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ABSTRACT
This paper proposes an algorithmic and memory complexity re-
duction of the well-know crosstalk-resistant adaptive noise can-
celler (CTRANC). First, we show that the decorrelation approach
is not accurate with the feedback structure. Consequently, a mini-
mum based energy criterion approach more suitable with the cross-
coupled structure, like the one proposed by Zinser et al., is pro-
posed. Indeed, by using an additional stationarity assumption about
the filter coefficients, we show that recursive gradient formulae
could be rewritten as convolution operation. Simulation results
show that the proposed algorithm is as efficient as the one proposed
by Zinser despite its significantly lower complexity.

1. INTRODUCTION

Extracting a desired speech signal from noisy speech corrupted by
additive noise is an important problem in digital voice communica-
tion systems. To deal with, adaptive noise cancellation represents
one such potential effective technique for noise reduction [1]. The
adaptive noise canceller (ANC) requires two inputs: i) a primary
signal consisting of the desired signal (target) corrupted by addi-
tive noise (jammer) and ii) a reference signal that is correlated with
the jammer and uncorrelated with the target. The reference signal
is processed by an adaptive filter to generate a replica of the noise
component in the primary input. However, to apply the ANC effec-
tively, the reference noise picked up by the reference sensor must
be highly correlated with the noise components in the primary sig-
nal. This condition requires a close spacing between the primary
and the reference sensors. Unfortunately, it is also critical to avoid
the speech signal components from the signal source being present
in the reference sensor signal. This signal leakage (crosstalk) into
the noise reference quickly results in signal distortion, slower con-
vergence and poor noise cancellation.

For the crosstalk problem, many crosstalk-resistant noise can-
cellers [2]-[6] have been proposed to improve the ANC’s perfor-
mance. In this work we focus on the feedback structure (CTRANC)
[7] described on Figure 1, which uses a second adaptive filter in
estimating the crosstalk signal. This filter structure based on joint
energy minimization of both outputs, allows a closer location of
the sensors. A similar dual-channel signal separation by decorrela-
tion was developed in [8] and further analyzed in [9]. According
to the authors, energy minimization and output decorrelation could
be considered as equivalent, which is intuitively true if we apply
to the feedback structure the standard stochastic gradient algorithm
independently on each adaptive filter. In this case, the time update
equations of W1 and W2 (see Figure 1) are the same for both meth-
ods. Recently, to cope with this problem, we have proposed [10] a
new adaptive filter structure and its learning algorithm that enable
feedback implementation from a standard stochastic gradient algo-
rithm point of view.

For these reasons, we propose in this paper to deeply analyze
the optimal algorithm proposed by Zinser and Mirchandani [7, 11]
that matches exactly the feedback structure for an energy minimiza-
tion criterion. The remainder of the paper is organized as follows.
Section 2 shows the inefficiency of the SAD algorithm [9] in the
feedback implementation. Section 3 presents an overview of the

different algorithms based on the minimization of the output ener-
gies in the backward structure. Section 4 gives the derivation of the
proposed algorithm to reduce complexity. Section 5 describes the
experimental results and we conclude and outline our future work
in Section 6.

Figure 1: Mixing model and crosstalk-resistant adaptive noise can-
celler (CTRANC).

2. ENERGY MINIMIZATION VERSUS
DECORRELATION

The most widely used approach to the two-channel signal enhance-
ment or separation problem is described on Figure 1 where H12 and
H21 represent the cross-coupling effects between the channels. In a
more general formulation, the direct couplings will not be identities
and then the solutions will be indeterminate up to a shaping filter.
Although this case is somewhat restrictive, it represents an impor-
tant and interesting problem of noise reduction. The main objective
is to find a model, y1,2(n), of the original source signals s1,2(n). For
this, it is sufficient to estimate separation filters Wi that removes the
crosstalk introduced by the mixing process. The transfer function
of this linear time invariant (LTI) system will be noted

H(z) =
(

1 H12(z)
H21(z) 1

)
.

Hence, the model of the observed signals is written:

x1(n) = s1(n)+h12(n)∗ s2(n)
x2(n) = h21(n)∗ s1(n)+ s2(n).

Subsequently, it is assumed the following assumptions:

• H1: the filters H12(z) and H21(z) are causal,
• H2: the filter H(z) is minimum phase i.e its inverse is stable;

this can be written : 1−H12(z)H21(z) 6= 0 ∀ z,
• H3: the sources s1(n) and s2(n) are stationary and statistically

independent or at least decorrelated (the case of non-stationary
signals will be addressed in Section 5).

