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ABSTRACT
We propose an adaptive subband decomposition scheme de-
signed to estimate the parameters of two-dimensional (2D)
exponential signals from large data sets. The principle of the
method consists to perform recursive 2D decimation and es-
timation steps. At each resulting subband, a stopping rule
is evaluated to decide whether the decomposition should be
continued or stopped. The proposed rule is based on the
Fisher g-test applied on the estimation error. The advan-
tages and limitations of the subband approach are discussed
through a simulation example. The method is then demon-
strated on an experimental 2D nuclear magnetic resonance
spectroscopy signal.

1. INTRODUCTION

In many applications, such as sonar, radar, mobile com-
munications, and nuclear magnetic resonance (NMR) spec-
troscopy, signals can be modelled as the sum of two-
dimensional (2D) damped or undamped complex exponen-
tials (called modes) in additive noise. From a 2D data set, itis
desired to estimate the parameters of the model. For instance,
in multidimensional NMR spectroscopy, the frequencies and
damping factors of damped sinusoids are crucial in deter-
mining protein structures [8]. For this issue, Fourier-based
algorithms such as the correlogram or periodogram methods
are quite simple and fast, but suffer from the Rayleigh reso-
lution limit. Hence, to improve resolution, several methods
have been proposed in the signal processing literature. They
are often extensions of 1D approaches to the 2D case, such
as 2D IQML [1], 2D MUSIC [8], TLS-Prony [13], Matrix
Pencil [5], etc. All these methods provide high-resolution
estimation and achieve the Cramér-Rao bound under some
mild conditions. In particular, a rule of thumb for subspace-
based methods to achieve a minimum frequency variance is
to fix the so-called “prediction order” to about third to half
the number of samples in each dimension [6, 7, 3]. So, when
the data set is relatively small, all the methods apply well.On
the other hand, if the data set or the number of modes is very
large, it is often difficult to obtain satisfactory results due to
prohibitive computational costs (inversion of large matrices,
rooting of high-order polynomials, etc.).

In this paper, we propose a subband estimation scheme
in which the data set is decomposed into a certain number of
data sets, each being much smaller than the original one and
more favorable from a numerical point of view. The use of
subband decomposition prior to the estimation process has
been known for several years [10, 12, 15]. The originality of
the method proposed here lies in the fact that the decompo-
sition is carried out adaptively. The purpose of this scheme

is to select the set of subbands in which the spectral infor-
mation (frequencies) is localised. Hence, the decomposition
is performed recursively. As soon as a resulting subband is
numerically tractable, an estimation procedure is performed.
Then, to detect possible missed modes, the Fisherg-test [9]
is evaluated using the estimation residuals: the decomposi-
tion of the subband is stopped only if no periodicity is found
in the residual signal.

In the next Section, we present the 2D damped exponen-
tial model and discuss an estimation method. In Section 3,
the proposed approach is described. In particular, we state
the principles of the subband decomposition and the stopping
rule. A simulation example and an application to an experi-
mental data set is given in Section 4. Finally, conclusions are
given in Section 5.

2. PARAMETER ESTIMATION OF 2D
EXPONENTIAL SIGNALS

We consider the following 2D exponential model:

d(n,m) =
I

∑
i=1

λiz
n
i wm

i + e(n,m) (1)

for n = 0, ...,N − 1 and m = 0, ...,M − 1. Here, zi =
exp(−α1,i + jω1,i) andwi = exp(−α2,i + jω2,i) are the com-
ponents of the mode(zi,wi) with complex amplitudeλi. A
pure sinusoidal model involvesα1,i = α2,i = 0,∀i, and a com-
pletely damped one corresponds toα1,i > 0 andα2,i > 0. The
term e(n,m) is assumed to be a two-dimensional Gaussian
complex white noise. The problem is to estimate the number
of modesI and the set of parameters{zi,wi,λi}

