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ABSTRACT then the least square functional is employed (see Section

Gradient type methods are widely used approaches for nos-1). while the Kullback-Leibler divergence is more appro-
linear programming in image processing, due to their simpriate for the Poisson noise (see Section 4). For the regu-
plicity, low memory requirement and ability to provide larization termJ™(x), several choices can be considered; we
medium-accurate solutions without excessive computation Mmention the Tikhonov regularization, the sparsity indgcin
costs. In this work we discuss some improved gradient profi-Penalization and the edge preserving Total Variation reg-
jection methods for constrained optimization problemsini Ularization. o _ _

age deblurring and denoising. Crucial feature of these apthe optimization problems arising in the imaging framework
proaches is the combination of special steplength rules arf#fve very special features, which should be taken into ac-
scaled gradient directions, appropriately designed teeseh count when designing the optimization methods for comput-
a better convergence rate. Convergence results are given 5@ the solution. For example, the sizes of the problems are
exploiting monotone or nonmonotone line-search strasegieVery large (since images with several mega-pixels need to
along the feasible direction. The effectiveness of the -algoP€ Processed), the constraints have a very simple form and,
rithms is evaluated on the problems arising from the maxioften, some of the data cannot be represented in explicit ma-
mum likelihood approach to the deconvolution of images andfix format but they are available only as operators. The op-
from the edge-preserving removal of Poisson noise. Numefimization methods successfully applied to these problems
ical results obtained by facing large scale problems involyCONSist in iterative schemes that can be grouped in two main

ing images of several mega-pixels on graphics processers a#lasses: the explicit methods that use only matrix-vector
also reported. products at each iteration and the implicit ones that requir

to solve a linear system per iteration. The former are widely
1. INTRODUCTION used for their simplicity, low memory requirement and low
cost per iteration, while the latter are appealing for tfest
Image deblurring and denoising procedures based on thgnvergence. However, the recent advances on the acceler-
maximum likelihood criterion lead to model the imaging ation techniques for gradient-type methods make some ex-
problem as a constrained large scale optimization problenplicit approaches well suited to achieve moderate-aceurat
with a nonlinear, convex objective function. Ingeneralegi  solutions with very competitive convergence rate.
the observed blurred and noisy images R™, the objec-  This work deals with the explicit method proposed in [4]
tive function is a combination of a fit-to—data functiod@l  for image deblurring problems and able to face minimization
that measures the discrepancy of the solution fyjgrand  problem of the general form
a penalty termJR governing some properties of the recon-
structed image. Thus, an approximation of the original im- min  f(x),
age can be obtained by computing a veatarR" that solves xeQ (1)

the minimization problem whereQ c R" is a closed convex set anfd: Q — R is a

. R continuously differentiable function. The method is a $dal
er!no J(x) + 137X, Gradient Projection (SGP) algorithm based on special scal-
= ing techniques and steplength selection rules. As in other
whereT is a regularization parameter. The fit-to—data ternpopular algorithms for image restoration, such as the Expec
Jy(x) should be chosen according to the noise statistics: ifation Maximization (EM) method [12] and the Image Space
A € R™" represents the impulse response of the image adeconstruction Algorithm (ISRA) [6], the descent direoto
quisition systemA equal to the identity matrix in the case exploited by SGP are derived by diagonal scalings bfx).
of denoising problems), when Gaussian noise is assumethe selection of the steplength along these directionsris pe
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formed by taking into account recent ideas on the alternatioAlgorithm 1 Scaled Gradient Projection (SGP) Method
of the well known Barzilai-Borwein steplength rules [2].€'h E

hoose the starting point® € Q, set the parametef 6 €

above strategies are crucial to improve the convergenee ra 0,1), 0< Gnin < Gyax and fix a positive integem
) 1 I .