A necessary condition for correct implementation is that one of
the zeroth-order coefficients of the adaptive and generating filters
equals zero

w1(0) = h21(0) = 0 or w2(0) = h12(0) = 0.
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2.1 Minimization of the mean square errors
When a minimum energy criterion is considered to obtain an adap-
tive algorithm dedicated to produce optimal filter coefficients, the
most commonly used performance criterion is the mean-squared er-
ror (MSE) defined as

ξ = E
[
e(n)2

]
= E

[
(d(n)−wT(n)x(n))2

]
(1)

where d(n) stands for a primary signal, x(n) a reference signal and
w(n) filter coefficients. Let us apply this process to the feedback
structure of Figure 1 as described in [7]. Let s1(n) and s2(n) be
real, discrete-time, random processes. The error signals at time n
are given by

y1(n) = x1(n)−w1
T (n)Y2(n) (2)

y2(n) = x2(n)−w2
T (n)Y1(n) (3)

where T denotes the transpose operation, and

w1
T (n) =

[
w0

1(n) w1
1(n) w2

1(n) . . .wN
1 (n)

]
w2

T (n) =
[
w0

2(n) w1
2(n) w2

2(n) . . .wN
2 (n)

]
are the time-varying filter weights for the Nth-order filters W1 and
W2, and

Y1
T (n) = [y1(n) y1(n−1) . . .y1(n−N)]

Y2
T (n) = [y2(n) y2(n−1) . . .y2(n−N)] .

Thus, the mean square error on the primary channel associated with
y1 is

ξ1 = E
[
y2

1

]
= E

[
(x1−w1

TY2)2
]

where time index n is omitted for convenience and Y2 denotes the
N taps-input vector of W1. Differentiating this function with respect
to w1 leads to

2 ·E
[
(x1−w1

TY2)(−Y2−w1
T

∇w1Y2)
]
. (4)

Assuming that ∇w1Y2 = 0, which is theoretically wrong accord-
ing to the cross-coupled structure of Figure 1 and to the output equa-
tions (2) and (3), we get

2 ·E
[
(x1−w1

TY2)(−Y2)
]

=−2 ·E[y1Y2] . (5)

This solution yields to the symmetric adaptive decorrelation (SAD)
algorithm proposed by Van Gerven in [9], which corresponds to
an intuitive stochastic gradient approach. On the contrary, if
∇w1Y2 6= 0, obvious solution according to the output equations,
then (4) equals to

−2 ·E
[
y1(Y2 +w1

T
∇w1Y2)

]
(6)

which corresponds to the one proposed by Zinser and Mirchandani
in [7, 11] and is thus more accurate.

2.2 Experimental results
These two different approaches given in equations (5) and (6) yield
to the following coefficients update recursion respectively:

w1(n+1) = w1(n)+2µsadE[y1Y2] (a)
w1(n+1) = w1(n)+2µgradE

[
y1(Y2 +w1

T∇w1Y2)
]
. (b)

However and as it was explained before, applying SAD algorithm
to the feedback structure by replacing the expected values by their
stochastic estimates in (a) does not lead to the optimal solution. This
is shown on Figure 2, where the convergence of the two adaptive
filters W1 and W2 is plotted for a very simple case where the mixing
filters and the optimal solutions are reduced to single tap filters, i.e.
H21(z) = W2(z) = 0.8 and H12(z) = W1(z) =−0.8z−1. In addition,
the results for a standard deterministic gradient algorithm (b) (cf.
Algorithm B in 3.1) is also plotted. Sources are two Uniform zero-
mean white noises with power σ2

s1
= 0.2 and σ2

s2
= 0.1. According

to these results, we show that the SAD algorithm is not accurate
for the feedback implementation due to the lack of higher order
components in the gradient formula.
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Figure 2: Coefficients of the two adaptive filters for Uniform zero-
mean white noises. Step sizes are µgrad = µsad = 0.005.

3. ALGORITHMS FOR ENERGY MINIMIZATION

3.1 Optimal filters
3.1.1 One approach, one algorithm

Different approaches to derive optimal filter coefficients w1 and
w2 by using mean-square error minimization can be found. The
main difference between these approaches lies in the way than ξ1
and ξ2 are minimized. According to these possible methods, we
can list three algorithms.

