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ABSTRACT
This paper describes a system to transcribe multitimbral
polyphonic music based on a joint multiple-F0 estimation. In
a frame level, all possible fundamental frequency (F0) can-
didates are selected. Using a competitive strategy, a spec-
tral envelope is estimated for each combination composed of
F0 candidates under assumption that a polyphonic sound can
be modeled by a sum of weighted gaussian mixture mod-
els (GMM). Since in polyphonic music the current spectral
content depends to a large extent of the immediately previ-
ous one, the winner combination is determined taking into
account the highest spectral similarity regarding to the past
music events which has been selected from a set of combi-
nations that minimize the current spectral distance between
input-GMM spectrums. Our system was tested using sev-
eral pieces of real-world music recordings from RWC Music
Database. Evaluation shows encouraging results compared
to a recent state-of-the-art method.

1. INTRODUCTION

Polyphonic music transcription is considered as a highly
complex task both from a Signal Processing viewpoint and
a Music viewpoint since it can only be addressed by the
most skilled musician. Finding the polyphony or estimat-
ing what pitches are active in a piece of music at a given time
is still being an unsolved problem. Multiple-F0 estimation is
the most important stage of a polyphonic music transcription
system whose aim is to extract a music score from an audio
signal. The minimum unit of a music score is a note-event
which can be described as a temporal sequence, defined by
an onset and offset, of the same fundamental frequency. In
consequence, multiple-F0 estimation is essential to develop
current audio applications as content-based music retrieval,
query by humming, enhancing of sound quality, musicologi-
cal analysis or audio remixing [1][2].

Many polyphonic transcription systems have been pro-
posed in the last years. Goto [3] describes a predominant-F0
estimation method called PreFEst which estimates the rela-
tive dominance of every possible F0 by using MAP (maxi-
mum a posteriori probability) estimation and considers the
F0s temporal continuity by using a multiple-agent architec-
ture. Yeh et al. [4] selects the best combination of candidates
based on three physical principles while Pertusa [5] chooses
the best one maximizing a criterion based both loudness and
spectral smoothness. The system proposed by Li [6] takes
into account a hidden Markov model (HMM) which applies
an instrument model to evaluate the likelihood of each can-
didate. Kameoka et al. [7] describes a multipitch estimator
based on a two-dimensional Bayesian approach. In [8], Bello
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Figure 1: Overview of the proposed polyphonic music tran-
scription system.

et al. considers frequency-time domain information to iden-
tify notes in polyphonic mixtures. Klapuri’s system [9] uses
an iterative cancelation mechanism based on a computational
model of the human auditory periphery. Ryynanen [10] re-
ports a combination of an acoustic model for note-events, a
silence model, and a musicological model. In [11], Cañadas
modifies harmonic decompositions in order to maximize the
spectral smoothness for those Gabor-atom amplitudes that
belong to the same harmonic structure. Specmurt technique
is detailed by Saito et al. [12] which is based on nonlinear
analysis using an inverse filtering in the log-frequency do-
main.

In this work, a system to transcribe polyphonic music
based on a joint multiple-F0 estimation is described. The
system scheme is shown in Fig. 1. The basic idea consists
of analyzing the temporal evolution of the spectral envelopes
regarding to the estimated GMM spectrums to maximize the
spectral similarity between the polyphonic input signal and
the estimated models. We rely on the fact that in polyphonic
music the current musical events depends to a large extent of
the immediately previous ones.

This paper is organized as follows. In section 2, the pro-
posed joint multiple-F0 estimation method is introduced. In
section 3, Gaussian mixture model is depicted in detail. In
section 4, our selection criterion based on temporal-spectral
similarity between polyphonic spectrums is described. In
section 5, experimental results are shown. Finally, the con-
clusions and future work are presented in section 6.
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2. PROPOSED MULTIPLE-F0 ESTIMATION
METHOD

The spectrum X(k) computed by the Short Time Fourier
Transform (STFT) of the signal x(n) is detailed in eq. (1),

X(k) =

N
2 −1

∑
d=−N

2

x(nh+d)w(d)e− j 2π
N dk (1)

, where w(d) is a N samples Hamming window, a N
4 sam-

ples time shift h and a sampling frequency f s. The size of the
windowed frame is increased, by a factor of 8, using a zero-
padding method to achieve better estimation of the new lower
spectral bins [5].