but they are not sufficient to ensure the convergence of th
scheme; to this end, line-search strategies along thebfeasi FORk=0,1,2,... DO THE FOLLOWING STEPS

direcf[ion are exploited to ensure a decrease of the (_)bg'ﬁctiv STEP 1. Choose the parametek € [Qmin, Omax] and the
function (in a monotone or nonmonotone way) during the scaling matrixDy € Z;

iterative procedure. SGP has been evaluated in [4] as iter- grepo. Projectiony® = P, D_l(x(k)iakaDf(X(k)));
ative regularization method for the deconvolution of immge Dy

corrupted by Poisson noise, that is for the minimization of ~ STep 3. Descent directionAx®) = yk) — x():

the Kullback-Leibler function subject to nonnegativityneo STEP4. SetA, = 1 and frpx = max f (x(k=1)y;
straints; it has shown very good convergence rate and signifi 0<j<min(k,M—1)

cant improvements in comparison to the EM method and the Step5. Backtracking loop:

Modified Residual Norm Steepest Descent algorithm [1]. let frey = f(x(k) +)\kAx(k>);

Here, we discuss the application of SGP to other imaging IF fray < me+BAkDf(X(k))TAX(k) THEN

problems: the deconvolution of images corrupted by Gaus-

: : ; . . go to Step 6;
sian noise and the edge-preserving removal of Poisson.noise ELSE
Furthermore, we present some numerical results on large setA, = O, and go to Step 5
scale imaging problems obtained by implementing SGP on ENDIF '

Graphics Processing Units. (kt1) _ (k) (K)
The paper is outlined as follows. In Section 2 we briefly re- STEPG. Sek =X+ ADXTE.
call the SGP scheme, in Section 3 we describe its behaviolEND

on the considered imaging problems and in Section 4 we

evaluate the implementation of SGP on graphics processors. . . KA
every accumulation point x* € Q of the sequence {x¥} isa

2 THE SGP ALGORITHM constrained stationary point, that is

To recall the SGP scheme for the solution of the problem (1) Of(x)T(x—x*) >0, ¥x€ Q.

we need some basic definitions and notations. \We denote

by || - ||o the vector norm induced by the symmetric positivelt is worth to stress that any choice of the steplengghe
definite matrixD € R™": ||x||p = v/XT Dx. As usual, the 2- [Amin,0max] and of the scaling matriy € Z are allowed;
norm of vectors is denoted by |. Given a closed convex then, this freedom of choice can be fruitfully exploited for
setQ c R", we define the projection operator associated tdntroducing performance improvements.

D as An effective selection strategy for the steplength paramet
Po.p(X) = argmincolly —X|lp. is obtained by adapting to the context of the scaling gradien
" methods the Barzilai-Borwein (BB) rules [2], widely used
In the special case inwhidb =, | being the identity matrix, in standard non-scaled gradient methods. When the scaled

and Q is the nonnegative orthant, the projector operator igjirection D, [f (x¥)) is exploited within a step of the form

denoted byP. (). Furthermore, leZ be the set of th@ x n K _ (K)
symmetric positive definite matricEssuch thaf|D|| <L and (x aDT (7)), the BB steplength rules become

D1 <L, for a given thresholdl > 1. ke )T e~ (K1 1T~ k1

The main SGP steps are given in Algorithm 1. a|£1> _ rly Dy "Dy rd ’ akZ) _ r—17 Dz ’

At each SGP iteration the vector r(kfl)TDglz(kfl) 241D, D kD
Y9 =Py p 1 (X — oD (X)) wherer (<D —x(0_x(k-1) andzk-D—1f (x®))_f (x(k-1),

may be observed that these formulas reduce to the standard

is defined by combining a scaled steepest descent directi rules in the case of non-scaled gradient methods, that is

with a projection onQ. Since the projection is performed

by using the projection operator associated to the inveirse §'N€NPk = I. The recent literature on the steplength selec-
the scaling matrix, it is possible to prove that the resgltin ton in gradient methods suggests to design steplengtitupda

L2 O (K K S ing strategies by alternating the two BB rules. We recall the
search directiolx) =y —x/ is a descent direction for adaptive alternation strategy proposed in [4, 9], that hasg

