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ABSTRACT 
This paper presents a proportionate normalized least-mean-square 
(PNLMS) algorithm using an individual activation factor for each 
adaptive filter coefficient. Such strategy is used instead of a global 
activation factor as in the standard PNLMS algorithm. The 
proposed individual activation factors, determined in terms of the 
corresponding adaptive filter coefficients, lead to a better 
distribution of the adaptation energy over the filter coefficients 
than the standard PNLMS does. Thereby, for impulse responses 
exhibiting high sparseness, the proposed algorithm achieves faster 
convergence, outperforming both the PNLMS and improved 
PNLMS (IPNLMS) algorithms. 
  

1. INTRODUCTION 
Sparse impulse responses are encountered in many real-world 
applications, such as communications, acoustics, and seismic and 
chemical processes [1], [2], [3]. For this class of impulse responses, 
classical adaptive algorithms using the same step-size value for all 
filter coefficients, such as the normalized least-mean-square 
(NLMS) algorithm, converge slowly. To overcome this drawback, 
some algorithms exploiting the sparse nature of the impulse 
response have been proposed. The proportionate NLMS (PNLMS) 
algorithm [4] is one of these algorithms in which each filter 
coefficient is updated proportionally to its magnitude, resulting in 
higher convergence speed. However, the PNLMS algorithm 
presents some performance degradation as the sparseness decreases 
[5], [6]. Improved versions of the PNLMS algorithm aiming to deal 
with impulse responses exhibiting medium sparseness are the 
PNLMS++ [5] and improved PNLMS (IPNLMS) [6]. Nevertheless, 
these algorithms do not provide the same fast initial convergence 
obtained with the PNLMS for impulse responses having high 
sparseness [7]. A version of the PNLMS algorithm that takes into 
account the sparseness variation of the plant is the sparseness 
controlled PNLMS (SC-PNLMS) [8]. This algorithm performs well 
for both very high sparseness and medium dispersion; however, 
such performance is obtained at the expense of higher 
computational complexity with respect to the PNLMS. 

The standard PNLMS algorithm performance depends on some 
predefined parameters controlling proportionality and initialization 
[1]. Thus, a central point is how to set suitable values for these 
parameters, since they impact the algorithm convergence speed. 
Such parameters are related to an algorithm variable, termed the 
activation factor, having the task to prevent the adaptive 
coefficients from stalling when their magnitudes are zero or are 
significantly smaller than the largest one. In the standard PNLMS 
algorithm, the activation factor is common to all coefficients, 
computed sample-by-sample, and depends on the instantaneous 
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infinity-norm of the adaptive filter coefficient vector. This way to 
compute the activation factor leads to a gain distribution between 
the adaptive filter coefficients not entirely in line with the concept 
of proportionality, which is the desired attribute of the PNLMS 
algorithm. Hence, this work revisits the PNLMS algorithm for 
devising a new way to determine the activation factor, aiming to 
improve the algorithm performance. In contrast to the standard 
PNLMS algorithm, the new way to compute the activation factor 
has the following characteristics: 

i) An individual activation factor is used for each adaptive filter 
coefficient. 

ii) Each individual activation factor is computed in terms of the 
corresponding coefficient magnitude. 

iii) The individual activation factors do not rely on the 
proportionality and initialization parameters, since they are no 
longer in the proposed formulation. 

As a consequence, the convergence features of the proposed 
algorithm are significantly improved. Since there are now 
individual activation factors for each coefficient, the new algorithm 
version is named individual activation factor PNLMS 
(IAF-PNLMS). 

For impulse responses having high sparseness, numerical 
simulations show that the proposed approach has faster 
convergence as well as faster response to perturbations of the 
system plant than both the PNLMS and IPNLMS algorithms. 

2. STANDARD PNLMS ALGORITHM 

2.1 Algorithm Formulation 
The standard PNLMS algorithm is formulated by the following set 
of equations [1], [6]: 
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Proportionality function 

 ( ) max ( ), ( )i in f n w n⎡ ⎤φ = ⎣ ⎦  (5) 

Activation factor 
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⎡ ⎤= ρ δ⎣ ⎦w  (6) 
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where 0 2< μ <  is the step-size parameter, 0ε >  is a 
regularization parameter (preventing division by zero and 
stabilizing the solution), and ∞⋅  is the infinity-norm. Variable 

( )d n  denotes the desired signal and ( )z n  is a zero-mean i.i.d. 

