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ABSTRACT 
In this paper, a specific method for massive Capillary Elec-
trophoresis data analysis based on pattern recognition tech-
niques in the wavelet domain is presented. Low-resolution, 
denoised electropherograms are obtained by applying sev-
eral pre-processing algorithms including discrete wavelet 
transform, denoising, detection of region of interest and 
baseline correction. The resultant signal is mapped into 
multi-character sequences exploiting the first derivative 
information and multi-level peak height quantization. Next, 
local alignment algorithms are applied on the coded se-
quence for peak pattern recognition. Finally, Gaussian ap-
proximation is performed to assure precise peak-height 
measurements. 

1. INTRODUCTION 

Current epidemiologic studies, DNA analysis, high temporal 
resolution neurochemical experiments, drug of abuse screen-
ing and the need to lower medicine costs have compelled the 
development of high throughput techniques including Elisa, 
microarray and capillary array electrophoresis. In particular, 
this last technique has been proved to be a cost-effective, 
rapid and highly efficient separation method that requires 
minimal sample volume and relatively simple hardware. The 
use of this technique, however, generates massive amounts 
of electropherograms demanding data analysis that is mostly 
done by visual inspection or through human assisted soft-
ware. On this line of work, emerge the need of developing 
fast and efficient algorithms based on signal processing tools 
that allow us to analyze the electropherograms in a fast and 
reliable mode. In particular, pattern recognition is, perhaps, 
the most needed signal processing tool in order to cluster 
and classify massive volume of electropherograms. Pattern 
recognition, however, in capillary electrophoresis (CE) 
represents a challenge due to the variability inherently ob-
served in CE data [1]. 
An electrophoretic register can be thought of as a temporal 
series composed of a linear superposition of several Gaus-
sian-like waveforms whose temporal location may change 
due to the migration time shift present in this kind of data 
[2]. Furthermore, each Gaussian waveform is closely related 
to a specific substance, hence its peak height varies among 
electrophoretic registers according to the concentration of 
the corresponding substance.  

Part of the goals in the analysis of electrophoresis data is to 
identify a substance of interest and measure its concentra-
tion, process that is done by visual inspection. 
To the best of our knowledge, very little work has been de-
voted in the development of an automatic system for proc-
essing massive electrophoretic data. The closest works re-
lated to this research have been reported in [3, 4, 5]. In [3], 
several post-processing methods are proposed for high-
throughput analysis of separation data, it includes polino-
mial baseline correction, automatic peak marking based on 
first derivative, aided lineal temporal normalization and as-
sisted deconvolution of peaks. Szymanka et. el in [4] uses 
dynamic time warping to correct the migration time shifts 
commonly presented in EC data. Furthermore, a similarity 
score between two whole-electropherograms is used as a 
match metric. Finally, in [5], a local alignment algorithm is 
introduced to deal with non-linear time-shifting and pattern 
recognition.  
Although the approach developed in [3] tries to exploit the 
preprocessing stages of a possible more complete massive 
data processing system, in this paper, we propose specific 
methods to efficiently deal with automatic massive analysis 
of capillary electrophoresis data including peak pattern rec-
ognition. We propose dynamic programming concepts [4, 5] 
applied in wavelet domain reducing thus computational 
complexity. Furthermore, the proposed method introduces a 
robust and versatile baseline correction algorithm, peak pat-
tern recognition for analysis and classification and gaussian 
approximation for high precision measurements in massive 
electrophoretic data. 
The proposed approach comprises four stages: in a first 
stage, the electropherograms are pre-processed in the wave-
let domain. Data reduction, denoising and region of interest 
detection are suitably achieved based on the wavelet trans-
form. Secondly, baseline correction algorithm based on sec-
ond derivative is developed to remove the time-varying off-
set present in an electrophoretic register. Next, peak pattern 
recognition by local alignment and automatic gaussian ap-
proximation algorithms are applied on the preconditioned 
registers. All of these stages have been designed to work in 
automatic mode. 
The proposed approach was tested on the analysis of in-
tracerebral microdialysate data, achieving a correct detection 
rate around 85% with a processing time of less than 0.3 sec-
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ond per 25.000-point electropherogram. For a detailed de-
scription of the pattern recognition technique see [5]. 

2. METHODS 

Figure 1 shows the four stages of the proposed approach. 
 

 
Figure 1 – Stages of the proposed method. 

 
2.1 Wavelet Processing  

 
2.1.1. Selecting Wavelet Type and Resolution Level 
 
Weidong et. al [6] tested several mother wavelets and chose 
symlet 4 as the one that has the best performance for the 
analysis of electrophoretic data since it yields the best peak 
reconstruction and peak preservation. We profited on this 
research and used symlet 4 in this work. 
For pattern recognition we use the approximation coeffi-
cients yielded by a four-level wavelet decomposition. At this 
level of wavelet decomposition, the shape of the original 
signal as well as the most salient information are preserved. 
Furthermore, the number of data points is reduced by a fac-
tor of 24 and a smoothing operation is applied on the signal 
by the successive low-pass filtering inherent in the wavelet 
decomposition. 

