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ABSTRACT
Last year, we proposed a conditional separation and dere-
verberation method (the CSD method) for simultaneously
achieving blind source separation and dereverberation of
sound mixtures. This paper presents a novel fast algorithm
for implementing the CSD method. Most of the computa-
tion time of the CSD method is spent on calculating what we
call modified correlation matrices. The proposed algorithm
can calculate these modified correlation matrices much faster
than the original algorithm. This improvement is realized by
capitalizing on the particular structure of the modified cor-
relation matrices. Experimental results obtained using 672
test samples revealed that the CSD method provided a much
better signal-to-interference ratio than a frequency-domain
blind source separation method. The real time factor of the
proposed algorithm was between 4 and 6, which is less than
one tenth that of the original algorithm.

1. INTRODUCTION

The issues of blind source separation (BSS) [1] and blind
dereverberation (BD) [2] have attracted a lot of attention over
the past decade. The aim of BSS is to separate mixtures of
multiple sounds while that of BD is to remove the effect of
reverberation from sounds picked up by microphones. Al-
though there have been many advances as regards these two
issues, there have been few attempts to achieve BSS and BD
simultaneously. We refer to this as blind source separation
and dereverberation (BSSD). On one hand, it is known that
the performance of conventional BSS methods gradually de-
teriorates as the reverberation effect becomes severe [3]. On
the other hand, most of the existing BD methods are based on
the assumption that only one sound source is active at a time.
Therefore, simply cascading existing BSS and BD methods
could not accomplish BSSD.

At EUSIPCO 2008, we presented a method for BSSD,
which we call the Conditional Separation and Dereverber-
ation (CSD) method, to overcome the above limitation [4].
The CSD method provided high separation and dereverber-
ation performance even when the reverberation time of the
room was longer than 0.5 sec. Unfortunately, however, its
computation time was very long, which renders the CSD
method useless in practice.

We found that most of the computation time was spent on
the calculation of matrices with particular structures, which
we call modified correlation matrices. Thus, in this paper,
we propose a fast algorithm for calculating those matrices
based on a fast Fourier Transform (FFT). This is realized by
capitalizing on the structures of the modified correlation ma-
trices. Furthermore, large-scale experimental results are re-
ported whereas, by contrast, the experiment reported in [4]

was quite limited.
The remainder of this paper is organized as follows: Sec-

tion 2 reviews the original algorithm of the CSD method;
Section 3 describes the novel algorithm for modified corre-
lation matrix calculation; Section 4 reports the experimental
results; and Section 5 concludes this paper.

2. CONDITIONAL SEPARATION AND
DEREVERBERATION

2.1 Task Specification
We assume that we capture sounds in a room using MM mi-
crophones. We also assume that there are MS sound sources
in the room and that MS ≤MM.

Let sm
t,l denote the signal emitted from the mth sound

source represented in the short-time Fourier transform
(STFT) domain, where t and l are time frame and frequency
bin indices, respectively. The typical frame size and frame
shift for the STFT are 30 msec and 15 msec, respectively.
This is in contrast to the frequency-domain BSS method,
which often uses such a long time frame that covers the re-
verberation time. We represent all source signals in vector
form as

ssst,l = [s1
t,l , · · · ,s

MS
t ,l ]T , (1)

where superscript T represents a non-conjugate transpose.
Source signals s1

t,l , · · ·s
MS
t,l are reverberated and mixed with

each other while propagating from the sound sources to the
microphones. We denote the signal observed by the mth mi-
crophone as ym

t,l and the vector of the observed signals as

yyyt,l = [y1
t,l , · · · ,y

MM
t,l ]T . (2)

Now, we assume that yyyt,l is observed over N consecutive
time frames for all l values from 0 to L− 1, where L is the
number of frequency bins. Let

�
and � be sets of ssst,l and

yyyt,l , respectively, over all t and l so that we have
�

={ssst,l}0≤t≤N−1,0≤l≤L−1 (3)
� ={yyyt,l}0≤t≤N−1,0≤l≤L−1. (4)

Then, the task to be solved is defined as estimating the source
data,

�
, when the observed data, � , are given. This task

may be restated as achieving BSS and BD simultaneously,
i.e. BSSD.