Algorithm A =
{

w1(n+1) = w1(n)−µ1∇w1ξ1
w2(n+1) = w2(n)−µ2∇w2ξ2

Algorithm B =
{

w1(n+1) = w1(n)−µ1∇w1ξ1
w2(n+1) = w2(n)−µ2∇w2ξ1

Algorithm C =
{

w1(n+1) = w1(n)−µ1∇w1ξ2
w2(n+1) = w2(n)−µ2∇w2ξ2

Algorithm A was described more precisely by Mirchandani et al. in
[11]. Let us consider s2 as a noise source. Obviously, Algorithm B
focuses essentially on the observation of the noise path h12. Such
behavior corresponds to an adaptive noise canceller scheme. Note
that the inverse statement also holds for Algorithm C. In practice,
this difference stands in the relative position of source and noise. As
explained in [12], the causality of one of the generating FIR filter,
associated to the source position regarding the sensors, is strictly
related to the algorithm convergence.

3.1.2 Simulation results

Behavior of Algorithms A and B is given in Figures 3 and
4 where the system mismatch of W1 and W2 defined as

∆W (n) = 10log10

[
∑

N
j=0 (w j

1,2(n)−h j(n))2

∑
N
j=0 h2

j (n)

]
are provided. All results

were averaged over 30 trials. The transfer functions used in
these simulations and satisfying H2 correspond to H12(z) = 0.5 +
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Figure 3: System mismatch of W1 (left) and W2 (right) in Uniform
zero-mean white noises. Step sizes are µA = µB = 0.0001.

0.2z−1 − 0.1z−2 − 0.2z−3 and H21(z) = −0.439z−1 + 0.366z−3 −
0.110z−4 and the sources’power equal to σ2

s1
= 1 and σ2

s2
= 1. We

observe that correct and fast simultaneous convergence of the two
adaptive filters is only found for Algorithm A (CTRANC). In con-
trast to the results of Figure 2, the convergence speed of Algorithm B
is now disturbed by the stochastic gradient approximation of equa-
tion 5.

3.2 Complexity assessment
3.2.1 Memory cost

In the previous section, we have shown through simulations the out-
performance of Algorithm A. The analytic demonstration of this ef-
fectiveness will be detailed in this section. Indeed, the CTRANC
superiority is mainly due to the accuracy of the gradient equations
∇w1y1(n) and ∇w2y2(n). In fact, each gradient is a function of
the two adaptive filter taps w1(k) and w2(k) and moreover it de-
pends on the time index n which means that the last 2N(N + 1)
gradient values have to be stored as well as the last 2(N +1)2 coef-
ficients for the two adaptive filters. Recursive formulae for the two
gradients are

∇w1y1(n)=C0(n)

[
2N

∑
k=1

Ck(n)∇k
w1

y1(n− k)−Y2(n)

]
(7)

∇w2y2(n)=D0(n)

[
2N

∑
k=1

Dk(n)∇k
w2

y2(n− k)−Y1(n)

]
(8)

where the superscript k on the gradient operator implies differen-
tiation with respect to weights evaluated at time (n− k). Initially,
analytic solution does not lead directly to these expressions, addi-
tional assumption is necessary to form these explicit recurrence re-
lations. This assumption relies on the orthogonal principle and the
slow time variations of the signals.

C0(n) = D0(n) =
1

1−w0
1(n)w0

2(n)

with

Ci(n) =

{
∑

i
j=0 w j

1(n)wi− j
2 (n− j) 1 ≤ i ≤ N

∑
N
j=i−N w j

1(n)wi− j
2 (n− j) N +1 ≤ i ≤ 2N

Di(n) =

{
∑

i
j=0 w j

2(n)wi− j
1 (n− j) 1 ≤ i ≤ N

∑
N
j=i−N w j

2(n)wi− j
1 (n− j) N +1 ≤ i ≤ 2N

In contrast with SAD algorithm or misused LMS algorithm on
each channel independently, all terms containing products of the
type w1(m)w2(n) are now considered. Thus, the algorithm de-
scribed by (7) and (8) takes into account the intrinsic cross-coupling
effect of the feedback structure.
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Figure 4: System mismatch of W1 (left) and W2 (right) in Gaussian
zero-mean white noises. Step sizes are µA = µB = 0.0001.

