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ABSTRACT

In this work we propose a novel unsupervised algorithm
for designing multispectral filters that are tuned for local
anomaly detection algorithms. This problem is formulated
as a problem of channel reduction in hyperspectral images,
which is performed by replacing subsets of adjacent spectral
bands by their means. An optimal partition of hyperspec-
tral bands is obtained by minimizing the Maximum of Maha-
lanobis Norms (MXMN) of errors, obtained due to misrep-
resentation of hyperspectral bands by constants. By mini-
mizing the MXMN of errors, one reduces the anomaly con-
tribution to the errors, which allows to retain more anomaly-
related information in the reduced channels. We demonstrate
that the proposed algorithm produces better results, in terms
of the Receiver Operation Characteristic (ROC) curve of a
benchmark anomaly detection algorithm (RX) - applied after
the dimensionality reduction, as compared to two other di-
mensionality reduction techniques, including Principal Com-
ponent Analysis (PCA).

1. INTRODUCTION

In this work we propose a novel unsupervised technique for
designing multispectral filters that facilitates an improved
performance of local anomaly detection algorithms. The pro-
posed approach is based on processing a sample hyperspec-
tral image of a typical scene that is likely to be faced by
anomaly detection algorithms. Here, the problem of mul-
tispectral filters design is formulated as a problem of re-
dundancy reduction in hyperspectral channels, which is per-
formed by replacing adjacent spectral bands by their means.
This is a real-world redundancy reduction problem that re-
quires preservation of anomalies.

The wealth of spectral information in hyperspectral im-
ages provides plentiful amount of data for classification
tasks. One such task relates to anomaly detection, in which
hyperspectral pixels have to be classified into either back-
ground material spectra class or anomaly material spectra
class. Generally, anomalies are defined with reference to a
model of the background, i.e., the anomaly pixels are those
that are not well-described by the background model. Back-
ground models are developed using reference data from ei-
ther a local neighborhood of the test pixel or a large (global)
region of the image. Both approaches have their merits and
drawbacks [1].

A common problem of local anomaly detection algo-
rithms is so-called Hughes phenomenon [2], according to
which the performance of anomaly detection algorithms sig-
nificantly deteriorates when the number of pixels is severely
limited for an accurate learning of the local background mod-

els. In order to alleviate the effect of this phenomenon, one
has to reduce the number of hyperspectral bands, since the
complexity of background models is proportional to the hy-
perspectral data dimensionality.

Linear Dimensionality Reduction (LDR) is a widely used
preprocessing technique for the alleviation of Hughes phe-
nomenon in classification problems [3], [4]. LDR also allows
to eliminate redundancies occurring due to high correlations
among adjacent bands. Of particular interest are techniques
that reduce the dimensionality of hyperspectral data by re-
placing subsets of adjacent bands by their means, since the
resulting features can be physically interpreted as responses
of multispectral filters, which may be tuned to application-
dependent needs. Thus, the authors of [5] propose top-down
and bottom-up algorithms designed to find subsets of bands
yielding high Fisher discrimination among classes. In [3] one
can find an approach that groups the channels into a partition
that increases interclass distance computed on a training set.
Another approach, based on dynamic programming, is pro-
posed in [4]. It minimizes the mean squared error of repre-
senting all hyperspectral pixels in the image by piece-wise
constant spectral segments.

Unfortunately, little attention has been drawn in the lit-
erature to channel reduction techniques designed to improve
the performance of local anomaly detection algorithms. This
problem is of high importance in applications that seek a
technology to construct high performance multispectral fil-
ters for anomaly detection. An appealing approach for this
purpose is proposed in [4], denoted as Fast Hyperspectral
Feature Reduction (FFR). It looks for a best piece-wise con-
stant representation of the hypersectral data and does not as-
sume any prior knowledge about the data. However, FFR
is not well-tailored to data that contains anomalies, since it
uses the mean squared error based (ℓ2-norm based) criterion.
As discussed in [6], this criterion is known to be insensitive
to anomaly contributions and, as a result, may lead to a poor
representation of anomalies. Moreover, the mean-squared er-
ror based criterion is biased to represent better background
contributions, since they are stronger than the contributions
of anomalies in the ℓ2-sense. This may come in contradiction
to the goal of anomaly detection-oriented channel reduction
that should be designed to retain anomaly manifestations in
the data.