2.2 Method Description
The CSD method calculates an estimate, ŝsst,l , of source sig-
nal vector ssst,l according to the following formulae for each
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Figure 1: Diagram of source signal estimator.

frequency bin index l:

xxxt,l =yyyt,l −
Kl

∑
k=1

GH
k,lyyyt−k,l (5)

ŝsst,l =W H
l xxxt,l , (6)

where Gk,l is an MM-by-MS matrix, Wl is an MS-by-MS
matrix, and superscript H represents a conjugate transpose.
Therefore, we want to optimize G1,l , · · · ,GKl ,l and Wl for all
l values so that ŝsst,l can best approximate the unobservable
true source signal vector, ssst,l . Reflecting the forms of (5)
and (6), Gk,l and Wl are referred to as a regression matrix
and a separation matrix, respectively. Figure 1 shows a di-
agram of the source signal estimator defined by (5) and (6).
As shown in the figure, the process for obtaining xxxt,l accord-
ing to (5) serves as a multi-channel dereverberator while (6)
corresponds to an instantaneous separator. The CSD method
jointly optimizes these two systems, namely the regression
matrix Gk,l and separation matrix Wl .

Note that the process of calculating ŝsst,l based on (5) and
(6) is equivalent to filtering yyyt,l with a causal multiple-input
multiple-output (MIMO) finite impulse response (FIR) filter
of order Kl . Hence, the task we are going to perform is almost
equivalent to a standard convolutive BSS task. The only dif-
ference is that we aim at cancelling the effect of reverberation
in addition to separating sound mixtures while the standard
convolutive BSS task ignores the reverberation.

The CSD method finds the values of the regression and
separation matrices that minimize a cost function, which is
derived based on a time-varying all-pole source signal model.
Let P, am

t,k, and γm
t denote the number of poles, the kth lin-

ear prediction coefficient (LPC), and the prediction residual
power (PRP) of the mth source signal at the tth time frame,
respectively. Then, the cost function is described as

F =
L−1

∑
l=0

N−1

∑
t=0

{(

yyyt,l −
Kl

∑
k=1

GH
k,lyyyt−k,l

)H
Wl SΛ−1

t,l W H
l

×
(

yyyt,l −
Kl

∑
k=1

GH
k,lyyyt−k,l

)

− log
∣

∣

∣
Wl SΛ−1

t,l W H
l

∣

∣

∣

}

. (7)

MS-by-MS matrix SΛt,l is a diagonal matrix, of which the
mth diagonal element is the all-pole spectral component of
the mth source signal at time frequency point (t, l). To be
more precise, SΛt,l is defined based on the LPCs and PRPs
of the source signals as follows:

SΛt,l =







Sλ 1
t,l O

. . .
O Sλ MS

t,l






(8)

Sλ m
t,l =

γm
t

∣

∣1−am
t,1e− j 2πl

L −·· ·−am
t,Pe− j 2πlP

L
∣

∣

2 . (9)
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Figure 2: Diagram of parameter optimization. The selectors
output the initial parameters only for the first iteration. For
the subsequent iterations, updated parameters are selected.

All parameters (i.e. regression matrix Gk,l , separation matrix
Wl , source LPC am

t,k, and source PRP γm
t ) are optimized so as

to minimize the value of cost function F.

The CSD method alternately updates regression matrix
Gk,l , separation matrix Wl , and source-related parameters
{am

t,k, γm
t } until convergence. Figure 2 is a diagram of the

parameter optimization scheme.

The source LPC and PRP, am
t,k and γm

t , are updated by
minimizing the cost function, F, for the fixed regression ma-
trix Gk,l and separation matrix Wl . This partial minimization
is accomplished by the short-time linear predictive analysis
of the tentative source signal estimates that are calculated
based on the fixed values of Gk,l and Wl . These tentative
source signal estimates are indicated by the arrow labeled
“Separated and dereverberated signals” in Figure 2.

The separation matrix, Wl , is updated by minimizing F
for fixed Gk,l , am

t,k, and γm
t . A convenient way to achieve

this partial minimization is to apply an independent compo-
nent analysis (ICA) algorithm to the dereverberated, but still
mixed, signals that are calculated using the fixed value of
Gk,l and indicated by the arrow labeled “Dereverberated mix-
tures” in Figure 2. Although this update procedure does not
necessarily minimize F , we found that it sufficed in practice.
An algorithm that exactly minimizes F , which is based not
only on the dereverberated mixtures but also on am

t,k and γm
t

as shown in Figure 2, is described in [4].