2.1 Preprocessing
A preprocessing stage must be applied to the magnitude X(k)
because often it contains a high amount of spurious peaks
which obstruct each fundamental frequency extraction. The
resultant spectrum, Xth(k), is composed of significant spec-
tral harmonic peaks which describes most of specific spec-
tral characteristics of harmonic instruments which belong to.
Our peak-picking algorithm is based on adaptive-per-frame
threshold Tu which selects the most prominent logarithmi-
cally weighting peaks P̄m from X(k). This thresholding,
based on empirical tests using the University of Iowa Mu-
sical Instrument Samples [13], presents a good performance
discriminating harmonic and noise peaks. The value β (see.
eq. 2) is related to noise and weak-harmonics tolerance level.

Tu = β log2 P̄m (2)

Xth(k) =
{
|X(k)| |X(k)| ≥ Tu
0 |X(k)|< Tu

(3)

2.2 Selection of F0 candidates
Each F0 candidate represents a possible active pitch in the
analyzed frame. A F0 candidate is whatever frequency bin k
from Xth(k) whose frequency is located from C2 (65.4 Hz or
MIDI number 36) to B6 (1976.0 Hz or MIDI number 95) in
a well-tempered music scale.

This system cannot detect a note-event with missing fun-
damental because does not exist its F0 candidate. We do not
use information from musical instrument modeling to esti-
mate octave note-events [14]. In our system, an octave 2F0
candidate can exist only if the amplitude of the octave funda-
mental is higher than 2 times the amplitude of the non-octave
F0 candidate.

2.3 Construction of spectral harmonic patterns
For each F0 candidate, a spectral harmonic pattern is es-
timated in the log-frequency domain. This log-domain
exhibits the following advantage respect to linear-domain
which minimizes the loss of harmonics due that spectral lo-
cation of these ones regarding to its fundamental frequency
is constant [12]. As consequence, a more accurate harmonic
pattern construction is achieved to handle a major number of
non-overlapped partials to resolve the overlapped partials.

HO
F0

is defined as the harmonic pattern of linear fun-
damental frequency F0 and order O. The partial nth, rep-
resented by the frequency bin kn

F0
, is found searching the

nearest frequency bin from non-inharmonicity harmonic
within a spectral range Un

F0
= [log10F0+log10n-log102

1
24 ,

log10F0+log10n+log102
1
24 ], that is, around± 1

2 semitone from
the nth non-inharmonicity harmonic belonging to the funda-
mental frequency F0. The partial nth is considered as non-
existing partial if no frequency bin is found in Un

F0
limits.

Our system establishes an upper frequency FH to group
partials belonging to a harmonic pattern. All spectral content
located above FH is discarded because the magnitude of these
partials is considered as negligible information.

2.4 Search space exploration
The search space ψ , composed of all possible F0 candidates
combinations Cψ , increases exponentially when a new F0
candidate is added. The number of combinations can be seen
as a Combinatorics without repetition problem where its size
SCψ

= Σ
Pmax
n=1Cn

m=Σ
Pmax
n=1

(m
n

)
=Σ

Pmax
n=1

m!
n!(m−n)! , being m the total

number of candidates, n the number of simultaneous candi-
dates at a time and Pmax the maximum polyphony considered
in the analyzed signal. In order to reduce Cψ , only the most
E prominent harmonic patterns are considered (Pmax=E).

3. GAUSSIAN MIXTURE MODEL ESTIMATION

We assume that a polyphonic magnitude spectrum is addi-
tive, in other words, can be seen as a sum of GMM spec-
trums. GMMO

nt (k) is a GMM model, related to nth combina-
tion of F0 candidates within the search space ψ at the frame
t using O normal gaussian functions (see eq. 4), weighted
by amplitudes Ai

F0
, centered in frequencies determined by

the spectral pattern HO
F0

and a full width at half maximum

FWHM equal to 1.5 f s
N < 4 f s

N in order to capture most of the
energy belonging to a harmonic peak and avoid interference
out of the window spectral main-lobe. The weights Ai

F0
(see

eq. 5) belonging to a GMM model are composed of non-
overlapped A j

F0NOV
and/or overlapped Am

F0OV
partial ampli-

tudes.

