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ABSTRACT
In a previous study we showed that the total least
squares (TLS) estimation performance for bearings-only
localization is dependent on coordinate shifts. In this
paper we extend this study to TLS-based robot local-
ization from landmark bearings. We show that unlike
nonlinear least squares estimators the TLS estimation
performance is sensitive to where the local Cartesian co-
ordinates are placed in the two-dimensional plane. Thus
for a given set of landmark bearing measurements col-
lected by a robot, the TLS performance is influenced by
where the local coordinates are placed. The dependence
of the TLS estimation bias on local coordinate transla-
tions is due to the dependence of TLS perturbations on
local coordinate translations. We observe that the TLS
estimate performs almost as well as the maximum like-
lihood estimate as the origin of the local coordinates is
placed sufficiently away from the landmarks.

1. INTRODUCTION

In mobile robotics applications accurate determination
of the location and orientation of a robot based on in-
formation that can be gathered from landmarks is an
important research problem. A particularly attractive
localization technique is landmark bearings localization
in which the robot measures the angles of signals re-
ceived from multiple landmarks at known locations. The
noise in angle measurements necessitates the use of an
estimation algorithm. Mobile robot localization from
landmark bearings has been an active research area (see
e.g. [1] and the references therein). A popular local-
ization method is the so-called geometric solution that
is predicated on circle intersection using subtended an-
gles [2]. A similar method was also employed in scan-
based emitter localization for scanning radars [3] . For
more than three landmarks, the geometric solution loses
its appeal due to the nonlinear nature of the estimation
problem and performance penalties associated with its
linearization.

A computationally attractive approach to robot lo-
calization was proposed in [1], which formulates the esti-
mation problem as a linear homogeneous equation with
well-defined constraints to find a unique solution. This
algorithm is very similar to the well-known pseudolinear
estimator (PLE) that was proposed in [4] for bearings-
only tracking. The main difference is the unknown ori-
entation angle that needs to be estimated in the case
of robot localization. This also makes the estimation
problem a homogenous linear matrix equation that can

be solved by reduced-rank matrix approximation based
on total least squares (TLS) as was done in [1].

In a previous study we applied TLS to the bearings-
only localization problem and observed that the TLS lo-
calization performance is dependent on coordinate sys-
tem translations [5]. A key finding of this work was that
unlike the PLE, the TLS estimator attempts to correct
the errors in both the measurement matrix and the data
vector, which can lead to improved bias performance if
the origin of the coordinate system is chosen appropri-
ately. A formal proof of the dependence of the TLS esti-
mation bias and mean-squared error (MSE) on local co-
ordinate translations for a given geometry was also pro-
vided based on preliminary observations made in [6], [7].
In this paper we extend this study to TLS-based robot
localization from landmark bearings. We show that un-
like the maximum likelihood estimator which is asymp-
totically unbiased and efficient, the TLS estimation per-
formance is highly sensitive to where the local Cartesian
coordinates are placed in the two-dimensional plane.
For a given set of landmark bearing measurements col-
lected by a robot, the TLS performance is influenced
by where the local coordinates are placed, i.e., how the
landmark locations are recorded. The dependence of the
TLS estimation bias on local coordinate translations is
due to the dependence of TLS perturbations on local
coordinate translations.

2. ROBOT LOCALIZATION FROM
LANDMARK BEARINGS

In robot localization from landmark bearings the robot
measures the bearing angles of signals it receives fromN
landmarks. The locations of the landmarks in the global
coordinate system, ri, i = 1, . . . , N , are known to the
robot. Based on the bearing angle measurements and
prior knowledge of the landmark locations, the robot es-
timates its own location p and orientation φ with respect
to the global coordinate system. The robot localization
problem considered in this paper is shown in Fig. 1.

The bearing angle measurements are modelled as

θ̂i = θi + ni (1)

where the additive bearing noise ni is assumed to be
i.i.d. zero-mean Gaussian with variance σ2.

The distribution of the bearing noise is governed by
the bearing angle estimation method employed. The
Gaussian bearing noise is an approximation of the ac-
tual bearing noise which is of necessity a random vari-
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Figure 1: Robot localization from landmark bearings.
The angle φ is the orientation of robot with respect to
global coordinates.

able with finite support unlike a Gaussian random vari-
able [5]. The finite support requirement can be approx-
imated by a sufficiently small noise variance.