measurement noise with variance 2
zσ  and uncorrelated with any 

other signal in the system. The input vector is 
T( ) [ ( ) ( 1) ( 1)]n x n x n x n N= − − +x "  and the adaptive filter 

vector of dimension N  is T
1 2( ) [ ( ) ( ) ( )] .Nn w n w n w n=w "  

Matrix ( )nG  distributes the gains between the coefficients, 
depending on their magnitude, with ( )ig n  governing the 
individual step-size adjustment. Activation factor ( )f n  given in 
(6) depends on the adaptive filter coefficient vector as well as on 
ρ  and ,δ  which are the proportionality (or activation) and 
initialization parameters, respectively. The initialization parameter 
permits starting the adaptation process at 0,n =  when all filter 
coefficients are initialized to zero. The proportionality (or 
activation) parameter prevents an individual coefficient from 
freezing when its magnitude is much smaller than the largest 
coefficient magnitude [5], [6]. 

2.2 Algorithm Discussion and Performance 
In this section, the algorithm behaviour is discussed, aiming to get 
some insight to motivate an improved version of the PNLMS 
algorithm. To this end, the central point is to study the effect of the 
activation factor ( )f n  and its associated parameters 
(proportionality and initialization) on the algorithm behaviour. 

From (4) and (5), ( )ig n  is rewritten as 

 1( ) max ( ), ( )
( )i ig n f n w n

c n
⎡ ⎤= ⎣ ⎦  (7) 

with 
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being a common variable for all ( ).ig n  Now, by analyzing (7), 
some important definitions are stated: 

i) Gain for inactive coefficients inactive ( ).g n  If ( ) ( ) ,if n w n>  

the thi coefficient ( )iw n  is inactive and its associated gain, 
given by (7), is expressed as 

 inactive 1( ) ( ).
( )

g n f n
c n

=  (9) 

Since activation factor ( )f n  is common to all filter 

coefficients, a minimum and common gain inactive ( )g n  is 
assigned to all inactive coefficients. This is an undesirable 
feature, as will be shown further. 

ii) Gain for active coefficients active ( ).ig n  If ( ) ( ) ,if n w n≤  

the thi coefficient ( )iw n  is active and its associated gain, 
obtained from (7), is 

 active 1( ) ( ) .
( )i ig n w n

c n
=  (10) 

Here, each gain active ( )ig n  is associated with the magnitude of 
the active coefficient ( ),iw n  being the essence of the PNLMS 
algorithm. 

Now, based on the above definitions (i) and (ii), let us analyze 
the total gain distributed over the filter coefficients at each iteration, 
which can be represented by the trace of matrix ( ).nG  Thus, 

 [ ] activetr ( ) ( ) ( )
( ) i

i A

N Nn f n g n
c n ∈

−= +∑G  (11) 

where activeN  is the number of active coefficients and A  is the set 
of indices associated with their positions. In (11), the first r.h.s. term 
is the total gain distributed over the inactive coefficients and the 
second, corresponds to the total gain distributed over the active 
ones. Note that a decrease in ( ),f n  for instance, implies an increase 
in the second r.h.s. term of (11), since [ ]tr ( )nG  is always constant 
and equal to 1 from (3) and (4), meaning that the gains associated 
with the active coefficients are also dependent on ( ).f n  Therefore, 
we conclude that the activation factor ( )f n  affects the gains 
assigned to both active and inactive coefficients. Hence, ( )f n  plays 
an important role in the algorithm gain distribution. Here, we point 
out that in the formulation of the standard PNLMS algorithm (used 
by Benesty and Gay in [6]), the trace of matrix ( )nG  is equal to 1, 
whereas in [1] and [7], the trace of ( )nG  is set equal to .N  
However, both formulations are equivalent and we choose the 
former. 

In the following, we study in detail the algorithm performance 
with respect the activation factor. To this end, Monte Carlo (MC) 
simulations (average of 100 independent runs) of the PNLMS 
algorithm are carried out for a system identification problem. The 
scenario for all numerical simulations consists of a sparse impulse 
response with 100N =  coefficients, presented in [2], having its 
active coefficient values equal to {0.1, 1.0, − 0.5, 0.1} located at 
positions {1, 30, 35, 85}, respectively. To quantify the sparseness of 
this impulse response, we use a common measure, based on the 
relationship between the 1- and 2-norm of the impulse response, 
defined as [3], [9] 

 1
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where the -dimensionalN  vector T
1 2[ ]Np p p=p "  represents 

the plant impulse response, and 1p  and 2p  are, respectively, 1- 

and 2-norm of .p  The measure ( )S p  ranges from 0 (sparseness 
degree of a uniform filter) to 1 (sparseness degree of a Dirac filter). 
By using (12), the sparseness degree of the above impulse response 
is calculated as ( ) 0.9435.S =p  The input signal is a correlated 
unity-variance AR(2) process given by 