. T

the problem (1), that IAX(k) .Df(X(k_)) < 0. The global con- remarkable convergence rate improvements in many differ-
vergence of the algorithm is obtained by means of the nonent applications. Given an initial valum, the steplengths
monotone line—search procedure described in the Stept5, tha,, k= 1,2,..., are defined by the following criterion:

implies f (x**1)) lower than the reference valugay. We Fa® /a® < 1 THEN
observe that this line—search reduces to the standard mono- < ' K @
tone Armijo rule wherM = 1 (frax = f(x¥)). The follow- Ok = m'n{o’j , j=max{1,k— Ma}v-~~7k}?
ing convergence result for SGP has been proved in [4] by 11 = 1¢*0.9;
employing standard techniques (see also [3]). ELSE

ax = a|£1>; Tr1 = Tkx 1.1,
THEOREM2.1 Let {x(} be the sequence generated by ap- ENDIF

plying the SGP algorithmto the problem (1) and assumethat  whereMj is a prefixed non-negative integer ande (0, 1).
thelevel set Qo= {xc Q: f(x) < f(x(9))} isbounded. Then, ~ Concerning the choice of the scaling matik, a suited up-
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dating rule generally depends on the special form of the ob-
jective function and then we discuss this topic later, when
some applications of SGP will be presented.

3. TWO APPLICATIONS OF SGP

The numerical results reported in [4] show that SGP is a
useful iterative regularization method for the deconvolut

of images corrupted by Poisson noise (see also Section 4).
These promising results motivate the application of SGP to
other imaging problems, such as, for example, the decon-
volution of images corrupted by Gaussian noise and the re-
moval of Poisson noise.

3.1 Least-sgquares approach to nonnegative image de-
blurring

It is well-known that the maximum likelihood approach to
image deblurring in the case of Gaussian noise leads to the
following nonnegatively constrained least-squares bl

min - 3,(x) = 3llAx—y|2. :
x>0 S

Due to the ill-posedness of this convex problem, several ite
ative methods with the semiconvergence property have been
proposed to obtain regularized solution by an early stop-
ping of the iterations. Among these methods, the Projected
Landweber (PL) method [7] and ISRA [6] are the most pop-

ular approaches. The PL iteration is given by Figure 1: The original images (upper panels), the corre-
sponding blurrgd and noisy images (middle panels) and the
xk+) — p, (x0 — q03,(x¥)) = P, (x¥ 1+ aAT (y—Ax)) | reconstructed images (lower panels).

where a is a fixed steplength satisfying the conditions
0< a < —2, , while ISRA can be described by We report the results obtained by comparing the schemes
1Al on two test problems generated from the 258656 original
x(k+D) — — xk_ DJy(x(k>) images shown in the upper panels of Figure 1: an image of
’ the nebula NGC5979 (left panel) and the frequently used

AT AxK) T Ax(K) ebul ) Uent
where the multiplication and the division of vectors areha t [is:elllte image (right panel). Blurred and noisy images

o Ay (k x(®)

X ; . . middle panels in Figure 1) are obtained by convolving
Hadamard sense, i.e. pixel by pixel. The interested readgf e images with the point spread function available at

can refer to the above mentioned references for more detai tp://www.mathcs.emory.edu/ nagy/Restore Tools/iruten

on the two methods; here, we emphasize that SGP can b 1y perturbing the results with additive white Gaussian
considered a generalization of both PL and ISRA. In fact,,icq )\/Nﬁh Zer0 egxpected value and variano®s= 1. For

A= . '$ach method, we evaluate the relative reconstruction,error
able steplengths and scaled (_jlrecnons not exploited by Plyefined a$|x(k> —x||/|IX||, wherex is the image to be recon-
On the other hand, SGP can implement the same scaling 0ﬁucted and® is the reconstruction aftdriterations; then
ISRA, but it benefits also from the variable steplengths nOgve report the minimum relative reconstruction er;or (err)
available in ISRA. Thus, in order to evaluate if the more geny o nupmber of iterations (it) and the computational time in
eral form can be useful in practice, it seems natural to andatI . : mp

seconds (sec) required to provide the minimum error. Table 1

the SGP scaling matrix according to the scaling of ISRA: . : : . ;
summarizes the numerical results obtained by implementing

® the algorithms in standard C on an AMD Athlon 3500+
Dk:diag<min [L, max{l, Tx - H) ’ 2.2GHz processor; t(k)le same starting image is considered
L ATAX for all the schemesxi( ) — c,i=1...,n, c= z’j“:lyj/n.