In this work we propose a novel approach based on the
Mahalanobis norm [7] which, unlike the ℓ2-norm, is not de-
pendent on the scale and/or abundance of measurements.
Mahalanobis norm is widely used in anomaly detection-
related literature [8]. It is also known as a good measure
to assess multivariate normality [7], [9]. Both these virtues
make the proposed approach to be better-tailored to data
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that may contain anomalies. I.e., on one hand, the algo-
rithm should be aware of anomalies, if they are present in
the hyperspectral data on which the multispectral filters are
trained. Such “awareness” can be naturally supported by the
anomaly-detection ability of theMahalanobis norm.

On the other hand, if there are no known anomalies in
the training data, then one still needs to make an appropri-
ate trade-off during the allocation of spectral intervals based
on the background information only. As already mentioned
above, anomaly pixels are those that are not well-described
by the background model. Therefore, a good representation
of all background subtleties is essential, which could be ob-
tained by merely using a training image without anomalies.
Obviously, in order to obtain a better multispectral approx-
imation for anomaly detection in this case, one should al-
locate a denser partition in spectral regions that facilitate a
better representation of all background classes irrespectively
of their frequentness in the data (i.e., even of rare ones).

Since errors corresponding to a misrepresentation of
more than one background class are expected to have a mul-
timodal pdf (each mode corresponding to errors coming from
a different background material), they are not normally dis-
tributed. Therefore, by employing the ability of the Maha-
lanobis norm to assess multivariate normality, one would be
able to facilitate a denser partition in spectral regions that
correspond to the inter-class spectral differences.

The optimal partition of the spectrum is obtained in terms
ofMinimizing the Maximal Mahalanobis Norm of errors, ob-
tained due to the misrepresentation of spectral intervals by
constants. Therefore, we denote the proposed technique as
Min-Max MN or, in short, MXMN.

We compareMXMNwith other dimensionality reduction
techniques, such as classical Principal Components Analysis
(PCA) and FFR, by examining the results of the Reed-Xiaoli
(RX) algorithm [8], [10], a benchmark anomaly detector for
hyperspectral imagery, applied after the dimensionality re-
duction. We demonstrate that the proposed approach results
in a better Receiver Operating Characteristic (ROC) curve, as
compared to PCA and FFR, for a wide range of false alarm
rates, and even better than obtained by applying RX on the
original data (without the dimensionality reduction) for the
important range of low false-alarm rates.

This paper is organized as follows: In section 2 we de-
velop the proposed MXMN algorithm. Then, in section 3,
we compare the results of the RX algorithm applied on mul-
tispectral data obtained by MXMN, FFR and Principal Com-
ponent Analysis (PCA) algorithms and discuss the obtained
results. Finally, in section 4, we draw conclusions about the
proposed method and the obtained results.

2. ANOMALY PRESERVING PIECEWISE
CONSTANT REPRESENTATION

2.1 Problem statement

Let xi, j denote the ith hyperspectral band of an observed hy-
perspectral pixel j, where i = 1, . . . ,M and j = 1, . . .N. The
piecewise constant representation model consists of a vector
of K < M breakpoints,

bK , {b1, . . . ,bK}, (1)

corresponding to K−1 contiguous intervals

Ik = [bk,bk+1), k = 1, . . . ,K−1. (2)

Each observed hyperspectral pixel x j is approximated by a

set of constants {µk, j}
K−1
k=1 , obtained by averaging its values

in the spectral intervals Ik, as follows:

µk, j =
1

|Ik|
∑
i∈Ik

xi, j, k = 1, . . . ,K−1 (3)

where |Ik| denotes the cardinality of the interval Ik. As a mat-
ter of fact, the constants {µk, j} minimize the mean squared
error Sk, j in each interval k, defined as follows:

Sk, j = ∑
i∈Ik

(xi, j−µk, j)
2. (4)

Thus, the partition of spectral bands into K− 1 intervals by
the breakpoints bK uniquely determines the piecewise con-
stant representation/approximation of each pixel. The goal is
to determine a partition that facilitates good performance of
anomaly detection algorithms when applied to the obtained
constants {µk, j}.