GMMO
nt (k) =

O

∑
i=1

Ai
F0

e(
−2(k−ki

F0
)Ln(2)

FWHM )2
(4)

Ai
F0

= A j
F0NOV

⋃
Am

F0OV
, i = j∪m (5)

Since non-overlapped partials are not interfered by other
F0 candidates, their amplitudes A j

F0NOV
are considered as

credible information. From this information, we estimate
overlapped partial amplitudes Am

F0OV
by means of linear inter-

polation using the nearest neighboring non-overlapped par-
tials, as in [5]. Fig. 2 shows the multitimbral magnitude spec-
trum of a frame composed of five instrument sounds from
[13] (F01 Tenor Trombone, F02 Bassoon, F03 Flute, F04 Bb
Clarinet and F05 Eb Clarinet), and F0 candidates combina-
tions using GMM spectrums estimated by our system. It can
be observed that a correct multiple-F0 estimation increases
the spectral similarity between input-GMM modeling.

4. TEMPORAL-SPECTRAL SIMILARITY

Our assumption is that a current polyphonic music note-
event depends to a large extent of the previous one. Tak-

11



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

Frequency (Hz)

M
ag

ni
tu

de

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

Frequency (Hz)

M
ag

ni
tu

de

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

Frequency (Hz)

M
ag

ni
tu

de

Figure 2: Magnitude spectrum X(k) (dashed line) of an
analyzed frame and GMM combinations (solid line) esti-
mated by our system. The input spectrum X(k) is composed
of five different instrument sounds (F0MIDI57

1 =220.0 Hz,
F0MIDI63

2 =311.1 Hz, F0MIDI64
3 =329.6 Hz, F0MIDI78

4 =740.0
Hz and F0MIDI84

5 =1047.0 Hz). In top plot, GMM composed
of one harmonic sound F01. In middle plot, GMM composed
of two harmonic sounds F01 + F04. In bottom plot, GMM
composed of four harmonic sounds F01 + F02 + F04 + F05.

ing into account Cψ combinations of spectrums GMMO
nt (k),

n ∈ [1, SCψ
], instead of using spectral features of harmonic

sounds as occurs in [4][5], our system attempts to replicate
the input polyphonic signal. Therefore, we consider that the
most likely combination cwinner will exhibit the highest spec-
tral similarity regarding to immediately past music event.
This combination cwinner is selected from a subset Ccandidates,
where Ccandidates ⊂Cψ , which minimizes the current spectral
distance related to the current input spectrum X(k). Next, our
selection criterion is detailed.

4.1 First stage. Similarity in spectral domain
Considering the temporal frame t, our system calculates the
spectral Euclidean distance DCnt (see eq. 6) for each combi-
nation n. This spectral similarity attempts to explain most of
the harmonic peaks present in the analyzed signal.

DCnt = ∑
k

(|X(k)|−GMMO
nt (k))

2, nt ∈Cψ (6)

4.2 Second stage. Similarity in temporal domain
Spectral information is not sufficient to perform an accurate
multiple-F0 estimation since it is common that part of a note-
event often is missed because of several reasons such as high
polyphony, harmonic relations between overlapped partials
or low energy notes-events. To overcome this problem, we
assume that in polyphonic music a note-event depends to a
large extent of the immediately previous one. In this way,
we select a subset of combinations (Ccandidates) which mini-
mize the spectral similarity regarding to the current analyzed
frame. A temporal window of ϒ previous frames is consid-
ered in order to add temporal information. Temporal infor-
mation allows to compare similarities between the last win-

ner combinations and the Ccandidates combinations estimated
in the current frame (see eq. 7).

DPϒ
nt = ∏

ϒ

∑
k

(GMMO
nt (k)−GMMO

cwinnert−ϒ

(k))2 (7)

where nt∈Ccandidates

4.3 Third stage. Combination of temporal-spectral sim-
ilarity
The combination cwinner (eq. 9) is determined maximizing
the temporal-spectral similarities, in other words, minimiz-
ing the distance DT ϒ

nt .