Finally, the update rule for the regression matrix, Gk,l ,
may be described as follows. For each l, all regression ma-
trices for the lth frequency bin are jointly updated. Let us
define vector gggl , which consists of the elements of the re-
gression matrices for the lth frequency bin, as

gggl = [(ggg1
1,l)

T · · · (gggMS
1,l )

T | · · · |(ggg1
Kl ,l)

T · · · (gggMS
Kl ,l

)T ]

(MSMMKl-dimensional row vector), (10)

where gggm
k,l denotes the mth column of Gk,l . gggl is referred to as

a regression coefficient vector. Furthermore, let matrix YYY t−1,l
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be defined as

YYY t−1,l =







yyyH
t−1,l O yyyH

t−Kl ,l
O

. . . · · ·
. . .

O yyyH
t−1,l O yyyH

t−Kl ,l







(MS-by-MSMMKl matrix). (11)

Then, the regression coefficient vector is updated according
to the following rule:

gggl ←(R−1
l rrrl)

H (12)

Rl =
N−1

∑
t=0

YYY H
t−1,lWl SΛ−1

t,l W H
l YYY t−1,l (13)

rrrl =
N−1

∑
t=0

YYY H
t−1,lWl SΛ−1

t,l W H
l ỹyyt,l , (14)

where ỹyyt,l is the vector of the signals observed by the first MS
microphones, that is to say,

ỹyyt,l = [y1
t,l , · · · ,y

MS
t,l ]T . (15)

It is noteworthy that (12) is an extension of the well-
known Yule-Walker equation solution. This is a corollary
of the fact that the multi-channel dereverberator (5) is based
on the multi-channel autoregressive (AR) model. In light of
this, matrix Rl and vector rrrl are called a modified correlation
matrix and a modified correlation vector, respectively. The
sizes of Rl and rrrl are MSMMKl-by-MSMMKl and MSMMKl-
by-1, respectively.

The following naive algorithm for calculating the modi-
fied correlation matrices is very time consuming, which ren-
ders the CSD method useless:

Rl = O;
for t = 0 : N−1

Rl = Rl +YYY H
t−1,lWl SΛ−1

t,l W H
l YYY t−1,l ;

end
This naive algorithm may be computationally redundant be-
cause most parts of YYY t−1,l and YYY t,l have the same values.
In the next section, we propose a novel algorithm that runs
much faster than the naive algorithm.

3. NOVEL ALGORITHM FOR MODIFIED
CORRELATION MATRIX CALCULATION

In the following, frequency bin index l is omitted for brevity
because regression coefficient vector gggl is updated on a fre-
quency bin by frequency bin basis. In addition, we express
W SΛ−1

t W H as Λt , whose (q1,q2)th element is denoted by
λ q1q2

t , so that we can have

Λt =W SΛ−1
t W H =







λ 11
t · · · λ 1MS

t
...

. . .
...

λ MS1
t · · · λ MSMS

t






. (16)

As shown later, modified correlation matrix R and mod-
ified correlation vector rrr consist of the cross correlation co-
efficients between two time series λ q1q2

t and yp1∗
t−myp2

t for all
m from 0 to K, all p1 and p2 from 0 to MM, and all q1 and

q2 from 0 to MS, where superscript ∗ represents a complex
conjugate. Therefore, the basic idea behind the proposed al-
gorithm is that we first calculate these cross correlation co-
efficients and then rearrange them to form R and rrr.

Indeed, the modified correlation matrix and vector are
structured as follows:

R =
N−1

∑
t=0

YYY H
t−1ΛtYYY t−1 =





R11 · · · R1K
...

. . .
...

RK1 · · · RKK



 (17)

rrr =
N−1

∑
t=0

YYY H
t−1Λt ỹyyt =

−→
∑R̃ =

−→
∑







R̃1
...

R̃K






, (18)

where
−→
∑ represents the sums of the elements of a matrix over

each row, and submatrix Rmn and submatrix R̃m are given by
(19) and (20), respectively. ((19) appears on the top of the
next page.) The detail of the proposed algorithm is described
below.