2.2 Objective function

The general idea of the proposed anomaly preserving chan-
nel reduction algorithm is to minimize an objective function
J(bK) that allows a better representatiom of the whole vari-
ety of background classes (no matter how rare they are), as
well as anomalies if they are present in the training data. We
choose the function J(bK) to be of the following form:

J(bK) = max K−1
k=1 Dk, (5)

where Dk is some error-related measure corresponding to the
interval Ik. Thus, by minimizing J(bK), one minimizes the
worst case error-related measure.

In order to properly define Dk, let’s explore statistical
properties of the errors ei, j,k obtained due to the misrepresen-
tation of hyperspectral pixel entries belonging to the interval
Ik:

ei, j,k = xi, j−µk, j, i ∈ Ik. (6)

Denoting all error entries that belong to the same pixel j and
correspond to an interval Ik, ordered in a vector form, by
e j,k, we assume that all random vectors e j,k corresponding
to the non-anomalous (background) vectors are i.i.d. At this
point, we observe that anomaly manifestations in an inter-
val k, which were not represented well by the corresponding
constants µk, j, are likely to produce anomalous error real-
izations. Eventually, anomalous error realizations are those
that do not agree well with the pdf of the background-related
errors e j,k. Therefore, Dk should measure the deviation of
the obtained error statistics from the background statistical
model. Recalling the discussion presented in the introduc-
tion, we postulate that a well-represented background should
have errors with a unimodal pdf. Now, if one models the
desired background-related errors e j,k by a zero-mean Gaus-
sian pdf, then Dk can be obtained by measuring the deviation
of error realizations from the Gaussian model.

This approach is quite reasonable, since the larger is the
deviation of the error statistics from being Gaussian, the
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more signal structure is absorbed by the error and the larger
is the likelihood that some important information is lost by
channel reduction. A widely used criterion for anomaly de-
tection is the Mahalanobis distance between a tested pixel
and the background mean vector [1], [8]. This criterion has
also been extensively used for assessing multivariate normal-
ity [9]. For a zero mean Gaussian random vector ν , the Ma-
halanobis distance or, equivalently, the Mahalanobis norm is
defined as:

G(e) ,
√

ν⊤Σ−1ν , (7)

where Σ is the covariance matrix of the random vector ν .
Intuitively, the Mahalanobis norm of vectors e that con-

tain outlying signal contributions and, therefore, are not
properly normalized by Σ

−1 in (7), is expected to be larger
than obtained for vectors that obey the Gaussian paradigm.
Thus, in the Reed-Xiaoli (RX) algorithm [8], a bench-
mark anomaly detector for hyperspectral imagery, the Maha-
lanobis distance between a tested pixel and the background
mean vector is used to detect anomalies by comparing it to a
threshold that corresponds to a ratio of probability of detec-
tion vs. probability of false alarms required by the applica-
tion.

It turns out that if the realizations e j are contaminated
by anomaly or other Non-Gaussian signal contributions, they
are likely to produce large Mahalanobis norms. Therefore,
we define Dk as follows:

Dk , max N
j=1 G(e j,k) (8)

This completes the definition of the objective function J(bK)
in (5) that penalizes partitions that may cause poor back-
ground and/or anomaly representation.

2.3 Minimizing the objective function

In order to minimize J(bK), over the set of breakpoints
{b1, . . . ,bK}, we apply a dynamic programming algorithm
based on [4] and [11]. Let’s redefineDk asD[g,h], where g and

h are interval boundaries which can be equivalently used to
specify intervals instead of using their corresponding indices
{k}. Throughout the minimization process, we iteratively
calculate J(k, p), where J(k, p) is the objective function de-
fined using only the first k breakpoints , {b1, . . . ,bk}, 1< k≤
K, and the first p spectral bands, (k−1) ≤ p≤ (M−K+ k).