DT ϒ
nt = DCnt DPϒ

nt (8)

cwinner = arg minnt∈CcandidatesDT ϒ
nt (9)

5. EXPERIMENTAL RESULTS

Our system was tested using 5 excerpts of real-world monau-
ral polyphonic music signals from RWC Music Database
[15]. These excerpts represents 36% of evaluation test used
in [12] which were chosen randomly. For each excerpt, ap-
proximately the first 20 seconds were selected for the anal-
ysis. The parameters used by our system are shown in Ta-
ble 1. In order to minimize spurious events, we only con-
sider events which present a significant musical time duration
t>Tmin.

f s (Hz) 44100
N (samples) 4096 ≈ (92.9 ms)
h (samples) 1024 ≈ (23.2 ms)
O (partials) 12
FH (Hz) 5000
E (candidates) 5
FWHM (Hz) 16
Ccandidates 5
ϒ 1
Tmin(ms) 100

Table 1: Parameters of the proposed system

The MIDI files, from RWC Music Database, used for
the evaluation test have been manually corrected because
present temporal inaccuracies regarding to onsets and offsets
of the reference note-events which drastically decrease the
estimated accuracy.

Accuracy measure was calculated in a frame level match-
ing reference and transcribed events using the metrics pro-
posed in [12]. In Table 2, we only present one accuracy mea-
sure because this one is the unique measure provided in [12].
In order to provide more helpful information about our sys-
tem performance, additional error measures (total error Etot ,
substitution error Esub, miss error Emiss and false alarm error
E f a) using the metrics proposed in [2] are depicted in Table
3. These last measures are more suitable for polyphonic mu-
sic transcription because provide information about possible
weaknesses of the evaluated system.

The results, in percentages (%), of comparing our system
and a recent state-of-the-art system [12] are shown in Table
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(a) RWC-MDB-J-2001 No.7
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(b) RWC-MDB-J-2001 No.9

Figure 3: Polyphonic transcription of the first 20 seconds of two excerpts from RWC Music Database. x-axis indicates time in
seconds. y-axis indicates MIDI events from MIDI number 36 to MIDI number 95. Each white and gray row represents a white
and black key of a standard piano. Reference note-events (black rectangles) and transcribed note-events (white rectangles) are
displayed.

RWC identifier Instruments Proposed Specmurt [12]

RWC-MDB-J-2001 No.7 G 69.6% 68.1%

RWC-MDB-J-2001 No.9 G 68.8% 77.5%
RWC-MDB-C-2001 No.35 P 61.1% 63.6%
RWC-MDB-J-2001 No.12 F + P 38.3% 44.9%
RWC-MDB-C-2001 No.12 F + VI + VO + CE 41.9% 48.9%

Average result 55.9% 60.6%

Table 2: Accuracy measure based on the metrics proposed in
[12]. Specmurt analysis uses a β=0.2. Instruments: Guitar
(G), Piano (P), Flute (F), Violin (VI), Viola (VO), Cello (CE)

Proposed

RWC identifier Acc Etot Esub Emiss E f a

RWC-MDB-J-2001 No.7 69.6% 30.5% 8.2% 17.3% 5.0%

RWC-MDB-J-2001 No.9 68.8% 31.2% 6.3% 14.1% 10.8%

RWC-MDB-C-2001 No.35 61.1% 38.8% 8.4% 23.0% 7.4%

RWC-MDB-J-2001 No.12 38.3% 61.7% 16.2% 44.4% 1.1%

RWC-MDB-C-2001 No.12 41.9% 58.0% 15.2% 3.0% 39.8%

Table 3: Accuracy and error measures based on the metrics
proposed in [2] regarding to the results shown in Table 2.

2. Our proposed system presents a promising performance
since achieves an average accuracy of 55.9% versus 60.6%
by Saito’s system [12]. Moreover, our system is able to tran-
scribe multitimbral polyphonic music because exhibits a ro-
bust behavior independently of the spectral characteristics of
the harmonic instruments which compose the mixture signal.
Table 3 suggests that most of the errors are due to miss note-
events. Fig. 3(a) and Fig. 3(b) indicate that most of reference
note-events are correctly estimated while octave note-events
are missed.

6. CONCLUSIONS AND FUTURE WORK

This paper presents a system to transcribe polyphonic mu-
sic based on a joint multiple-F0 estimation. The main idea
consists of combining temporal and spectral similarities of
GMM spectrums in order to replicate the polyphonic input
signal under assumption that a current musical event depends
to a large extent of the immediately previous one.

Our system shows encouraging results achieving an av-
erage accuracy of 55.9% versus 60.6% of a recent state-of-
the-art system [12]. Moreover, the proposed system is able
to transcribe multitimbral polyphonic music because exhibits
a robust behavior independently of the harmonic instruments
which compose the mixture signal.

Our future work will be focused on a more accurate over-
lapped partials estimation to minimize misses due to octave
events.
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