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ABSTRACT is to select the set of subbands in which the spectral infor-
We propose an adaptive subband decomposition scheme dgation (frequencies) is localised. Hence, the decomwsiti
signed to estimate the parameters of two-dimensional (2D% performed recursively. As soon as a resulting subband is
exponential signals from large data sets. The principleeft numerically tractable, an estimation procedure is peréarm
method consists to perform recursive 2D decimation and es-hen, to detect possible missed modes, the FigHest [9]
timation steps. At each resulting subband, a stopping rulis evaluated using the estimation residuals: the decomposi
is evaluated to decide whether the decomposition should Bén of the subband is stopped only if no periodicity is found
continued or stopped. The proposed rule is based on thg the residual signal.
Fisherg-test applied on the estimation error. The advan- In the next Section, we present the 2D damped exponen-
tages and limitations of the subband approach are discuss#iél model and discuss an estimation method. In Section 3,
through a simulation example. The method is then demorihe proposed approach is described. In particular, we state
strated on an experimental 2D nuclear magnetic resonanée principles of the subband decomposition and the stgppin
spectroscopy signal. rule. A simulation example and an application to an experi-

mental data set is given in Section 4. Finally, conclusiors a
1. INTRODUCTION given in Section 5.

In many applications, such as sonar, radar, mobile com- 2 PARAMETER ESTIMATION OF 2D
munications, and nuclear magnetic resonance (NMR) spec- EXPONENTIAL SIGNALS

troscopy, signals can be modelled as the sum of two-

dimensional (2D) damped or undamped complex exponende consider the following 2D exponential model:

tials (called modes) in additive noise. From a 2D data sist, it |

desired to estimate the parameters of the model. For instanc

in multidimensional NMR spectroscopy, the frequencies and d(n,m) = Z‘)‘iZPV"imjL e(n,m) (1)
damping factors of damped sinusoids are crucial in deter- =

mining protein structures [8]. For this issue, Fourierd®hs ¢y n— 0 N_-1 andm=0.. M —1
algorithms such as the correlogram or periodogram metho iy o '

L . —01+ jouj) andw;, = exp(—az; + jap;) are the com-
are quite simple and fast, but suffer from the Rayleigh resopoﬁent;’loj;tjhae)l’ln)]od@ IVVi) wﬂ] cozr%;)rlé;)zélr)nplitude\i. A
lution limit. Hence, to improve resolution, several method :

. . OEVE ure sinusoidal model involves ; = a»; = 0, Vi, and a com-
have been proposed in the signal processing literaturey Th<—§g By = d2j

Here, z =

. letely damped one correspond >0andaz; > 0. The
are often extensions of 1D approaches to the 2D case, su y b ponasty 2

. me(n,m) is assumed to be a two-dimensional Gaussian
as 2D IQML [1], 2D MUSIC [8], TLS-Prony [13], MatriX ¢omplex white noise. The problem is to estimate the number
Pencil [5], etc. All these methods provide high-resolution

of moded and the set of paramet wi, A Y. given the
estimation and achieve the Cramér-Rao bound under so P o Wi, Aitio1,

. - . iSsy measurementgn, m.
mild conditions. In particular, a rule of thumb for subspace  gSeyera| algorithms have been developed to solve this
based methods to achieve a minimum frequency variance o

to fix the so-called “prediction order” to about third to half blem. Without loss of generality, let us focus on the 2D
. TLS-P Igorith in [1 17 fer-
the number of samples in each dimension [6, 7, 3]. So, wh S-Prony algorithm proposed in [13] (see [17] and refer

) ! €8nces therein for more details on 2D subspace-based methods
the data set is relatively small, all the methods apply v@il. o their performances). The starting point of the TLS-Rron
the other hand, if the data set or the number of modes is ve

r ; ; )

large, it is often difficult to obtain satisfactory resultsedto Fethad is the following form of model (1):

prohibitive computational costs (inversion of large nts, K

rooting of high-order polynomials, etc.). d(n,m) = Z Ck,mek +e(n,m) 2)
In this paper, we propose a subband estimation scheme =

in which the data set is decomposed into a certain number of

data sets, each being much smaller than the original one aéere L

more favorable from a numerical point of view. The use of e m

subband decomposition prior to the estimation process has Clom = |Zak’| Pyici-

been known for several years [10, 12, 15]. The originality of -

the method proposed here lies in the fact that the decomp@x, is thekth x-mode &component of 2D exponentialy, ,

sition is carried out adaptively. The purpose of this schemés the k,Ith y-mode, gy is the k,Ith amplitude coefficient