Scalar gradient formula Multiplications Additions
∂yk(n)
∂wi

k(n) k = 1,2 2N2 +4N +2 N2 +2N +1

Table 1: Algorithmic complexity in terms of number of real multi-
plications and real additions per sample instant.

4. LOW COMPLEXITY ALGORITHM FOR FEEDBACK
STRUCTURE

4.1 Algorithmic simplifications

4.1.1 Concept

In the previous section, we have shown that the algorithm proposed
by Mirchandani et al. is the most efficient. However, its complexity
often led researchers to use other algorithms such as the SAD
algorithm. In this section, we propose to reduce this complexity by
assuming the following hypothesis:

• H4: the filter coefficients are slowly time varying which
implies that wi

1,2(n)≈ wi
1,2(n− k).

Such hypothesis enables us to rewrite recursive formulae (7) and (8)
as a convolution operation and thus reduce the complexity as it will
be shown in the following section.

4.1.2 Derivation of the new algorithm

Consider the signal estimates given in equations (2) and (3). Ex-
panding the one concerning y1, we obtain

y1(n) = x1(n)−
N

∑
k=0

wk
1(n)x2(n− k)

+
N

∑
s=0

ws
1(n)

N

∑
t=0

wt
2(n− s)y1(n− s− t). (9)

Taking the gradient of this last equation, we get for each component
in the resulting vector ∇w1y1(n)

∂y1(n)
∂wl

1(n)
= −y2(n− l)+w0

1(n)w0
2(n)

∂y1(n)
∂wl

1(n)

+ w0
1(n)

N

∑
k=1

wk
2(n)

∂y1(n− k)
∂wl

1(n)

+
N

∑
s=1

ws
1(n)

N

∑
t=0

wt
2(n− s)

∂y1(n− s− t)
∂wl

1(n)
. (10)

The algorithmic complexity regarding gradient component calcula-
tion for each gradient vector in the CTRANC algorithm is given in
Table 1. After factorization of the last two terms in (10) with respect
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to the partial derivative ∂y1(n−i)
∂wl

1(n) , these one may be written as

. . . w0
1(n)

N

∑
k=1

wk
2(n)

∂y1(n− k)
∂wl

1(n)

+
N

∑
s=1

ws
1(n)

N

∑
t=0

wt
2(n− s)

∂y1(n− s− t)
∂wl

1(n)

=


∑

i
j=0 w j

1(n)wi− j
2 (n− j) ∂y1(n−i)

∂wl
1(n) 1 ≤ i ≤ N

∑
N
j=i−N w j

1(n)wi− j
2 (n− j) ∂y1(n−i)

∂wl
1(n) N +1 ≤ i ≤ 2N

which corresponds to Ci(n) · ∂y1(n−i)
∂wl

1(n) . Applying now the hypothesis

H4 to Ci(n) without omitting the first term for i = 0, it immediately
follows that:

N

∑
i=0

N

∑
j=0

wi
1(n)w j

2(n− i)
H4≡

N

∑
k=0

wk
1(n)wn−k

2 (n)

= w1(n)∗w2(n) = G(n) (11)

where ∗ denotes the convolution operator.
Accordingly, the new gradients estimates become

∇w1y1(n)=C0(n)

[
2N

∑
i=1

Gi(n) ·∇w1y1(n− i)−Y2(n)

]
(12)

∇w2y2(n)=D0(n)

[
2N

∑
i=1

Gi(n) ·∇w2y2(n− i)−Y1(n)

]
. (13)

Analysis of the structure of the two gradient vectors (12) and (13)
show that they exhibit a quasi-circularity property. By exploiting
this property, it can be possible to reduce the computational com-
plexity of (12) and (13) by computing only the first term of each
gradient vector at each iteration. The two gradient vectors are then
obtained by using a circular buffer mechanism in order to reintro-
duce this quasi-circularity property. Consequently, the complex-
ity of the gradient vector computation is significantly reduced (at
the expense of a small approximation in the gradients values). The
overall memory required to store the gradient information between
two consecutive time instant is also reduced since only 2N points
have to be stored for each gradient.

The above assumption may be applied also to the second esti-
mated signal y2 given by (3).

4.1.3 Memory cost

Thanks to our assumption, each gradient is a function of the last
adaptive filters estimates w1(n) and w2(n) and gradient vectors
∇w1y1(n) and ∇w2y2(n) which implies to store the last 2N gra-
dient values as well as the last 2(N + 1) coefficients for the two
adaptive filters. Consequently, we reduce drastically the memory
load in comparison with previous expressions given in (7) and (8).