 ( ) 0.4 ( 1) 0.4 ( 2) ( )x n x n x n v n= − − − +  (13) 

where ( )v n  is white noise with variance 2 0.77vσ =  and the 
eigenvalue spread of the autocorrelation matrix of the input vector is 

10.χ =  The measurement noise ( )z n  is white with variance 
2 310 (SNR 30dB).z

−σ = =  To evaluate the algorithm performance, 
we use the normalized misalignment measure (in dB), given by [3] 
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Aiming to show the PNLMS algorithm dependence on the 
activation factor, some misalignment curves are shown in Figure 1 
for ( )f n  given by (6), 0.5,μ =  0.01,δ =  and using ρ  equal to 
0.01, 0.05, and 0.50. In addition, a fourth numerical simulation, now 
using a constant activation factor ( ) 0.001,f n =  manually adjusted 
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for maximizing the convergence speed, is also included in Figure 1. 
Note from the figure how the algorithm convergence is affected by 
both the activation factor and parameter .ρ  By using ( )f n  given 
in (6) and reducing the value of ,ρ  the convergence speed 
increases. For the case ( ) 0.001,f n =  faster algorithm convergence 
is obtained, since the algorithm behaves in a more proportional 
manner, i.e., less gain per iteration is assigned to inactive 
coefficients. Therefore, from the curves of Figure 1, an interesting 
insight can be drawn: the activation factor given by (6) is not the 
best way to obtain a suitable gain distribution. 

To assess the algorithm gain distribution, we define the following 
figures of merit: 

Total gain distribution over L  iterations 

 
1

0
( )

L

i i
n

g n
−

=
θ = ∑  (15) 

Average of iθ  over the inactive coefficients 

 inactive
mean

active

1 .i
i AN N ∉

θ = θ
− ∑  (16) 

Table 1 summarizes expressions (15) and (16) for the cases 
considered in Figure 1, using active 4N =  and {1, 30, 35, 85}.A =  
Note from the table that in the case of a constant activation factor 
[ ( ) 0.001],f n =  more gain from the inactive coefficients is 
transferred to the active ones, resulting in a better distribution of 
the adaptation gains. 

TABLE 1 
Total Gain Distribution of PNLMS 

Algorithm over 5000 Iterations 

Parameter Values 1θ  30θ  35θ  85θ  inactive
meanθ  

0.01ρ =  198.0 1868.5 924.5 176.8 19.1 

0.05ρ =  80.5 765.3 376.2 72.1 38.6 

0.50ρ =  49.9 98.6 49.5 49.5 49.5 

( ) 0.001f n =  283.9 2749.3 1364.0 262.2 3.5 

Figure 2 shows the initial behaviour of the active coefficients 
1( ),w n  30( ),w n and 35( ),w n  inactive coefficient 2( ),w n  and gains 

1( ),g n  2( ),g n  30( ),g n  and 35( ).g n  By analyzing Figure 2(a) at 
the beginning of the learning phase (0 30),n≤ <  we observe that 

30 1( ) ( ) ,w n w n<  resulting in 30 1( ) ( )g n g n< [see Figure 2(b)]. 

This is not desirable behaviour, since 1( )g n  and 30( )g n  are not 
proportional to the magnitude of their corresponding plant 
coefficients 1p  and 30,p  respectively, where 1 0.1p = and 

30 1.0,p =  in contrast to the desired condition 30 1( ) ( ).g n g n>  
This fact points out that the PNLMS algorithm may present 
inadequate behaviour at the beginning of the adaptation process. 
Such behaviour is considered in the next section for devising a 
new improved version of the PNLMS algorithm. 

3. MODIFIED PNLMS ALGORITHM 

Considering the above analysis of the standard PNLMS algorithm, 
we focus our discussion on the following features: 

i) When ( )iw n  is an active coefficient, note from (10) that its 

gain is always proportional to ( ) .iw n  

ii) When ( )iw n  is inactive, observe from (9) that the gain is not 

proportional to ( ) .iw n  
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Figure 1 – Normalized misalignment of the PNLMS algorithm for 

0.5μ =  and 0.01.δ =  
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Figure 2 – Evolution of PNLMS algorithm variables with 
0.5,μ = 0.05,ρ =  and 0.01.δ =  (a) Coefficients 1( ),w n  2( ),w n  