3)
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andLy is the number of;-modes corresponding to theh 0.5 i
x-mode. In order to estimate the 2D signal parameters, the Hzo Ho1 i Hoo
idea is to perform a set of 1D estimations using (2) and (3).
Indeed, it is clear from (2) that the sequence obtained for a
fixed value ofmis a 1D exponential signal whose parameters
may be estimated with a 1D high-resolution technique.

The TLS-Prony algorithm for 2D frequency estimation in 0+ Hi2 Hi1 Hiz2
[13] consists of the following four steps:

e Using (2), form the backward linear prediction equation:

S{ L } =0 (4) Hz 2 Ha1 Hz

b
-0.5 |
-0.5 0 0.5

whereb = [by,by,---,bp]" is the prediction vector and
P > K is the prediction order. The matr& is formed
from the data set & = [D{ |D]|---|D{,_4]7, whereD;

is a Hankel matrix:

Figure 1. Schematic representation of the ideal frequency
responses$H; j(fq, fz)}ﬁj:l of the subband 2D filters.

d(0,i) d(1,i) d(Ri) , . :
d(1,i) d(2,i) - d(P+1,i) benefit from these performances. For instance, the dimen-
= . . sion of the matrixS in (4) is aboutNM x P. So it is clear
: : : that, for large signals, it is necessary to reduce the pnoble
dN-P—-1i) d(N-Pi) --- d(N-1,i) complexity by using, for example, subband decomposition.
fori =0,---,M—1. In order to achieve a minimum 3. ADAPTIVE SUBBAND ESTIMATION

frequency varianceP have to be chosen in the range ] ) )

[N/3,N/2], with P ~ N/3 for undamped sinusoids [6] 3-1 2D Signal Decimation

andP ~ N/2 for damped ones [3]. By performing the Subband decomposition is achieved classically through suc

singular value decomposition (SVD) of the matéixone  cessive filtering and decimation stages, say, by a factor 2.

can estimate the number fmodesK using a theoreti- Four 2D decimation filters are necessary as illustrated i fig

cal information criterion, such as MDL or AIC (see [16]). ure 1. The same result can be obtained using a single low-

Then, (4) should be solved in the total least squares (TLS)ass 2D filter (denoted Wiy, 1 in figure 1), but conveniently

sense [11] with an SVD truncation to obtéin Finally, centered on each of the four subbands. So, without loss of

the estimatea-modes are found by generality, we consider here a lowpass filter with impulse
responséi(n,m). The corresponding subband signal is ob-

By = 1 ke12 R tained as follows:
Xk = B\ — L&y
zerq(B(2)) d'(n,m) = Z;h(n’,r’d)d(Zn—n’,Zm—rﬁ)
whereB(z) = 1+ by z+ ...+ bpZ” (theP — K zeros ofB(2) "
lying inside the unit circle must be discarded). forn=0,1,--- ,N—1andm=0,1,--- ,N'—1(N'=N/2,

e For each time indexn=0,...,M — 1, compute thex- M’ = M/2). Note that the decimation reduces the data set
amplitude coefficients,;, in the least squares sense us-Size and possibly the number of modes due to the filtering op-
ing (2) and the estimated modpg.” eration. The previous filtering and decimation process may