3. OVERVIEW OF LOCALIZATION
ESTIMATES

3.1 Maximum Likelihood Estimate

Under the Gaussian noise assumption it can be shown
that the maximum likelihood estimate (MLE) for the
robot location and orientation is simply given by the
solution of the nonlinear least-squares problem:[

p̂ML

φ̂ML

]
= argmin

p, φ
JML(p, φ) (2)

where JML(p, φ) is the so-called maximum likelihood
cost function:

JML(p, φ) =
N∑
i=1

(
θ̂i + φ− ∠(ri − p)

)2
. (3)

Here ∠x denotes the bearing angle of the two-
dimensional vector x. In general the MLE does not have
a closed-form solution. Grid search or numerical itera-
tive minimization techniques such as the Gauss-Newton,
Newton-Raphson or the Nelder-Mead simplex method
can be employed to find the MLE. However a common
problem with these search techniques is susceptibility to
divergence and high computational complexity. A good
initial guess is often a must in order to avoid divergence
and instability.

3.2 TLS Estimate

For the bearing line emanating from landmark i we can
write

tan(θi + φ) =
sin(θi + φ)
cos(θi + φi)

=
riy − py
rix − px

(4)

where ri = [rix, riy ]T and p = [px, py]T . Rearranging
the above equation we have

[sin(θi+φ),− cos(θi+φ)]p = [sin(θi+φ),− cos(θi+φ)]ri.
(5)

Define the clockwise rotation matrix

Rφ =
[

cosφ sinφ
− sinφ cosφ

]
(6)

and

νi =
[

sin θi
− cos θi

]
. (7)

Using Rφ and νi, (5) can be rewritten as

νTi Rφp = νTi Rφri

= [νTi ri,γ
T
i ri]

[
cosφ
sinφ

] (8)

where

γi =
[
cos θi
sin θi

]
. (9)

Collecting all the unknowns in one vector we get

[νTi ,ν
T
i ri,γ

T
i ri]

[
pφ

cosφ
sinφ

]
︸ ︷︷ ︸

w

= 0 (10)

where pφ = −Rφp. Stacking the above equation for i =
1, . . . , N we obtain the following homogeneous matrix
equation ⎡

⎢⎢⎢⎣
νT1 νT1 r1 γT1 r1

νT2 νT2 r2 γT2 r2

...
νTN νTNrN γTNrN

⎤
⎥⎥⎥⎦w = 0. (11)

Replacing the true bearing angles with their noisy
measurements, we obtain⎡

⎢⎢⎢⎣
ν̂T1 ν̂T1 r1 γ̂T1 r1

ν̂T2 ν̂T2 r2 γ̂T2 r2

...
ν̂TN ν̂TNrN γ̂TNrN

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

w ≈ 0 (12)

where ν̂i = [sin θ̂i,− cos θ̂i]T and γ̂i = [cos θ̂i, sin θ̂i]T .
The total least-squares (TLS) estimate of w is defined
by

min ‖Δ‖2
F (13a)

such that

(A+ Δ)ŵ = 0 and ‖ŵ(3 : 4)‖2 = 1 (13b)

where ‖ · ‖F denotes the Frobenius matrix norm. The
TLS estimate is easily obtained by using the singular
value decomposition (SVD) of A:

A = UΣV T

=
4∑
i=1

σiuiv
T
i

(14)
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where σ1 ≥ σ2 ≥ σ3 ≥ σ4 are the ordered singular
values, and U and V are unitary matrices. For noisy
bearings we have σ4 > 0, i.e., A is full-rank. A reduced
rank estimate of A with minimum Frobenius-norm per-
turbation Δ is obtained from [8]

A+ Δ =
3∑
i=1

σiuiv
T
i (15)

where
Δ = −σ4u4v

T
4 . (16)

Since V is a unitary matrix, the TLS estimate ŵ is given
by

ŵ =
v4

‖v4(3 : 4)‖ (17)

which also implements the norm constraint in (13b).
The TLS estimates for robot orientation and location
are

φ̂ = ∠ŵ(3 : 4) (18a)

p̂ = −RT
φ̂
ŵ(1 : 2). (18b)

The TLS estimate has no sign ambiguity since any sign
change in ŵ is undone by sing reversal in the rotation
matrix.