4.1.4 Algorithmic complexity

The algorithmic complexity regarding gradient component compu-
tation for the presented method is given in the following Table 2.
In comparison with previous results associated with CTRANC al-

Scalar gradient formula Multiplications Additions
∂yk(n)
∂wi

k(n) k = 1,2 N2 +3N +2 1
2 N2 + 3

2 N +1

Table 2: Algorithmic complexity in terms of number of real multi-
plications and real additions per sample instant.

gorithm, we can see that N2 +N multiplications and 1
2 N2 + 1

2 N ad-
ditions have been saved per sample instant for each evaluation of
gradient components.
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Figure 6: System mismatch of W1 (left) and W2 (right) in Uniform
zero-mean white noises. Step sizes are µA = µB = 0.0001.

4.1.5 Summary

To easily compare the complexity gain, we compute the total mem-
ory cost (M.C.) obtained by adding all the necessary components
for each studied algorithm. The same procedure is performed for
the algorithmic complexity (A.C.) by summing respectively the re-
quired multiplications and additions given in Tables 1-2. Results
are given in Figure 5.

4.2 Experimental results

As shown in Figures 6 and 7, the additional hypothesis H4 is valid
since the same performance in terms of system mismatch are ob-
tained. In other words, we have proved the ability of our algorithm
to perform as efficiently as the original algorithm [11] but with a
significantly lower complexity.
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Figure 7: System mismatch of W1 (left) and W2 (right) in Gaussian
zero-mean white noises. Step sizes are µA = µB = 0.0001.
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5. APPLICATION TO SPEECH ENHANCEMENT

5.1 Experimentation procedure
To further illustrate the practical behavior of the proposed algo-
rithm, we now consider an application in speech signal processing.
The input SNRs are computed using the ITU-T recommendation
P.56 speech voltmeter (SV56). Office noise was used as a noise
source, and clean male voice as a signal source with a sample rate of
8 kHz. Synthetic noise path (H12) and crosstalk path (H21) impulse
responses are used. The noise component is generated by convolu-
tion of the noise source with the noise path, and then added to the
speech signal to create a noise-contaminated signal. The reference
signal is generated by adding the noise to the crosstalk generated by
convolution of the speech signal and the crosstalk path. The length
of the adaptive and generating filters is set to L = 64 in order to
avoid the modeling problem. In addition, due to the difficulty to set
correctly the normalization procedures for the step sizes, we use an
ideal vocal activity detection in the adaptation procedure in order to
focus our study to the impact of the recursion and which is given
here after.

5.2 Discussion
As in [11], the effect of the memory length (i.e the order 2N of the
summation in (7), (8), (12) and (13)) on the convergence must be
taken into account. According to the authors, there is a potential
for instability when the poles of the recursion lie outside the unit
circle. This problem has been solved by restricting the memory of
the recursion, i.e. by setting the order of the summation to 2N = 20.
In case of non-stationary signal, we could imagine that some insta-
bility may occur due to the hypothesis H4. Indeed, assuming that
the filter coefficients are slowly time varying could be in contradic-
tion with the supposed speech signal stationarity period, especially
when the memory of the recursion is longer than this one. However,
under the filters order and the sampling frequency used in our sim-
ulations, we found that any observed instabilities were exclusively
related to the memory length, not to our hypothesis. Finally, for
all considered input SNRs, the proposed method provides the same
performance as the one of Algorithm A (but with a lower memory
and computational cost) in terms of cepstral distance.

6. CONCLUSION

After having emphasized the inaccuracy of the SAD algorithm with
feedback structure, an overview of possible methods dedicated to
the estimation of the optimal filters and based on minimum energy
criterion has been given. Among these different approaches, the one
proposed by Zinser has been pointed out as the most efficient but the
most complex too. In this paper, the complexity of the original al-
gorithm [11] has been reduced through an additional assumption,
that enables us to rewrite recursive formula as a convolution oper-
ation. Doing so, the memory load is also reduced without a loss
in performance. For further improvement, future work will be ori-
ented towards the implementation of the algorithm in the frequency
domain to take advantage of the capacity of the Fourier transform
to implement a convolution operation as a simple vector product.
Similarly, conditions for stability have to be analyzed.
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