I
i=1, given the

noisy measurementsd(n,m).
Several algorithms have been developed to solve this

problem. Without loss of generality, let us focus on the 2D
TLS-Prony algorithm proposed in [13] (see [17] and refer-
ences therein for more details on 2D subspace-based methods
and their performances). The starting point of the TLS-Prony
method is the following form of model (1):

d(n,m) =
K

∑
k=1

ck,m pn
xk

+ e(n,m) (2)

where

ck,m =
Lk

∑
l=1

ak,l pm
yk,l

. (3)

pxk is thekth x-mode (x-component of 2D exponential),pyk,l

is the k, lth y-mode,ak,l is the k, lth amplitude coefficient
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andLk is the number ofy-modes corresponding to thekth
x-mode. In order to estimate the 2D signal parameters, the
idea is to perform a set of 1D estimations using (2) and (3).
Indeed, it is clear from (2) that the sequence obtained for a
fixed value ofm is a 1D exponential signal whose parameters
may be estimated with a 1D high-resolution technique.
The TLS-Prony algorithm for 2D frequency estimation in
[13] consists of the following four steps:
• Using (2), form the backward linear prediction equation:

S

[

1
b

]

= 0 (4)

whereb = [b1,b2, · · · ,bP]T is the prediction vector and
P > K is the prediction order. The matrixS is formed
from the data set asS = [DT

0 |D
T
1 | · · · |D

T
M−1]

T , whereDi
is a Hankel matrix:

Di =









d(0, i) d(1, i) · · · d(P, i)
d(1, i) d(2, i) · · · d(P +1, i)

...
...

...
d(N −P−1, i) d(N −P, i) · · · d(N −1, i)









for i = 0, · · · ,M − 1. In order to achieve a minimum
frequency variance,P have to be chosen in the range
[N/3,N/2], with P ≈ N/3 for undamped sinusoids [6]
andP ≈ N/2 for damped ones [3]. By performing the
singular value decomposition (SVD) of the matrixS, one
can estimate the number ofx-modesK̂ using a theoreti-
cal information criterion, such as MDL or AIC (see [16]).
Then, (4) should be solved in the total least squares (TLS)
sense [11] with an SVD truncation to obtainb̂. Finally,
the estimatedx-modes are found by

p̂xk =
1

zerok(B̂(z))
, k = 1,2, ..., K̂

whereB(z) = 1+b1z+ ...+bPzP (theP− K̂ zeros ofB̂(z)
lying inside the unit circle must be discarded).

• For each time indexm = 0, ...,M − 1, compute thex-
amplitude coefficients ˆck,m in the least squares sense us-
ing (2) and the estimated modes ˆpxk .

• For eachx-modep̂xk , k = 1, ..., K̂, obtain the correspond-
ing L̂k y-modes ˆpyk,l from (3) using once again the 1D
TLS-Prony approach (here the prediction equations are
made over them index, for a fixedk).

• Compute the amplitude coefficients ˆak,l for k = 1, ..., K̂
by solving the set of Vandermonde equations obtained
from (3) in the least squares sense.

Finally, the 2D signal parameters(ẑi, ŵi) with amplitudeŝλi

correspond to the set of couples(p̂xk ,{ p̂yk,l}
L̂k
l=1) with am-

plitudes{âk,l}
L̂k
l=1. The total number of estimated modes is

then:

Î =
K̂

∑
k=1

L̂k.

Generally speaking, the use of a high-resolution tech-
nique to estimate the 2D parameters leads to good perfor-
mances in terms of precision and resolution. Unfortunately,
when the number of samples is large, it is often difficult to
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Figure 1: Schematic representation of the ideal frequency
responses{Hi, j( f1, f2)}2

i, j=1 of the subband 2D filters.

benefit from these performances. For instance, the dimen-
sion of the matrixS in (4) is aboutNM ×P. So it is clear
that, for large signals, it is necessary to reduce the problem
complexity by using, for example, subband decomposition.

3. ADAPTIVE SUBBAND ESTIMATION

3.1 2D Signal Decimation

Subband decomposition is achieved classically through suc-
cessive filtering and decimation stages, say, by a factor 2.
Four 2D decimation filters are necessary as illustrated in fig-
ure 1. The same result can be obtained using a single low-
pass 2D filter (denoted byH1,1 in figure 1), but conveniently
centered on each of the four subbands. So, without loss of
generality, we consider here a lowpass filter with impulse
responseh(n,m). The corresponding subband signal is ob-
tained as follows:

d′(n,m) = ∑
n′

∑
m′

h(n′,m′)d(2n−n′,2m−m′)

for n = 0,1, · · · ,N′ −1 andm = 0,1, · · · ,N′ −1 (N′ = N/2,
M′ = M/2). Note that the decimation reduces the data set
size and possibly the number of modes due to the filtering op-
eration. The previous filtering and decimation process may
then be repeated as long as the desired subband signal size is
not reached.