 
2.1.2. Detection of Region of Interest (ROI) 

 
We observed that at 7-level wavelet decomposition the detail 
coefficients have information related to the signal shape and 
not to the noise components. Therefore, using this informa-
tion, the region containing peaks of interest is found accord-
ing to the following procedure: The absolute value of the 
detail wavelet coefficients at the seven-level wavelet de-
composition are calculated, and the region of interest is de-
fined starting at the most left coefficient whose magnitude 
value is greater than a given threshold value and ending at 
the right most coefficient with magnitude greater than the 
threshold value. The corresponding starting and end points 
of ROI are then found at 4th level wavelet decomposition. 

We set the threshold value to 2% of the maximum absolute 
value of the detail wavelet coefficients at level seven. 

 
2.1.3. Noise Reduction 
 
Since pattern recognition is performed on a low resolution 
signal, a denoising operation is intrinsically applied on the 
signal. More precisely, the pattern recognition is performed 
at four-level wavelet decomposition, therefore the wavelet 
detail coefficients at first four levels are throwed away lead-
ing thus to high-frequency noise suppression. Furthermore, 
the remaining signal noise components are reduced by a 
thresholding operation performed on detail coefficients of 
the 5th and 6th wavelet decomposition levels followed by an 
inverse wavelet transform until the fourth level [5]. 

 
2.2 Baseline correction 

 
The baseline of an electropherogram is not very often a per-
fect horizontal line. Indeed, it can be regarded as an offset 
that changes dynamically with time being (possibly) unique 
for each acquired CE register. In some electropherograms, 
the baseline gradually raises due to spurious fluorescent 
material adhered to the outer surface of the capillary during 
the injection procedure. Sometimes, the baseline drifts 
downwards due to tailing of a highly concentrated band. 
This baseline drifts makes much harder the pattern recogni-
tion problem with methods that use peak amplitudes to 
compare patterns. Furthermore, it may lead to wrong peak 
measurements due to the offset introduced on the data 
points. Therefore, baseline correction emerges as a required 
pre-processing stage before any further downstream data 
analysis.   
In the present study, we exploit the fact that baseline is a low 
frequency signal and, therefore we analysis the four level 
wavelet approximation coefficients to estimate the baseline 
curve heuristically. The algorithm is based on cubic interpo-
lation using key preselected wavelet coefficients as de-
scribed next. 
Let Y=[Y(1), Y(2), …., Y(M)] and B=[B(1), B(2), …., B(M)] 
be a first approximation of the baseline curve and the final 
baseline curve to be estimated, respectively where M is the 
number of wavelet approximation coefficient at four de-
composition level.  Define each entry of Y as follows:  
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Where Z(n) is the second derivative of the wavelet coeffi-
cients C(k), and T(k) is a threshold function equal to a re-
scaled version (between hmin and hmax) of a function con-
structed by linear interpolation using de local maximum of 
C(k), where hmin and hmax are tunning parameters  0< hmin < 
hmax < 20. 
Replace those components of Y, defined by the “otherwise” 
part of the equation (1), by cubic interpolation using those 
elements of Y for which Y(k)=C(k).  
Define each component of B as follows 

Gaussian approximation (initial parame-
ters estimation, optimization) 

Wavelet processing (Data reduc-
tion, Denoising, ROI detection) 

Pattern recognition 
(Signal Coding, Local alignment) 

Baseline correction 
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Figure 2 – Construction of the baseline curve. Upper: Dashed line: 
Final baseline curve, Dotted line: First approximation of the base-
line curve. • wavelet coefficients with smooth variations, × local 
minimum under the first approximation of the baseline curve. Mid-
dle: baseline correction by the proposed approach. Bottom: baseline 
correction achieved by [3]. 
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Replace those components of B, defined by the “otherwise” 
part of equation (2), by cubic interpolation using those ele-
ments of B for which B(k)=C(k). 
As can be seen from Equations (1) and (2), the baseline curve 
is forced to pass through those wavelet coefficients that have 
smooth variation. Figure 2 shows the baseline constructed 
using the proposed algorithm. Note that the local minimum, 
marked as x, that are below the first approximation of the 
baseline curve are taken into account to define the final base-
line curve. We found this method for baseline correction 
more suitable in data with fast variation in baseline than 
polynomial methods. Figure 2 (middle) shows the perform-
ance of our methods for baseline correction in a particular 
case with fast drift on the baseline. Figure 2 (bottom) depicts 
the baseline correction yielded by the approach described in 
[3] where singular valued decomposition and a 10 degree 
polynomial function is used to model the baseline. 
 