« For eachcmodep;,, k= 1, ..R, obtain the correspond- :]hoetr;et):crheepdeated as long as the desired subband signal size is

ing L y-modespy,, from (3) using once again the 1D~ Note that, in practice, the subband filters overlap each
TLS-Prony approach (here the prediction equations argther and thus a single frequency may appear in two con-
made over thenindex, for a fixedk). . tiguous subbands. To avoid this problem, we use the overde-
e Compute the amplitude coefficiersg) for k= 1,...,K  termined filterbank structure presented in [14]. Moreover,
by solving the set of Vandermonde equations obtainethe transient introduced by the filter is suppressed so ieat t
from (3) in the least squares sense. model of the subband signals is still a sum of a (possibly re-
Finally, the 2D signal parametef®, ;) with amplitudes; duced) number of modes which can be estimated by the TLS-
IO ) Prony method presented in the previous section. Assume that
correspond to the set of couplégy,, { By, }|=1) With am- e number of mode in a given subband!isc I:

plitudes{ékJ}lLil. The total number of estimated modes is v
then: d'(n,m) = .Zlai/z‘lnwi,m+ €(n,m).
1=

K
=3 G )
k=1 If I’_ mode; are Qetec_ted by the TLS-Prony approach, then the
Generally speaking, the use of a high-resolution techresidual signal is defined by:
nigue to estimate the 2D parameters leads to good perfor- o
mances in terms of precision and resolution. Unfortunately — T A/5/NMa/m
when the number of samples is large, it is often difficult to r(n,m) = d(n,m) i;a‘z‘l W ®)
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forn=0,..,N' —1andm=0,...,M’ — 1. Ideally, if all sub- ] . . .
band modes are correctly retrieved, the residuals are tose Table 1: Parameters of the simulation signal.
a white noise. If one or more modes are missed, then tHeMode | Inz [ Inw; [Ai ]
signalr (n,m) is no more white. The stopping rule described| 1 —0.05+ j2m0.10 | —0.05+ j2m0.10 | 1.0
below is based on this observation. 2 —0.05+ j2m0.14 | —0.05+ j2r0.14 | 1.0

3.2 Stopping Rule

The adaptive subband decomposition method we propos

here aims at satisfying the following constraint. If in any
subband, the estimation procedure misses some modes, t
decomposition should continue. On the contrary, if all spec

tral information has been retrieved, there is no need to/carr

on the decomposition, which thus should be stopped. Inor 400
der to check for the presence of some “hidden periodicities
in the residual signal, several measures may consideréd su
as the MDL criterion, whiteness test [4, 2], etc. Here, we 0
propose to use the well-known Fishgstatistic [9]. It was 01
originally developed for 1D sequences, but it is easily edte

able to 2D signals. Denote ly(ki, k) the periodogram of

the residual signal in (5), evaluated at standard freqesnci

200

1 [N-1mea . o | ¢
S5 rinmpe famte pmn| fo e
n=

Q(k1, ko) = NV

- Figure 2: Fourier transform of the noiseless simulation sig
Let {a}RY the sequence obtained by unfoldi@gki,k;)  nal.
into a 1D signal. The Fisher test is based on the statistic [9]

maxdk)

9= SVWIg (6) 4. EXPERIMENTS
o B} o 4.1 Simulation Signal

The distribution ofg under the null hypothesis (i.e. when

r(n,m) is a Gaussian white noise) is: The purpose of this section is to compare the fullband and
. subband estimations. The simulation signal contains two
p [g > W} ~ N'M exp(—z/2). 2D modes(z;,w1) and(z,w,) with parameters given in ta-

ble 1. The generated signal forms a data set of size 60

Hence, if one chooses a significance level (false alarm ratd) =M = 60), whose Fourier transform is shown in figure 2.
a, the detection threshold is then given by: he signal-to-noise ratio (SNR) varies between -5 dB and 20

dB. For each SNR, a Monte Carlo simulation is made us-
ing 200 realisations of the additive white noise. For suloban
~ N'M’ decomposition, the decimation filter is a separable FIRfilte

) o _ (i.e. h(n,m) = hy(n)hy(m)) of order 6x 6 and the decima-

We conclude that(n,m) contains a periodic component if tion level is 1, in both dimensions. The filter is designed

Zy In(N'M’/a).

9> 2. S0 as to separate the two modes into two different subbands.
, The comparison of fullband and subband estimations will be

3.3 Algorithm achieved through two points of view: the variance of the fre-

The proposed algorithm can be summarised in the followingluency, and the detection rate (using the MDL criterion).

steps: The variance of thg-frequency of the first mode (i.e.