Note that, in practice, the subband filters overlap each
other and thus a single frequency may appear in two con-
tiguous subbands. To avoid this problem, we use the overde-
termined filterbank structure presented in [14]. Moreover,
the transient introduced by the filter is suppressed so that the
model of the subband signals is still a sum of a (possibly re-
duced) number of modes which can be estimated by the TLS-
Prony method presented in the previous section. Assume that
the number of mode in a given subband isI′ 6 I:

d′(n,m) =
I′

∑
i=1

a′iz
′n
i w′m

i + e′(n,m).

If Î′ modes are detected by the TLS-Prony approach, then the
residual signal is defined by:

r(n,m) = d′(n,m)−
Î′

∑
i=1

â′iẑ
′n
i ŵ′m

i (5)
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for n = 0, ...,N′−1 andm = 0, ...,M′−1. Ideally, if all sub-
band modes are correctly retrieved, the residuals are closeto
a white noise. If one or more modes are missed, then the
signalr(n,m) is no more white. The stopping rule described
below is based on this observation.

3.2 Stopping Rule

The adaptive subband decomposition method we propose
here aims at satisfying the following constraint. If in any
subband, the estimation procedure misses some modes, the
decomposition should continue. On the contrary, if all spec-
tral information has been retrieved, there is no need to carry
on the decomposition, which thus should be stopped. In or-
der to check for the presence of some “hidden periodicities”
in the residual signal, several measures may considered such
as the MDL criterion, whiteness test [4, 2], etc. Here, we
propose to use the well-known Fisherg-statistic [9]. It was
originally developed for 1D sequences, but it is easily extend-
able to 2D signals. Denote byQ(k1,k2) the periodogram of
the residual signal in (5), evaluated at standard frequencies:

Q(k1,k2)=
1

N′M′

∣

∣

∣

∣

∣

N′−1

∑
n=0

M′−1

∑
m=0

r(n,m)e− j2πnk1/N′
e− j2πmk2/M′

∣

∣

∣

∣

∣

2

.

Let {qk}
N′M′

k=0 the sequence obtained by unfoldingQ(k1,k2)
into a 1D signal. The Fisher test is based on the statistic [9]:

g =
max(qk)

∑N′M′−1
k=0 qk

. (6)

The distribution ofg under the null hypothesis (i.e. when
r(n,m) is a Gaussian white noise) is:

p
[

g >
z

N′M′

]

≈ N′M′ exp(−z/2).

Hence, if one chooses a significance level (false alarm rate)
α, the detection threshold is then given by:

zα =
2

N′M′
ln(N′M′/α).

We conclude thatr(n,m) contains a periodic component if
g > zα .

3.3 Algorithm

The proposed algorithm can be summarised in the following
steps:
1. Initialisation: choose a decimation filter and a signifi-

cance levelα.
2. Split the data set into 4 subbands.
3. For each of the resulting subbands, do the following:

(a) If the subband data set is still large, go to step 4.
(b) Estimate the subband parameters using the TLS-

Prony algorithm presented in Section 2.
(c) Test for missed modes in the residual signal using

the statistic (6). The current subband should not be
decomposed again ifg 6 zα , otherwise it is marked
“decomposable”.

4. Search for a decomposable band from the whole tree, ob-
tain its children by further decimation and go to step 3.

5. Convert the subband parameters to their fullband values.

Table 1: Parameters of the simulation signal.
Mode lnzi lnwi λi

1 −0.05+ j2π0.10 −0.05+ j2π0.10 1.0
2 −0.05+ j2π0.14 −0.05+ j2π0.14 1.0
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Figure 2: Fourier transform of the noiseless simulation sig-
nal.