 
 

 
Figure 3 – Local alignment of electropherograms performed on the 
approximate wavelet coefficients at fourth wavelet decomposition 
level.  

 
2.3 Pattern Recognition 

 
The resultant denoised electropherogram at the four-level 
wavelet decomposition with the baseline removed is coded 
using a finite alphabetical codes where the codewords are 
codes associated with not only to the first derivative signs 
like in [7] but also to the height of the peaks. 
 
2.3.1. The proposed coding method 
 
The proposed coding method is as follows: each point in the 
electropherogram is coded as M if the signal slope is posi-
tive, P if the signal slope is negative, L if the point is a val-
ley and either A, B, C, D, E, F, G, H if the signal reaches a 
local maximum. In this last case, the assigned alphabetical 
code depends on the height of the peak. Thus, the A to H 
characters correspond to peak height quantized to eight lev-
els uniformly distributed between 0 and 4000 milivolt. 
 
2.3.2. Local Alignment 
 
Having coded the desired pattern and the electropherograms 
at low resolution, we applied the pairwise local alignment 
method of Smith & Waterman [8] to find the desired coded-
pattern in each coded electropherogram. To achieve that, we 
use a substitution matrix, a gap opening penalty and a gap 
extension penalty described in full details in [5]. 
Figure 3 depicts a local alignment achieved with these pa-
rameters. Note that the algorithm successfully finds the de-
sired pattern even though there exist two aligned peaks with 
a variation in peak height of more than 100%. Note also 
that, in finding the desired pattern, the algorithm aligns both 
the searched pattern and the found pattern, by inserting sev-
eral gaps in suitable locations. 
The gap insertion and the ability of aligning peaks with re-
markable height difference are the main advantages of the 
proposed approach to handle the variability found in elec-
trophoretic signals. This mode of application of dynamic 
programming (local alignment) for peak pattern  matching is 
different from [4] where the whole electropherograms are 
compared. 

 
 

Searched peak 
pattern

Found peak 
pattern
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2.3.3. Optimization of the Local Alignment Algorithm 
 

An approach to speed up the Smith & Waterman alignment 
algorithm consists in searching for the highest alignment 
score only in the last row of the DP matrix instead of search-
ing in the whole matrix. Due to the high variability found in 
the electropherograms, the only solution outputted by the 
conventional Smith & Waterman algorithm may lead to a 
wrong detection (misplace) of the desired pattern. To over-
come this drawback, we consider several possible solutions 
associated with different time locations of the found pattern, 
giving preference to the pattern with the closest location to 
the location of the desired pattern in the reference electro-
pherogram. 
Let P0 denotes the location of the desired pattern in the ref-
erence electropherogram, and Δp/2 a tuneable parameter that 
represents the maximum deviation around P0 for the allowed 
solutions. The parameter (Δp/2) can be chosen based upon 
the peak location reproducibility of the electropherograms. 
In this work, we set Δp = 0.14P0 based upon the maximal 
deviation observed in the tested data. Furthermore, as possi-
ble solutions, we consider the five highest alignment score 
that are related to five different locations in the electro-
pherogram.  
We consider the alignment scores of the last raw (on the 
dynamic programming matrix) in descending order and ap-
ply the backtracing algorithm [5] repeatedly until 5 different 
locations of the found pattern are obtained. In this process, if 
one of the optimal reconstructed pathways ends in a location 
inside the preference band (P0-ΔP/2, P0+ΔP/2), this recon-
struction will be considered as the final alignment solution 
and not additional backtracing is performed. On the other 
hand, if none of the 5 solutions that have been considered 
lies inside the band, the alignment that starts closest to P0 
will be considered as the solution. 

 
2.4 Gaussian approximation 

 
The superposition of adjacent substances inner the capillary 
can lead to erroneous measurements of peak heights. It is 
necessary the deconvolution of signal in kernel functions. 
Note in Fig. 4 decomposition of electropherogram curve in 
sum of gaussian kernels. 
If the distance between the detection cell and detector is short 
and wall desorption is negligible, it is expected that the 
waveform related to a particular substance has a Gaussian-
like shape mainly due to longitudinal diffusion of substances 
inside the buffer [2]. We approximate the peaks by sum of 
Gaussian functions using nonlinear optimization algorithm 
for estimation of the parameters (peak height, location and 
variance) of a Gaussian waveform (Trust Region Algorithm). 
The initial parameters are automatically calculated exploiting 
the information related to the second derivative of electro-
pherograms. More precisely, the zero-crossing of the second-
derivative represents a rough estimation for the variance, 
whereas the average of two successive zero-crossing of the 
second-derivative defines the initial gaussians location and 
the amplitudes are calculated by linear regression [9]. Per-

