demand stays manageable, this straight-
forward approach is intuitively appealing. Cross-fading be-
tween similar signal segments is the crucial factor in mini-
mizing audible artifacts.
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