The SGP method is clearly preferable in terms of number
of iterations and, even if it exhibits a cost per iteration
rger than the other schemes, it generally provides the bes

wherel is a large thresholdL(= 10'° in our simulations).
For the sake of completeness and to better assess the imp
tance of t_he scalmg_, we test also '_[he _behaV|(_)ur of an SG verall computational time. The best SGP reconstructions
version without scaling matrix, that is wib, = | in each it- are shown in the lower panels of Figure 1

eration; the corresponding method is denote by GP. The other '
main parameters of SGP and GP are set as follows:

e steplength parameteryn = 10720, oy = 10°,

00=13, Mg=2, 11=05; We consider the optimization-based approach for removing
e line-search parameterf =04, B=10%, M=1. Poisson noise recently proposed in [15], that consists in

3.2 Edge-preserving removal of Poisson noise
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Table 1: Image deblurring: behaviour of the algorithms.

Method err it sec err it sec
Nebula NGC5979 Satellite

PL |0.081 1134 7M™0|0.278 10307 7®1
ISRA | 0.075 1800 138|0.300 5248 382
SGP | 0.075 90 188 0.302 314 628

GP |0.080 136 177|0.278 1768 2151

Figure 2: Original images for denoising problems: the LCR-

the minimization of a functional obtained by penalizing thephantom described in [15] (256256) and a dental radiog-
Kullback-Leibler divergence by means of an edge preservingaphy (512« 512).

functional. In order to introduce this optimization proile
we use the following notation. Lete R" be the detected
noisy image; furthermore, i; denotes the value associated Table 2: Image denoising: behaviour of the algorithms on
to thei-th pixel of the image, we denote by;+ andx;- the  the LCR-phantom.

values associated to the pixels that are just below and above ) _

thei-th pixel, respectively; similarlyx;, andx_denote the ~_Method| err it sec| err it  sec
values associated to the pixels that are just after and defor 5—=108 5—=101

thei-th pixel, respectively. Then, an estimate of the noise-

free image can be obtained by solving the problem SGP | 0027 369 331410.025 148 1430
GP 0.032 2000 15913|0.025 280 223

min 5 (x-y-wind)+T(35 s (7)), ) _GP-BB|00S2 2000 15635]0025 735 7062
x=>n

whereA? = (x, — %)%+ (x+ —x)2 and @s(t) = 2Vt + 62, : . . .
5 being a small quantity tuning the discontinuities into the® valu$_ db(?rlvzed from thetlneraturr(]a forhthg(t;e;t Image. II‘OOkI
image [5],n > 0 is a small positive constant smaller than the'd t Table 2, we may observe that the VErsions largely

i : P tperform the other algorithms, confirming the importance
background emission ard> 0 is a regularization parame- ou : ' )
ter. See also [14] for a recent analysis of the total vanmatio of both the scaling strategy and the alternating steplesgth
minimization. In the feasible region the objective funatmf ~ '€Ction. The SGP method has been applied also for the test

the problem (2) is continuously differentiable, thus thePSG problem obtained by perturbing with Poisson noise the den-

method can be applied. In particular, following the gratiien & radiography in the right panel of the Figure (2). In this
splitting idea presented in [10], a diagonal scaling mawix ~ case€ the relative difference éa norm between the noisy and
SGP can be defined as ’ the noise-free image is079 and the parametedsandt has

been estimated by an empirical procedure. The best results i
. 1 Xi<k) terms of accuracy are obtained wih= 10~! andt = 0.25,
(Dy)ij =min| L, max|—, T , (3)  for which the SGP method provides an approximation of the
L 1+ 7vi(x¥) true object with an error equal to@28, in 113 iterations per-
formed in 42 seconds.