4. EFFECT OF COORDINATE
TRANSLATIONS

All entries of A contain noise originating from noisy
landmark bearing measurements. The noise in the last
two columns of A is scaled by the landmark locations
whereas the noise in the first two columns ofA are inde-
pendent of ri as long as bearings remain the same. As
the norm of landmark locations increases, the noise in
the last two columns also increases, affecting the TLS
estimate. This observation motivates us to study the
effect of geometric shifts on the TLS estimate.

We are free to choose any reasonable location in the
plane as the origin of the global coordinate system. We
will use geometric translations to move the coordinate
origin. Shifting the coordinate system by a 2-D vector
ψ = [ψx, ψy]T results in robot and landmark locations
to be shifted:

pψ = p+ψ

rψ,i = ri +ψ.
(19)

Coordinate shifts do not affect landmark bearings. After
a shift by ψ, (12) becomes⎡

⎢⎢⎢⎣
ν̂T1 ν̂T1 rψ,1 γ̂T1 rψ,1
ν̂T2 ν̂T2 rψ,2 γ̂T2 rψ,2

...
ν̂TN ν̂TNrψ,N γ̂TNrψ,N

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Aψ

wψ ≈ 0. (20)

It is obvious that ψ only changes the noise in the last
two columns of A. Define the TLS error as

eψ = p̂ψ − pψ (21)

where p̂ψ is the TLS estimate of robot location after
a geometric shift by ψ. Since for different ψ we have
different noise in Aψ, we argue that the TLS estima-
tion error will change with ψ for a given set of bearing
measurements.

To illustrate the dependence of the TLS error on co-
ordinate shifts, consider the robot localization scenario
shown in Fig. 2(a) with N = 5, φ = 30◦ and σ = 2◦. For
one realization of noisy bearing measurements, Fig. 2(b)
shows the norm of the TLS error ‖eψ‖ as a function of
coordinate shifts ψ. It is clearly seen that eψ changes
with ψ. The MLE error norm is 3.92 regardless of co-
ordinate shifts.
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Figure 2: (a) Original robot localization geometry with
ψ = [0, 0]T , and (b) TLS estimation error norm as a
function of geometric shifts. The TLS error is clearly
dependent on coordinate shifts.

5. IMPROVED TLS ESTIMATE UTILIZING
COORDINATE SHIFTS

The dependence of TLS error on coordinate shifts can be
viewed as an opportunity for improving TLS localization
performance. The objective is to find a coordinate shift
or the location of the coordinate system origin that min-
imizes the bias and MSE of the resulting TLS estimate.
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Unfortunately the lack of a closed-form expression for
the TLS bias and MSE makes it rather challenging to
find such optimal coordinate shift. Formally we have
the following optimization problem to solve:

min
ψ

E{‖p̂ψ − pψ‖2} (22)

where E{‖p̂ψ − pψ‖2} is the MSE of the TLS estimate.
Likewise one can also employ bias minimization as an
optimization criterion:

min
ψ

‖E{p̂ψ − pψ}‖ (23)

where ‖E{p̂ψ − pψ}‖ is the TLS bias norm.
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Figure 3: TLS MSE and bias norm as a function of ψ.
The bias norm is minimized at ψ = [−5.5,−12.5]T .

In Fig. 3 the TLS MSE and bias norm are plotted as
a function of ψ for the the robot localization scenario
shown in Fig. 2(a). The MSE and bias were estimated
using 2000 Monte Carlo runs. The bias norm is mini-
mized at ψ = [−5.5,−12.5]T . The MSE appears to be
relatively flat outside the region around ψ = −[5, 2]T .

The centre of gravity of landmark locations is a good
choice for the coordinate origin in general as this tends
to reduce the noise effects on A as a result of decreasing

the norm of landmark location vectors. In this case the
geometric shift vector is simply given by

ψ = −r̄ = − 1
N

N∑
i=1

ri. (24)

Table 1 summarizes the bias and MSE of performance
of the TLS and MLE for the robot localization problem
in Fig. 2(a) before and after shifting the geometry by
ψ = −r̄. The bias and MSE were estimated using 5000
Monte Carlo runs. The TLS estimate achieves a signifi-
cant performance improvement after the geometric shift
by ψ = −r̄, attaining bias and MSE levels comparable
to the MLE. The adoption of (24) as a desirable geomet-
ric shift was based on the belief that making ‖rψ,i‖ small
would be advantageous in terms of noise minimization
in the matrix Aψ. Following the same line of reasoning
the use of excessively large ‖ψ‖ would be discouraged.
However it turns out that for ψ = [50000, 50000]T the
bias norm and MSE of the TLS estimate are 0.2833 and
7.5245, respectively. These results compare well both
with TLS at ψ = −r̄ and MLE.