30( ),w n  and 35( ).w n  (b) Gains 1( ),g n  2( ),g n  30( ),g n  and 

35( ).g n  
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Feature (i) is desirable since it is in accord with the 
proportionate philosophy. On the other hand, (ii) is not in 
accordance with the proportionate concept. Hence, our objective is 
to overcome this drawback by making the gain ( )ig n  tend 

towards being proportional to ( )iw n  even when ( )iw n  is inactive. 
To obtain a truly proportionate algorithm, we associate each 

gain assigned to an inactive coefficient with an individual 
activation factor ( )if n  instead of a common one. Thus, replacing 

( )f n  by ( )if n  in (5), the proportionality function is rewritten as 

 ( ) max[ ( ), ( ) ]i i in f n w nφ =  (17) 

and accordingly, when ( )iw n  is inactive, from (4) and (17), (9) is 
modified to  

 inactive 1( ) ( ).
( )i ig n f n

c n
=  (18) 

3.1 Conditions Required for the New Activation Factor ( )if n  

Now, we establish the required conditions for each individual 
activation factor ( ),if n  which are given as follows: 

C1) ( )if n  must converge to the corresponding coefficient 

magnitude ( ) ,iw n  i.e., 

lim [ ( ) ( ) ] 0 , 1, 2, , .i in
f n w n i N

→∞
− = = …  

C2) ( )if n  must always be greater than zero, i.e., 

( ) 0 , 1, 2, , .if n i N> = …  

Thus, if C1 is fulfilled, note from (18) that inactive ( )ig n  tends to be 

proportional to ( )iw n  as .n → ∞  Moreover, C2 ensures that 

( ) 0ig n >  when ( ) 0,iw n =  avoiding the freezing of ( ).iw n  

3.2 Proposed Approach for Computing ( )if n  

Here, our goal is to make the individual activation factor ( )if n  tend 
towards the magnitude of the corresponding coefficient. Note that at 
the beginning of the adaptation process ( 1),n =  the only available 
data are the estimate of the thi  coefficient (1)iw  and the 
proportionality function (0).iφ  From (17), one also verifies that 

(0) (0),i ifφ =  since the adaptive filter is started with an initial guess 
0 .w( ) = 0  Thus, the following formulation is reasonable for 

computing the activation factor (1):if  

 (1) (1) (1 ) (0)i i if w= γ + − γ φ  (19) 

where 0 1.< γ <  Here, the activation factors are initialized with a 

small positive constant (typically, 2(0) 10 / ),if N−=  such that 
(0) 0.if >  In (19), the first r.h.s term is due to the intended aim and 

the second, ensures that (1)if  be always greater than zero. Now, 
generalizing this approach for all ,n  we get 

 ( ) ( ) (1 ) ( 1).i i if n w n n= γ + − γ φ −  (20) 

By considering that no knowledge of the system plant is available a 
priori, it is reasonable to choose 1 / 2,γ =  weighting equally 

( )iw n  and ( 1),i nφ −  thereby obtaining 

 1 1( ) ( ) ( 1).
2 2i i if n w n n= + φ −  (21) 

By recursion, using (17) and (21) from time 1  to ,n one can show 
that ( )if n  given by (21) fulfils conditions C1 and C2. Note from 

(21) that now ( )if n  depends on ( ) .iw n  So, for proper algorithm 
operation, it is required that the instantaneous magnitude of the 
estimated coefficients be proportional to the magnitude of the 
corresponding plant coefficients. However, ( )iw n  may not be 

proportional to ( )ip n  at the beginning of the adaptation process 
[see Figure 2(a)], but this can be circumvented by periodically 
updating ( )if n  only after a learning period of N  samples, equal to 
the adaptive filter length. Therefore, (21) is revised to 

( )1 1( ) 1 , , 1, 2, 3,
( ) 2 2

( 1), otherwise .

i i
i

i

w n n n mN m
f n

f n

⎧ + φ − = =⎪= ⎨
⎪ −⎩

…
 (22) 

This expression and (17) characterize the proposed IAF-PNLMS 
algorithm. Now, each coefficient, either active or inactive, has an 
associated activation factor ( )if n  computed by (22). 

Regarding the computational burden of the proposed algorithm, 
an additional memory of size 2N  is required for storing both 

( )1i nφ −  and ( 1).if n −  On the other hand, the computation of (6) 
(which is required in the standard PNLMS) is no longer needed for 
the IAF-PNLMS algorithm, saving N  comparisons and one 
multiplication operation. With respect to the computation of (22), 
N  additions and N  multiplications are required every N  samples, 

yielding one addition and one multiplication per iteration. 