R̃m =

















































N−1

∑
t=0

λ 11
t y1∗

t−my1
t · · ·

N−1

∑
t=0

λ 1MS
t y1∗

t−myMS
t

...
N−1

∑
t=0

λ 11
t yMM∗

t−m y1
t · · ·

N−1

∑
t=0

λ 1MS
t yMM∗

t−m yMS
t

...
N−1

∑
t=0

λ MS1
t y1∗

t−my1
t · · ·

N−1

∑
t=0

λ MSMS
t y1∗

t−myMS
t

...
N−1

∑
t=0

λ MS1
t yMM∗

t−m y1
t · · ·

N−1

∑
t=0

λ MSMS
t yMM∗

t−m yMS
t

















































(MSMM-by-MS matrix). (20)

First of all, it should be noted that we have only to calcu-
late the lower triangular part of R because R is an Hermitian
matrix. We define sequence~yp1 p2

m of length N as

~yp1 p2
m = (yp1∗

N−1−myp2
N−1, · · · ,y

p1∗
0 yp2

m ,0, · · · ,0) (21)

for all m from 0 to K, all p1 from 0 to MM, and all p2 from 0
to MM. Likewise, we define sequence~λ q1q2 of length N as

~λ q1q2 = (λ q1q2
N−1 , · · · ,λ q1q2

0 ) (22)

for all q1 and q2 from 0 to MS. Since~yp1 p2
m depends only on

the observed data, it can be calculated prior to parameter op-
timization. On the other hand,~λ q1q2 is calculated according
to (16) by using the fixed separation matrices, source LPCs,
and source PRPs every time regression coefficient vector ggg is
to be updated in the iterative optimization process shown in
Figure 2.

Now, let us look at how R and R̃ are built from the cross
correlation coefficients between ~yp1 p2

k and ~λ q1q2 . We focus
on the submatrices, R(m+1)1, · · · ,RK(K−m), on the (m + 1)th
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Rmn =

















































N−1

∑
t=0

λ 11
t y1∗

t−my1
t−n · · ·

N−1

∑
t=0

λ 11
t y1∗

t−myMM
t−n

N−1

∑
t=0

λ 1MS
t y1∗

t−my1
t−n · · ·

N−1

∑
t=0

λ 1MS
t y1∗

t−myMM
t−n

...
. . .

... · · ·
...

. . .
...

N−1

∑
t=0

λ 11
t yMM∗

t−m y1
t−n · · ·

N−1

∑
t=0

λ 11
t yMM∗

t−m yMM
t−n

N−1

∑
t=0

λ 1MS
t yMM∗

t−m y1
t−n · · ·

N−1

∑
t=0

λ 1MS
t yMM∗

t−m yMM
t−n

...
. . .

...
N−1

∑
t=0

λ MS1
t y1∗

t−my1
t−n · · ·

N−1

∑
t=0

λ MS1
t y1∗

t−myMM
t−n

N−1

∑
t=0

λ MSMS
t y1∗

t−my1
t−n · · ·

N−1

∑
t=0

λ MSMS
t y1∗

t−myMM
t−n

...
. . .

... · · ·
...

. . .
...

N−1

∑
t=0

λ MS1
t yMM∗

t−m y1
t−n · · ·

N−1

∑
t=0

λ MS1
t yMM∗

t−m yMM
t−n

N−1

∑
t=0

λ MSMS
t yMM∗

t−m y1
t−n · · ·

N−1

∑
t=0

λ MSMS
t yMM∗

t−m yMM
t−n

















































(MSMM-by-MSMMKl matrix). (19)
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Figure 3: Structures of R and R̃. The left and right matrices
are R̃ and R, respectively.

diagonal, where the first diagonal refers to the main diag-
onal. As shown in Figure 3, the ((q1 − 1)MM + p1,(q2 −
1)MM + p2)th elements of these matrices consist of the cross
correlation coeffcients between ~yp1 p2

m and ~λ q1q2 at lags 1 to
K−m. Moreover, the ((q1−1)MM + p1, p2)th element of R̃m
is the zeroth-lag cross correlation coeffcient between ~yp1 p2

k

and ~λ q1 p2 . Therefore, the cross correlation coefficients are
required at most for lags of 0 to K for any m. The parts in R
and R̃ at which these cross correlation coefficients should be
placed is obvious from Figure 3.

The above discussion leads to the following algorithm
for calculating the modified correlation matrix, R, and the
modified correlation vector, rrr.

