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ABSTRACT

This paper presents the design of the compensation filter of a
generalized comb filter (GCF) based on minimax optimiza-
tion method. The coefficients of the proposed filter are ob-
tained by solving two simple linear equations. The filter op-
erates at a low rate and considerably reduces the passband
droop of the GCF filter.

1. INTRODUCTION

The simplest decimation filter, proposed by Hogenauer [1],
is the cascaded-integrator-comb (CIC) filter. However, this
filter has a high passband droop and a low stopband atten-
uation. Different methods have been proposed to improve
the passband and the stopband characteristics of a CIC filter
[2, 3, 4, 5, 6]. Recently, a generalized CIC decimation fil-
ter (GCF) has been proposed in [6]. As a result an increased
stopband attenuation as well as extended bands around the
zeros of the magnitude characteristic of the CIC filter are ob-
tained. The bands around zeros, i.e., frequency points 2πk/D
where D is the decimation factor, and k = 1, . . . ,D− 1 are
called folding bands [6, 7].

The transfer function of the GCF filter is expressed as [6]
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where D stands for the decimation factor and αn, n =
1, . . . ,N, are rotation parameters optimized such that the min-
imum attenuation within folding bands is maximized [6].

The discrete-time Fourier transform (DTFT) of HGCFN
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In general case HGCFN
(z) has linear-phase characteristics and

complex-valued coefficients (see (2)). The real-valued filter
coefficients of HGCFN

(z) are obtained satisfying αn =−αN−n

[6]. A useful choice for αn is αn = qnπ/νD, where ν is a

positive integer and qn is a real value in the range [−1,1]
[6]. Traditional CIC filter is obtained by setting αn = 0, n =
1, . . . ,N.

As one example, consider the design of a GCF filter us-
ing the following parameters: N = 5, D = 7, ν = 4, and
qn = [−0.55, −0.93, 0, 0.93, 0.55] [6]. Figure 1(a) shows
the magnitude response of the resulting GCF filter, while
the passband detail is illustrated in Fig. 1(b). Notice the in-
creased width and attenuations at the folding bands. Unfor-
tunately, the GCF filter exhibits a high passband droop (see
Fig. 1(b)).
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Figure 1: Magnitude response of the GCF filter for N = 5,
D = 7, and ν = 4.

The review of existing compensation methods shows that
compensation filters are mainly presented for traditional CIC
filters and not for GCF filters. See for example [2, 3, 4]. To
this end, in this paper we introduce a design method for the
GCF passband compensation, based on minimax optimiza-
tion. More general approach that includes different design
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constraints, i.e. maximally flat, least square, and minimax is
elaborated in [8].

The presented design also includes the CIC passband
compensation as a special case.

The paper is organized as follows. Section 2 introduces
the proposed second order compensation filter. Discussions
and results are presented in Section 3.

2. PROPOSED GCF COMPENSATION FILTER

The transfer function of the proposed GCF compensation fil-
ter is given as

P(zD) = a + bz−D + az−2D, (4)

where a and b are real valued constants.
The compensation filter is cascaded with the GCF filter as

shown in Fig. 2(a). Using the multirate identity [9] the filter
P(zD) can be moved to lower rate resulting in more efficient
structure shown in Fig. 2(b).

HGFCN
(z) P(zD) D

(a)

HGFCN
(z) D P(z)

(b)

Figure 2: Decimation block diagrams. a) Generalized CIC
filter HGCFN

(z) and compensation filter. b) Efficient structure
for decimation.

The cascade of the compensation filter P(zD) and the
GCF filter yields the following overall transfer function:

G(z) = HGCF(z)P(zD). (5)

By performing the DTFT, equation (5) becomes

G(e jω) = e−jω((D−1)N+2D)/2H(ω)PR(Dω), (6)

where PR(Dω) is the amplitude response of P(e jωD), which
is given by

PR(Dω) = b + 2acos(Dω). (7)

We define the error function

E(ω) = H(ω)PR(Dω)−1. (8)

In order to find the coefficients a and b, we impose the con-
dition that the error function should be zero at frequencies
ω = ω1 and ω = ω2, in the passband [0,ωp].

For ω = ω1, from (3), (6)–(8), it follows that

H(ω1)(2acos(Dω1)+ b) = 1. (9)

Similarly, for ω = ω2 (see (6)–(8)), the imposed condi-
tion results in

H(ω2)(2acos(Dω2)+ b) = 1. (10)

Solving equations (9) and (10), the values of a and b are,
respectively,

a =
1

2

1/H(ω1)−1/H(ω2)

cos(Dω1)− cos(Dω2)
, (11)

b =
cos(Dω1)/H(ω2)− cos(Dω2)/H(ω1)

cos(Dω1)− cos(Dω2)
. (12)

Substituting (11) and (12) into (7), the error function be-
comes

E(ω) = H(ω)

(
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cos(Dω1)− cos(Dω2)
cos(Dω)

+
cos(Dω1)/H(ω2)− cos(Dω2)/H(ω1)

cos(Dω1)− cos(Dω2)

)

−1.