4. NUMERICAL SIMULATIONS 

In this section, MC simulations (average of 100  independent 
runs) of the NLMS, PNLMS, IPNLMS, and IAF–PNLMS 
algorithms are carried out for a system identification problem, 
aiming to compare their convergence speed and response to plant 
perturbations. In addition, the IAF–PNLMS algorithm gain 
distribution is assessed. To this end, three examples are presented, 
considering the same simulation scenario specified in Section 2.2. 

4.1 Example 1 
In this example, the convergence speed and response to a plant 
perturbation of the NLMS, PNLMS, IPNLMS, and IAF-PNLMS 
algorithms are compared. For such, consider that a perturbation in 
the plant takes place at 2500,n =  whereby the plant vector p  is 
changed to .−p  

Figure 3(a) illustrates the normalized misalignment curves of the 
NLMS, PNLMS (with 0.05ρ =  and 0.01),δ =  IPNLMS, and 

IAF-PNLMS 4[with  (0) 10 ]if
−=  algorithms. In the IPNLMS, 

0α =  (a parameter of that algorithm) is used [6], [7]. By comparing 
the curves in Figure 3(a), we observe that the IAF-PNLMS 
algorithm achieves the fastest convergence speed. 

4.2 Example 2 
In this example, we again compare the convergence speed and 
response to a plant perturbation of the NLMS, PNLMS, IPNLMS, 
and IAF-PNLMS algorithms using the same parameter values as 
in Example 1. Here, at 2500,n =  the plant vector p  is shifted to 
the right by 12 samples, changing the position of all active 
coefficients. In this way, active plant coefficient values equal to 
{0.1, 1.0, − 0.5, 0.1}, located at positions {1, 30, 35, 85}, are 
moved to positions {13, 42, 47, 97} after 2500.n =  
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Figure 3(b) shows normalized misalignment curves of the 
NLMS, PNLMS (with 0.05ρ =  and 0.01),δ =  IPNLMS (with 

0),α =  and IAF-PNLMS 4[with  (0) 10 ]if
−=  algorithms. Note 

from this figure that the IAF-PNLMS algorithm again achieves the 
fastest convergence. 

4.3 Example 3 
In this example, we assess the total gain distribution of the 
IAF-PNLMS algorithm over 5000 iterations. We use the same plant 
perturbation and conditions as in Example 1. Moreover, to assess 
the total gain distribution, we first define the ideal activation factor 

ideal ( )if n  as 

 ideal ( )i if n p=  (23) 

where ip  is the magnitude of the thi  plant coefficient. This 
definition is reasonable, since, assuming convergence, 

( ) ( )i if w∞ → ∞  according to condition C1. Thus, for this 
simulation scenario, (23) results in 

 ideal
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Figure 3 – Normalized misalignment curves using 0.5,μ =  

0.05,ρ =  0.01,δ =  4(0) 10 ,if
−=  and 0.α =  (a) Example 1: plant 

sign reversed at 2500.n =  (b) Example 2: shift of the plant 
coefficients at 2500.n =  

Table 2 presents the total gain distribution of the IAF-PNLMS 
algorithm (over 5000L =  iterations) for 4(0) 10 .if

−=  A second 

total gain distribution for the IAF-PNLMS using ideal ( )if n  is also 
shown in this table. Note that the gain distribution obtained for the 
both cases is numerically very similar, suggesting that the new rule 
(22) used to obtain ( )if n  is sound. Here, it is important to point out 

that the use of ideal ( )if n  is not a practical solution, since in general 

ip  is not known a priori. We have introduced this only for 
comparison purposes. 

TABLE 2 
Example 3. Total Gain Distribution of 

IAF-PNLMS Algorithm over 5000 Iterations 
Activation 

Factors 1θ  30θ  35θ  85θ  inactive
meanθ  

4(0) 10if
−=  318.2 2860.8 1430.4 282.4 1.1 

ideal ( )if n  300.0 2929.6 1470.8 299.6 0.0 

5. CONCLUSIONS 

In this work, a new improved version of the PNLMS algorithm, 
called IAF-PNLMS, is proposed, which uses an individual 
activation factor for each adaptive filter coefficient. Each activation 
factor is computed in terms of its corresponding coefficient 
magnitude, and does not rely on the proportionality and 
initialization parameters used in the standard PNLMS algorithm. 
The IAF-PNLMS algorithm provides better gain distribution than 
the PNLMS and IPNLMS algorithms, leading to an improvement in 
convergence speed, outperforming both the PNLMS and IPNLMS 
algorithms for plant impulse responses having high sparseness. 
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