Table 1: Bias and MSE comparison
Bias Norm MSE

Org. Shift by Org. Shift by
Geom. ψ = −r̄ Geom. ψ = −r̄

TLS 2.7687 0.2101 29.1679 7.4466
MLE 0.2282 0.2282 7.5711 7.5711
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Figure 4: Robot localization geometry with circular
landmark configuration.

Despite its intuitive appeal the geometric shift by
ψ = −r̄ does not always yield good estimation perfor-
mance. This is particularly evident in robot localization
scenarios where the robot is surrounded by landmarks.
In such configurations the coordinate origin should be
placed far away from the center of gravity of landmarks
in order to improve the TLS estimation performance.
We illustrate this observation with an example. Con-
sider the robot localization geometry shown in Fig. 4.
There are N = 5 landmarks uniformly distributed on a

98



circle of radius 100 centred at the origin. The robot is
at p = [2, 9]T . The robot orientation angle is φ = 30◦
and the bearing noise standard deviation is σ = 2◦.
Fig. 5 shows the TLS bias norm and MSE estimates as
a function of ψx with ψy fixed at 0. Note that in this
simulation r̄ = 0 and therefore ψ = 0 corresponds to
ψ = −r̄. As is evident from Fig. 5, neither bias nor MSE
are minimized at ψ = −r̄. In fact both bias and MSE
appear to settle at their minimum value as |ψx| → ∞.
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Figure 5: TLS bias norm and MSE as a function of ψx
with ψy = fixed at 0.

Table 2 lists the bias and MSE of the TLS and
MLE for the robot localization problem in Fig. 4 for
two geometric shifts, viz., ψ = −r̄ = 0 and ψ =
[50000, 50000]T . The bias and MSE were estimated us-
ing 5000 Monte Carlo runs. The TLS estimate at ψ =
−r̄ = 0 performs worse than at ψ = [50000, 50000]T .
What is more the geometric shift ψ = [50000, 50000]T
enables TLS estimate to achieve bias and MSE results
comparable to those of the MLE. We conclude that
contrary to the line of reasoning that has led to (24),
one may place the coordinate origin far away from the
landmarks to achieve significant performance improve-
ment for the TLS estimate in most cases on par with
the MLE.

Table 2: Bias and MSE comparison
Bias Norm MSE

Shift by Large Shift by Large
ψ = −r̄ Shift ψ = −r̄ Shift

TLS 1.0972 0.0602 11.5736 9.8526
MLE 0.0327 0.0327 9.7439 9.7439

6. CONCLUSION

This paper has investigated the dependence of the TLS
estimation performance on local coordinate translations
in robot localization from landmark bearings. Several
numerical examples were presented to compare the bias
and MSE performance of the TLS and MLE. It was
observed that the TLS estimate performs almost as well
as MLE as the origin of the local coordinates is placed
sufficiently away from the landmarks. However the op-
timal translation for TLS is in general unknown. For
non-circular landmark configurations an effective way of
achieving good TLS estimation performance is to place
the origin of the local coordinates at the centre of gravity
of the landmarks. The same is not necessarily true for
circular landmark configurations surrounding the robot.

REFERENCES

[1] I. Shimshoni, “On mobile robot localization from
landmark bearings,” IEEE Trans. Robotics and Au-
tomation, vol. 18, no. 6, pp. 971–976, December
2002.

[2] C. D. McGillem and T. S. Rappaport, “A beacon
navigation method for autonomous vehicles,” IEEE
Trans. on Vehicular Technology, vol. 38, no. 3, pp.
132–139, August 1989.

[3] H. Hmam, “Scan-based emitter passive localiza-
tion,” IEEE Trans. on Aerospace and Electronic Sys-
tems, vol. 43, no. 1, January 2007.

[4] S. C. Nardone, A. G. Lindgren, and K. F. Gong,
“Fundamental properties and performance of con-
ventional bearings-only target motion analysis,”
IEEE Trans. on Automatic Control, vol. 29, no. 9,
pp. 775–787, September 1984.
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