(13)

We apply the minimax optimization of the error function
E(ω), i.e.,

δ = min
ω1,ω2

max
[0,ωp]
|E(ω)|. (14)

Figure 3 shows the error function, E(ω) in (13), obtained
by minimax optimization (14).

E(ω)

ωωr

ω1 ω2 ωp

δ

−δ

Figure 3: Error function E(ω).

From Fig. 3, at the frequency point ω = 0, we have

E(0) =−δ . (15)

Similarly, for ωr and ωp, we have

E(ωr) = δ , (16)

E(ωp) =−δ . (17)

Additionally, the derivative of the error function evaluated at
ω = ωr equals zero, i.e.,

dE(ω)

dω

∣

∣

∣

∣

ω=ωr

= 0. (18)

Next issue is to relate the frequencies ω1 and ω2 with
the passband frequency ωp for different values of N and D.
To this end we present in Figs. 4(a) and 5(a) the frequencies
ω1 and ω2 as a function of ωp, respectively, for N = 3,4,5,6,
D = 3,5,7,11, and ν = 4. Similarly, Figs. 4(b) and 5(b) show
the zoom of the upper part of Figs. 4(a) and 5(a). Note that
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Figure 4: Frequency ω1 as a function of the frequency ωp for
N = 3,4,5,6, D = 3,5,7,11, and ν = 4.
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Figure 5: Frequency ω2 as a function of the frequency ωp for
N = 3,4,5,6, D = 3,5,7,11, and ν = 4.

the relations between ω1 and ωp and ω2 and ωp are approx-
imately linear in the band [0,π/2D] and that ω1 and ω2 are
practically independent of N, D, and ν in this band.

Solving equations (15)–(18) and knowing that for small

values of ω ,

cos(Dω)≈ 1− D2ω2

2
, (19)

and

H(ω)≈ 1− H ′′(0)ω2

2
, (20)

where H ′′(0) is the second derivative of H(ω) evaluated at
ω = 0, we obtain the closed form equations for ω1 and ω2,
that is,

ω1 ≈
√

2−
√

2.2

2
ωp, (21)

ω2 ≈
√

2 +
√

2

2
ωp. (22)

3. DISCUSSION OF RESULTS

Based on the results of Section 2, we have the procedure for
the design of GCF compensation filter as follows:

Step 1. For a given value of passband frequency ωp, com-
pute the values of the frequencies ω1 and ω2 using (21)
and (22), respectively.

Step 2. Use ω1 and ω2 to get the filter coefficients a and b
from (11) and (12).

Step 3. Substitute a and b into (4) to obtain the designed fil-
ter.

In the following we analyze the passband droop Rp in dB
after compensation.

Figures 6(a) and 6(b) illustrate the passband droops as a
function of the frequency ωp for N = 3,4,5,6, D = 3,5,7,11,
and ν = 4. Observe that the passband droop is less than
0.4 dB in the band of interest.
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Figure 6: a) Passband droops for N = 3,4 and D = 3,5,7,11
b) Passband droops for N = 5,6, and D = 3,5,7,11.
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Example. We design a GCF compensation filter with the
following design parameters D = 7, N = 5, ωp = 0.45π/D,
and αn = qnπ/4D for n = 1,2,3,4,5, where qn = [−0.55,
−0.93, 0, 0.93, 0.55] [6].

The corresponding passband droop of the GCF filter is
Rp =−3.66 dB, as shown in Fig. 7.

The method is illustrated in the following steps:

Step 1. From (21) and (22) the values of ω1 and ω2 are

ω1 = 0.161743π/D,

ω2 = 0.415745π/D.

Step 2. The corresponding filter coefficients are

a =−0.30776,

b = 1.592821.

Step 3. The resulting transfer function of the GCF compen-
sation filter is

P(zD) =−0.30776(1 + z−2D)+ 1.592821z−D.

The results of the design are summarized in Table 1.

GCF5 Minimax
Rp −3.66 −0.17
ω1 0.161743π/D
ω2 0.415745π/D
a −0.30776
b 1.592821

Table 1: Parameters in the design example.

The frequency responses along with the passband details
are shown in Fig. 7.

From Fig. 7, it is worth highlighting that the reduction
of the stopband attenuation impacts the regions [2πk/D +
π/νD,2π(k + 1)/D + π/νD], for k = 1, . . . ,D− 2, (don’t
care regions [6]) and not the folding bands. However,
the passband droop is well compensated resulting in Rp =
−0.17 dB.

4. CONCLUSIONS

A novel design technique to the optimum, in the minimax
sense, GCF compensation filter is presented. This result can
be further generalized to include also least square and max-
imally flat designs, as explained in [8]. The designed 2D
order compensation filter becomes a second order filter af-
ter moving to a lower rate. The main advantage of the pro-
posed method is that the filter coefficients are obtained by
using closed form equations, which depend on the passband
frequency ωp. The designed compensation filter results in a
considerable decrease of the passband droop, of GCF filter
which is less than 0.4 dB in the passband region of interest.
The presented design also includes the CIC compensation fil-
ter design, as a special case (αn = 0, n = 1, . . . ,N).
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Figure 7: Overall magnitude response of the GCF filter and
the compensation filter in the design example.
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