1. Initialisation: choose a decimation filter and a signifi- f11 = wi,1/2m) and the detection rate @ are shown in
cance levebr. figures 3(a) and 3(b), respectively. The estimation is made

2. Split the data set into 4 subbands. with p = [N/2,N/2]" in fullband andp’ = [N'/2,N’/2]T in

3. For each of the resulting subbands, do the following: ~ subband = [Py, P,]T, with P, andP, are the prediction or-
() If the subband data set is still large, go to step 4. ders in dimension 1 and 2, respectively). First, at high SNR

(b) Estimate the subband parameters using the TLdt is obvious that the fullband estimation variance is bet-
Prony algorithm presented in Section 2. ter. Now, if one decreases the prediction order in fullband

. . : . . (P, = P, =N/4) in order to reduce the computational time,
©) ;isgggtzsi?és(séd 'rl'nhoediﬁrlrr;rf?gufbsg]lﬁjalss(l)%?gln%?B he fullband and subband variances _reac_h almost the same
decomposed aQain i < 24, otherwise it is marked Yalue. The advantage of subband estimation appears clearly
“decomposable” - at low SNR: in addition to the computational cost, the vari-
j ance and detection rate are better, and the threshold SNR is
4. Search for a decomposable band from the whole tree, ojmajler in subband. So, at a small expense of the variance

tain its children by further decimation and go to step 3. gt high SNR, the subband estimation is generally more effi-
5. Convert the subband parameters to their fullband valuegient.
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S NMR signal with the final subbands and the number of es-
5 1 timated modes.
.g |
g true peaks. We observe also in figure 5(b) that the approach
= - tend to fit a very large peak by several small ones. Finally,
ullband (p=N/2) ..
—=— Subband (p=N"/2=N/4) [ thanks to the subband decomposition, some modes that are
: : — — — Fullband (p=N/4) very close have been resolved, this is shown for example in
%0 15 20 figure 5(c).

5 10
SNR [dB]

(b) 5. CONCLUSION

. ) ) _ ) . In this paper, we have proposed an adaptive subband de-
Figure 3: Results ac.hleved on the simulation S|gnal. (st Fir composition approach for the analysis of two-dimensional
mode frequency variance; (b) First mode detectionrate.  gamped or undamped exponentials. This method uses a stop-
ping rule based on the Fishgttest applied on the subband
residuals: the decomposition is stopped on a given subband
only if the test does not detect any component. Using a simu-

tion signal, it was shown that the subband approach is bet-
er than the fullband one at low SNR in terms of detection
rate, but the variance is slightly worse. The great advantag
of the approach is its low computational complexity as com-

ared to a global one especially for large data sets. This was
onfirmed on an experimental NMR signal.

4.2 Experimental NMR Signal

In this second experiment, we consider an experimental 2
NMR signal of size 64< 2048. Here again, the decimation

filter is separable into two identical 1D filters in each dimen
sion. The 1D filter is designed with an equiripple routine:
the ripple amplitude in passband is 0.1 and the stopband

tenuation is—60 dB. Since the NMR data set has a large
amount of data in the second dimension, we fixed the mini-

mum decimation level (without estimation) b 2]™ and the
maximum one td2,4]T. The prediction orders are fixed to
p=[N'/2,M'/2]T, whereN’ x M’ is the size of the subband
signal. The final subbands obtained with our algorithm in the
spectral regiofi—.25,0] x [—.25, —.25] are shown in figure 4. 2]
One can observe that the decomposition is generally deepe[r
in the spectral regions where several modes are located.
On the other hand, for remote modes, the decomposition is
stopped at an early level. This is the case for instance tvith t
mode located in the barjd.06250] x [—.25,—.125. So the
method is able to adapt itself to the local complexity of a sig 3]
nal, allowing one to reduce the calculation time, as congpare

to a uniform decomposition in which several small subbands
need to be analysed. The results obtained in some subbands
are represented in figure 5, where the estimated modes are
indicated with thick circles. For the subband in figure 5(a), [4]
13 modes have been detected among which 10 correspond to

(1]

1035

REFERENCES

M. P. Clark and L. L. Scharf. Two-dimensional modal
analysis based on maximum likelihoodEEE Trans.
Sgnal Process., 42(6):1443-1452,1994.