/* Prior to parameter optimization. */
for p1, p2 = 0 : MM, m = 0 : K

Calculate~yp1 p2
m according to (21).

end
/* Whenever regression matrices are to be

updated during parameter optimization.*/
for q1,q2 = 1 : MM

Calculate~λ q1q2 according to (22).

for p1, p2 = 0 : MM, m = 0 : K
Calculate the cross correlation coefficients
between~yp1 p2

m and~λ q1 p2 as

~yp1 p2
m K©~λ q1q2 =

(N−1

∑
t=0

yp1∗
t−myp2

t λ q1q2
t , · · · ,

N−1

∑
t=0

yp1∗
t−K−myp2

t−Kλ q1q2
t

)

,

where K© denotes the cross correlation coeffi-
cients of two sequences at lags of 0 to K.
Then, rearrange the cross correlation coeffi-
cients in R and R̃ according to Figure 3.

end
end
Make the upper triangular part of R from the calcu-
lated lower triangular part.
Calculate rrr from R̃ according to (18).
We close this section by describing two points regarding

the above algorithm.
• The cross correlation coefficients can be efficiently cal-

culated by using an FFT. Because the proposed algorithm
uses the cross correlation coefficients only at lags of 0 to
K, the FFT point must be K + N or larger. For our ex-
perimental system, we set the FFT point at the smallest
power of two greater than or equal to K +N.

• The efficiency of the above algorithm can be further im-
proved by capitalizing on the fact that the source power
spectrum matrix SΛt is diagonal. Indeed, Λt , defined by
(16), is expressed as

Λt =
MS

∑
r=1

wwwrwwwH
r

Sλ r
t

, (23)

where wwwr is the rth column of W and Sλ r
t is the rth di-

agonal element of SΛt (see Equation (9)). Therefore, in-
stead of directly calculating~yp1 p2

m K©~λ q1q2 , we may calcu-
late~yp1 p2

m K©S
~λ r, where

S
~λ r = (1/Sλ r

N−1, · · · ,1/Sλ r
0), (24)

and then obtain~yp1 p2
m K©~λ q1q2 based on the following re-
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Figure 4: Average SIR as a function of frequency.

lation:

~yp1 p2
m K©~λ q1q2 =

MS

∑
r=1

wrq1w∗rq2
(~yp1 p2

m K©S
~λ r). (25)

4. EXPERIMENTAL RESULTS

We conducted an experiment to evaluate the performance of
the CSD method and the computation efficiency of the al-
gorithm described above. The experiment assumed that we
observed mixtures of two sounds with four microphones. We
used the TIMIT complete test set, which includes 112 male
speakers, 56 female speakers, 624 texts, and 1344 utterances.
These utterances were band-limited to a frequency range of
50 Hz to 7 kHz. We formed 672 pairs of utterances. Then,
for each pair, the acoustic signals of the two utterances were
convolutively mixed by using room impulse responses mea-
sured in a room with a reverberation time of 0.5 sec. Thus,
we had a total of 672 test samples.

The proposed and reference algorithms were imple-
mented as MATLAB programs, which were run on a PC
equipped with a 2.4-GHz quad core processor. The frame
size and frame shift were set at 256 points (16 msec) and
128 points (8 msec), respectively. The number of poles, P,
was set at 20. The regression orders, Kl , were set depending
on frequency as follows: Kl = 25 for fl < 800; Kl = 20 for
800 ≤ fl < 1500; Kl = 15 for 1500 ≤ fl < 3000; Kl = 10
for fl ≥ 3000, where fl is the lth bin’s frequency in Hz. The
regression matrices, separation matrices, source LPCs, and
source PRPs were updated two times.

Figure 4 shows the input and output signal-to-
interference ratio (SIR) curves against frequency averaged
over all the test samples. The SIR curve obtained by
the frequency-domain BSS method described in [5] is also
shown for reference. We can see that the CSD method
greatly improved the average SIR over the whole frequency
range. Moreover, the degree of improvement obtained with
the CSD method was much higher than that obtained with
the frequency-domain BSS method.

Figure 5 shows the computation time as a function of the
observed data size. We can see that the computation time
curve is discontinuous at about 2 and 4 secs. This is be-
cause the FFT point for calculating the cross correlation co-
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Figure 5: Computation time plotted against observed data
size.

efficients became a higher power of two at these data sizes.
The real time factor (RTF) of the proposed algorithm was
between 4 and 6, which was less than one tenth of the RTF
of the naive algorithm. The RTF is expected to be further
decreased by employing implementation techniques that use
the multiple cores more effectively.

5. CONCLUSION

This paper described a fast algorithm for calculating mod-
ified correlation matrices, which are required by the CSD
method for BSSD [4]. The proposed algorithm takes advan-
tage of the particular structure of the modified correlation
matrices shown in Figure 3. Experimental results obtained
using the TIMIT complete test set revealed the efficiency of
the proposed algorithm as well as the great advantage of the
CSD method over the frequency-domain BSS method.
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