haps the most of works in deconvolution of peaks in capillary 
zone electrophoresis uses second derivative [10], if 4th de-
rivative is considered instead 2nd , and the peaks are assumed 
gaussians, we can resolve high level overlapping of sub-
stances. Note the high level overlapping resolved in the sum 
of the left most second and third Gaussians in left image in 
Fig.4. Unlike [9], where the Gaussians' amplitudes are al-
lowed to take on negative values, in our approach, only posi-
tive Gaussians are considered. The Gaussian processing time 
was 90 sec. by 120 gaussians approximately. The process is 
performed in third level of wavelet decomposition in order to 
conserve a suitable resolution of peaks. Note in Fig.4 the 
approximation on level 3 and 4 of wavelet decomposition.  

 

 
Figure 4 – Approximation of an electropherogram by linear combi-
nation of Gaussian functions at approximation wavelet coefficients. 
Left: third decomposition level, right: fourth decomposition level.  

 
Once all the electropherograms have been processed and the 
found patterns have been aligned by the peak matching pro-
cedure described above, the results can be reorganized in a 
matriz that can be analized by datamining algoritm with the 
aim of finding no explicit information. 

3. RESULTS AND DISCUSION 

3.1 Analysis of Intracerebral Microdialysate 
 

We randomly select 30 electropherograms out of a set of 277 
electropherograms obtained from dialysates of the same rat’s 
brain area. Patterns containing 4, 8, 12, 16, 32 and 50 peaks 
are selected in an arbitrary reference electropherogram cho-
sen out of the set. Those patterns are then searched in the 
subset of electropherograms. Table 1 shows the percent of 
correct detection as a function of the length of the pattern. 
The percent of correct detection is validated by expert visual 
inspection, a correct detection is assumed when all peaks in 
searched pattern are aligned with corresponding peaks in 
found pattern. 

Tabla 1. Percent of correct detection achieved by the proposed algorithm. 

Pattern length (number of peaks) 
4 8 12 16 32 50 

65.3% 84% 85.3% 80.6% 79.5% 90% 
 
As can be noted in Table 1, the proposed method yields 
competitive results for longer pattern.  
As a second test, the proposed algorithms are applied in the 
whole data set (277 electropherograms) on a Pentium IV, 3.2  
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Figure 5 – Three-dimensional surfaces representing found patterns. 
Top: unaligned patterns. Bottom: aligned patterns. 

 
GHz, with 1GB RAM. For an eight-peak pattern the coding 
and local aligning time take just 23 ms per electropherogram, 
whereas the signal conditioning time is about 64 ms per elec-
tropherogram.  
To further illustrate the performance of the proposed algo-
rithm, Fig. 5 shows the results of the alignment process us-
ing a 3-dimensional representation. In that representation, 
each row is a found pattern, hence, a set of consecutive col-
umns are associate with chemical substances. The lower 
image shows the found pattern without being aligned, 
whereas the upper image shows the found patterns aligned 
with the reference pattern. Interestingly, this kind of repre-
sentation of the aligned data leads to a rapid visual evalua-
tion of the found patterns in a sequence of electrophero-
grams. Moreover, the surface allows us to detect those peaks 
showing the largest variations and, therefore, the chemical 
changes among the electropherograms. 
Finally, Fig. 6 shows another set of found patterns that, by 
convenience, have been sorted according to the instant of 
sample acquisition. In this representation de third dimension 
which represents relative substance concentration is mapped 
to colours. Note a notable increment on the concentration of 
a certain chemical substance (second substance, from left to 
right) in the time course (vertically direction). This variation 
may be produced by a specific experimental manipulation 
such as the study of the effect of a drug in variation of con-
centrations of a certain set of substances. 

4. CONCLUSIONS 

In this paper, a pattern recognition approach for electropho-
retic data processing has been proposed that achieves about  
85% of correct pattern detection and an execution time less 
than 0.3 seconds per 25000-point electropherogram. This 
percentage of correct detections tends to improve as the 
length of the searched pattern increases.  
The proposed methodology can certainly have a great impact 
on modern high throughput capillary electrophoresis instru-
mentation. In this particular area, the methods presented in 
this and future articles will substitute slow, human based 
time-consuming visual pattern recognition methods by auto-
matic fast pattern recognition techniques.  

 
Figure 6 – Variations in the concentration of chemical substances in 
the tested sample as the experimental conditions changes. All the 
aligned electropherograms are assembled into a matrix so that each 
raw is an aligned electrophoretic register. Right: colorbar indicating 
substance relative concentration level. Low concentration (~0), high 
concentration (~ 70 ).  
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