Initially, we set

J(2, p) = D[1,p], p = 1, . . . ,(M−K+2). (9)

I.e., in the first level of recursion we set an objective func-
tion value for all possible combinations of allocating only
one spectral interval corresponding to its all possible right
boundary positions denoted here by p.

Then, for an increasing number k = 3, . . . ,K, of break-
points {bk}, we define a recursion that calculates the corre-
sponding minimal objective function values J(k, p) as fol-
lows:

J(k, p) = min
p−1
r=k−1 (D[r+1,p] + J(k−1,r)). (10)

I.e., {J(k, p)}Kk=3 minimize the sum of error measures
D[r+1,p] corresponding to all possible variants of allocating
the last interval Ik−1,k, and the minimal objective function
value obtained in a previous recursion level k−1.

At the end of the iterative process, the resulting J(K,M)
gives the minimal value of the objective function J(bK) de-
fined in (5). The optimal partition in terms of the breakpoints
{b1, . . . ,bK} is obtained by recursively backtracking the min-
imizers r∗ for which the minimal objective functions were
obtained throughout the recursion sequence

{J(K,M),J(K−1,r∗K), . . . ,J(2,r∗3)}. (11)

3. EXPERIMENTS WITH REAL DATA

In this section we evaluate the performance of the RX al-
gorithm, which, as mentioned, is a benchmark anomaly de-
tector for Hyperspectral Imagery [8]. We applied it to Hy-
perspectral Data before and after the dimensionality reduc-
tion by PCA, FFR and the proposed MXMN algorithm. To
demonstrate the results, the RX algorithm was applied to 6
real hyperspectral image cubes, collected by an AISA air-
borne sensor configured to 65 spectral bands, uniformly cov-
ering VNIR range of 400nm - 1000nm wavelengths. At 4
km altitude, a pixel resolution corresponds to (0.8m)2. The
obtained image cubes are b× r× c = 65×300×479 hyper-
spectral images, where b,r and c denote the number of hy-
perspectral bands, the number of rows and the number of
columns in the image, respectively.

In Fig. 1, we show the 30th band of a typical hyperspec-
tral image cube. The image contains anomalies (vehicles and
small agriculture facilities, which occupy a few pixel seg-
ments marked in white and encircled by red ellipses), man-
ually identified using side information collected from high
resolution RGB images of the corresponding scenes. All 6
images are not shown here just because of space limitations.

Figure 1: 30th band of a hyperspectral image cube with

anomalies marked in white and encircled by red ellipses.

We applied FFR and the proposed MXMN algorithms
to both an image cube (the 30th band of which is shown in
Fig. 1) that contains anomalies, as well as to the image cube
of Fig. 2 that is not known to contain anomalies, to reduce
the hyperspectral dimensionality from 65 to 10 by the corre-
sponding piece-wise constant spectral segments. We also ap-
plied PCA to obtain an ℓ2-optimal 10-dimensional basis. The
processing time of the experimental setup described above
using a 2.6Ghz Quad Core Pentium system in Matlab R© was
about 30 min per image cube.

In Fig. 3, one can see the obtained piece-wise constant
approximations by FFR (red (bright) thick line) and MXMN
(blue (dark) thick line) for 3 selected hyperspectral pixels
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Figure 2: 30th band of a hyperspectral image cube used for

training MXMN.

(blue thin lines), where graphs (a), (b) and (c) correspond
to an anomaly pixel and two pixels that were selected from
different background regions, respectively, obtained using a
training image that contains anomalies. The same approxi-
mations of the same pixels obtained using the anomaly-free
training image are shown in (d), (e) and (f), respectively. As
can be seen from the figure, the partition obtained byMXMN
has a denser granularity in bands [1− 40], in which the pre-
sented anomaly (as well as other anomalies in the image) is
expressed by having a different evolution of the magnitudes
in these bands than in the other background-related pixels
shown in the figure (for both types of training images). This
is on the expense of other bands, which, in spite of being
energetically prominent, are less important for anomaly de-
tection. This observation is also supported by ROC results,
which follow below. On the contrary, FFR adapts better to
the energetical bands and, as a result, assigns less channels
to bands [1− 40] which makes it prone to a poorer anomaly
detection performance.