E.-H. Djermoune, G. Kasalica, and D. Brie. Estima-
tion of the parameters of two-dimensional NMR spec-
troscopy signals using an adapted subband decomposi-
tion. In IEEE ICASSP, pages 3641-3644, Las Vegas,
USA, 2008.

E.-H. Djermoune, M. Thomassin, and M. Tomczak.
First-order analysis of the mode and amplitude esti-
mates of a damped sinusoid using matrix pencil. In
European Sgnal Process. Conf., Glasgow, Scotland,
20009.

K. Drouiche. A new test for whitenesdEEE Trans.
Sgnal Process., 48(7):1864—-1871, 2000.



[5] Y. Hua. Estimating two-dimensional frequencies by ‘ ‘ ‘ ‘ T
matrix enhancement and Matrix PencilEEE Trans.
Sgnal Process., 40(9):2267-2280, 1992. -0.02

[6] Y. Hua and T. K. Sarkar. Matrix pencil method for esti-
mating parameters of exponentially damped/undampec
sinusoids in noisel EEE Trans. Acoust. Speech Sgnal
Process., 38(5):814-824, May 1990.

[7] A. C. Kot, D. W. Tufts, and R. J. Vaccaro. Analysis of = %
linear prediction by matrix approximatiotEEE Trans.
Sgnal Process., 41(11):3174-3177,1993. —o.08l

[8] Y. Li, J. Razavilar, and K. J. Ray. A high-resolution
technique for multidimensional NMR spectroscopy. oal
|EEE Trans. Biomed. Eng., 45(1):78-86, 1998. '

[9] M. B. Priestley. Spectral analysis and times series.
Academic Press, San Diego, CA, 1989. -0.12f

[10] M. P. Quirk and B. Liu. Improving resolution for au- 0185 -048 -0175 f2‘°'17 0165 016
toregressive spectral estimation by decimatioBEE
Trans. Acoust. Speech Sgnal Process., 31(3):630-637, @
1983. ‘ uO OOOOOOQ)UOO 0 :
[11] M. A. Rahman and K. B. Yu. Total least squares ap- 1400 { @Ow 0
proach for frequency estimation using linear prediction. =
|EEE Trans. Acoust. Speech Signal Process., 35:1440— S
1454, 1987. 0161 OODQOpoOW CRep= ==
[12] S. Rao and W. Pearlman. Analysis of linear prediction, ! O\ Qc@@ .@, ; @’@ PN
coding, and spectral estimation from subbanbdsEE -0.18}
Trans. Inf. Theory, 42(4):1160-1178, 1996. e

. 0
[13] J. J. Sacchini, W. M. Steedly, and R. L.Moses. Two- Sl 0 0 W% ﬁ ! Q i

dimensional Prony modeling and parameter estimation. o AR
IEEE Trans. Sgnal Process., 41(11):3127-3137, 1993. (v ¢ 000 D

[14] S. D. Silverstein, W. Engeler, and J. A. Tardif. Padalle %22 0 U o0
architectures for multirate superresolution spectrum an- ' 0, 0% ﬁ
alyzers.|EEE Trans. Circ. Syst., 38(4):449-453, 1991. o4l 0 B ) 0 b 0

[15] A. Tkacenko and P. P. Vaidyanathan. The role of filter ‘ ‘ ‘ ‘
banks in sinusoidal frequency estimatiod. Franklin 0 0.005 001 003 002 0025 0.03
Inst., 338(5):517-547, 2001. 2

[16] M. Wax and T. Kailath. Detection of signals by infor-
mation theoretic criterial EEE Trans. Acoust. Speech
Sgnal Process., 33(2):387-392, 1985.

[17] C. J.Ying, H. C. Chiang, R. L. Moses, and L. C. Pot-
ter. Complex SAR phase history modeling using two-

dimensional parametric estimation techniquedroc.
SPIE, volume 2757, pages 174-185, 1996.

(b)

-0.141

-0.16

-0.18

f1

0.19 0.195 0.2 0.205 0.21 0.215

(©

Figure 5: Results on the NMR signal. Reconstructed
contour plot in (a) band—.1250] x [.19,.155, (b) band
[-.25—.125 x [0,.03], and (c) band[-.25—.125 x
[.185,.22].
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