4. EXPERIMENTS

4.1 Simulation Signal

The purpose of this section is to compare the fullband and
subband estimations. The simulation signal contains two
2D modes(z1,w1) and(z2,w2) with parameters given in ta-
ble 1. The generated signal forms a data set of size 60×60
(N = M = 60), whose Fourier transform is shown in figure 2.
The signal-to-noise ratio (SNR) varies between -5 dB and 20
dB. For each SNR, a Monte Carlo simulation is made us-
ing 200 realisations of the additive white noise. For subband
decomposition, the decimation filter is a separable FIR filter
(i.e. h(n,m) = h1(n)h2(m)) of order 6×6 and the decima-
tion level is 1, in both dimensions. The filter is designed
so as to separate the two modes into two different subbands.
The comparison of fullband and subband estimations will be
achieved through two points of view: the variance of the fre-
quency, and the detection rate (using the MDL criterion).

The variance of they-frequency of the first mode (i.e.
f1,1 = ω1,1/2π) and the detection rate ofz1 are shown in
figures 3(a) and 3(b), respectively. The estimation is made
with p = [N/2,N/2]T in fullband andp′ = [N′/2,N′/2]T in
subband (p = [P1,P2]

T , with P1 andP2 are the prediction or-
ders in dimension 1 and 2, respectively). First, at high SNR
it is obvious that the fullband estimation variance is bet-
ter. Now, if one decreases the prediction order in fullband
(P1 = P2 = N/4) in order to reduce the computational time,
the fullband and subband variances reach almost the same
value. The advantage of subband estimation appears clearly
at low SNR: in addition to the computational cost, the vari-
ance and detection rate are better, and the threshold SNR is
smaller in subband. So, at a small expense of the variance
at high SNR, the subband estimation is generally more effi-
cient.
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Figure 3: Results achieved on the simulation signal. (a) First
mode frequency variance; (b) First mode detection rate.

4.2 Experimental NMR Signal

In this second experiment, we consider an experimental 2D
NMR signal of size 64× 2048. Here again, the decimation
filter is separable into two identical 1D filters in each dimen-
sion. The 1D filter is designed with an equiripple routine:
the ripple amplitude in passband is 0.1 and the stopband at-
tenuation is−60 dB. Since the NMR data set has a large
amount of data in the second dimension, we fixed the mini-
mum decimation level (without estimation) to[1,2]T and the
maximum one to[2,4]T . The prediction orders are fixed to
p = [N′/2,M′/2]T , whereN′×M′ is the size of the subband
signal. The final subbands obtained with our algorithm in the
spectral region[−.25,0]× [−.25,−.25]are shown in figure 4.
One can observe that the decomposition is generally deeper
in the spectral regions where several modes are located.
On the other hand, for remote modes, the decomposition is
stopped at an early level. This is the case for instance with the
mode located in the band[−.0625,0]× [−.25,−.125]. So the
method is able to adapt itself to the local complexity of a sig-
nal, allowing one to reduce the calculation time, as compared
to a uniform decomposition in which several small subbands
need to be analysed. The results obtained in some subbands
are represented in figure 5, where the estimated modes are
indicated with thick circles. For the subband in figure 5(a),
13 modes have been detected among which 10 correspond to

1

13 1 5 1 1

5 4

3

2 2
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−0.05

0
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Figure 4: Spectral region[−.25,0]× [−.25,−.25] of the
NMR signal with the final subbands and the number of es-
timated modes.

true peaks. We observe also in figure 5(b) that the approach
tend to fit a very large peak by several small ones. Finally,
thanks to the subband decomposition, some modes that are
very close have been resolved, this is shown for example in
figure 5(c).

5. CONCLUSION

In this paper, we have proposed an adaptive subband de-
composition approach for the analysis of two-dimensional
damped or undamped exponentials. This method uses a stop-
ping rule based on the Fisherg-test applied on the subband
residuals: the decomposition is stopped on a given subband
only if the test does not detect any component. Using a simu-
lation signal, it was shown that the subband approach is bet-
ter than the fullband one at low SNR in terms of detection
rate, but the variance is slightly worse. The great advantage
of the approach is its low computational complexity as com-
pared to a global one especially for large data sets. This was
confirmed on an experimental NMR signal.
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Figure 5: Results on the NMR signal. Reconstructed
contour plot in (a) band[−.125,0]× [.19, .155], (b) band
[−.25,−.125] × [0, .03], and (c) band [−.25,−.125] ×
[.185, .22].
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