In Fig. 4, we compare FFR, MXMN and PCA in terms
of Receiver Operation Characteristic (ROC) curves obtained
by applying the RX algorithm on hyperspectral data after the
dimensionality reduction. Due to space limitation, we show
only ROC results obtained using the anomaly-free image.
For the purpose of ROC curves generation, all 6 hyperspec-
tral images were used, in which the total number of anomaly
segments count is 25. We assume that it is appropriate to in-
clude the training image in the evaluation of the anomaly de-
tection performance in terms of ROC, since no side informa-
tion about anomalies was used during the training. Moreover,
the training image did not include any known anomalies. It is
clearly seen from the figure that the MXMN algorithm cor-
responds to a better ROC curve (blue solid line) compared to
the other two dimensionality reduction techniques examined:
FFR (red dashed line) and PCA (red solid line with solid cir-
cles), for all tested parameters. It is important to note that
the performance of the RX algorithm applied to the data ob-
tained by the MXMN is even better than applying RX to the
full-dimensional (original) images (green dot-dashed line),
for the range of low false-alarm rates.

This can be explained by the fact that the proposed algo-
rithm is able to remove noise that is present in spectral chan-
nels that are less relevant for the representation of the back-
ground nuances by allocating a coarser partition to the corre-

sponding spectral regions. At the same time, the MXMN al-
gorithm is designed to retain most of the information needed
to identify all background classes irrespectively of their fre-
quentness in the data. Therefore, the RX algorithm was able
to model the background process more accurately in all lo-
cal neighborhoods throughout the image, which resulted in a
better anomaly detection performance. This may also ex-
plain why the proposed algorithm corresponds to a better
ROC curve compared to the other algorithms, although the
optimal partition was obtained using an image that does not
contain known anomalies.

Nevertheless, it is important to note that for best perfor-
mance, one should consider training the multispectral filters
on an image that contains typical anomalies that are antici-
pated to be faced in a real situation (if such prior information
is available). In this case, the optimal partition will be pri-
marily driven by anomalies in the data. Still, the approach
is unsupervised, since, in any scenario, it does not require
any ancillary knowledge about anomaly location in the data
and/or anomaly spectrum.
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Figure 4: ROC curves.

4. CONCLUSION

In this work we propose a novel multispectral filters design
approach that is tailored to improve the performance of local
anomaly detection algorithms. The filter design is based on
processing a hypespectral image that contains a typical spec-
tral content to be faced by multispectral anomaly detection
algorithms. The resulting multispectral filters are obtained
by replacing subsets of adjacent hyperspectral bands by their
means, producing piecewise constant pixel approximations.
The optimal partition of hyperspectral bands is obtained by
Minimizing the Maximum of Mahalanobis Norms (MXMN)
of misrepresentation errors. The minimization of MXMN
facilitates an accurate representation of background nuances
needed to identify different background classes no matter
how rare they are in the training image. The minimization is
performed by a dynamic programming technique, as used by
the Fast Hyperspectral Feature Reduction (FFR) algorithm
proposed in [4]. MXMN was compared to FFR and PCA by
examining the results of the RX algorithm [8], applied af-
ter the dimensionality reduction. It was demonstrated that
the proposed algorithm results in a better ROC curve in the
whole range of false alarm values, and even better than ap-
plying RX on the original data without the dimensionality
reduction in the important range of low false-alarm rates.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Piecewise constant approximation. Examples of (a) anomaly pixel; (b) and (c) background pixel approximations

obtained using training image that contains anomalies; (d) anomaly pixel; (e) and (f) background pixel approximations ob-

tained using anomaly-free training image. Original spectrum is in blue (dark) thin line, MXMN approximation is in blue

(dark) thick line, FFR approximation is in red (bright) thick line.
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