whereV; (x¥)) = {ng(Aiz) + Y502 )+ Y(A2) } XY,
In this numerical experience we compare the SGP described 4. SGP ON GRAPHICSPROCESSING UNITS

in section 2, equipped with the scaling matrix (3), and twoj this section we discuss an implementation of SGP for
mO[’e tr'adltlona| grad|ent algquthms. The first |S' a grad|en Graphics Processing Units (GPU), that are non_expensive
projection (GP) method obtained by usilg = | in SGP.  parallel processing devices available on many up-to-date p
The second algorithm, that we denote by GP-BB, can be alsgonal computers. For this experience we apply SGP as iter-
derived by the SGP by settid, = | anday = a.”; this  ative regularization algorithm for the deblurring of image
scheme is very similar to the GPRS-BB method proposed igorrupted by Poisson noise, that is, for an approximate-solu
[8]. The numerical experiments have been carried out on twtion of )

test problems generated by corrupting with Poisson noise th . _em nooA v a2 AiX D
images in Figure 2. For each test problem we determine ain% (¥ =3 (ZJ:lA'JXJ +b=yi—yiln Yi ) ’
approximate optimal value of the objective function by run-" = o

ning the monotone SGP method until the relative differencévhereb > 0 denotes a constant background radiation. An
between the function values at two successive iteratesss le€ffective version of SGP for such kind of application has
than 107. Then we use this reference value as stopping cribeen recently proposed in [4] by deriving the updating rule
terion for the other algorithms. In Table 2 the results otmtdi ~ for the matrixDy from the scaling used by the well-known
on the LCR-phantom image are summarized in termé&of EM method [12]. Taking into account that, under standard
relative error, iterations number and computational time; assumption on the blurring matri the EM method for the
this case, Matlab implementations of the algorithms are ru@bove minimization problem can be written as

on an AMD Opteron Dual Core 2.4 GHz processor. We set kid) K ATy

Kk K
n = 105 and the regularization parameteequal to 025, X AN LD x99 —xM03,(x¥)
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the following choice for the matrioy is suggested in [4]: Table 3: Image deblurring: SGP and EM on GPU

Dy = diag(min {L, max{},xk}D . CPU

L GPU
Thus, SGP can be viewed as a generalization of the EM n err sec| err sec | speedup
method able to exploit variable steplengths for improving SGP (it=29)

the convergence rate. The fast convergence allowed SGP o5&
to largely improve the EM computational time on the stan-
dard serial architecture tested in [4]. Here, we show that th
same holds when these algorithms are implemented on mod-
ern graphics processors. In Table 3 we report the numeri-
cal results obtained by running EM and SGP on a NVIDIA EM (it = 500)
GTX 280 graphics card, equipped with 30 streaming multi-

processors (240 total cores) running at 1296 MHz and with 256" | 0.070 44110071 Q19} 232

1GB of global memory. The parallel implementation is de- 512 | 0.064 1991|0064 Q89| 224
veloped within the programming environment CUDA (Com- 1024 | 0.063 9792 | 0.063 363| 27.0

pute Unified Device Architecture), provided by NVIDIA (see 2048 | 0.063 52303 | 0.063 2305| 227
http://www.nvidia.com/cuda). In particular, the kernel |

braries of CUDA called CUFFT and CUBLAS are exploited

for performing the 2-D FFTs and the linear algebra opera-

tions. For evaluating speedups in comparison with standard computed imaging,/EEE Trans. Image Processing, vol.
CPU implementations, we report also the results obtained by 6, pp. 298-311, 1997.

means of a C implementation (within the Microsoft Visual [§] M. E. Daube-Witherspoon and G. Muehllehner, “An it-

Studio 2005 environment) on a personal computer equipped” erative image space reconstruction algorithm suitable for
with an AMD Athlon X2 Dual-Core at 3.11GHz and 3GB volume ECT,|EEE Trans. Med. Imaging, vol. 5, pp. 61-

of RAM. The test problems we consider are generated as in g6, 1986.

[4, 13]: an image of the nebula NGC5979 sized 25856 : p : -

is convolved with an ideal PSF, then a constant backgroung] ﬁ’l %'gle(g’ lrz)et:?et:gg memlc;)desrtf(;r ;gg\slﬁﬁlr)r/‘etr:ogitrzgned
term is added and the resulting image is perturbed with Pois- Angl o tirF;] vol. 13 413-29 p1992 ' '
son noise. Test problems of larger size are obtained by ex- -OP T pp- ' ' .
panding the original images and the PSF by means of a zer8] M. A. T. Figueriredo, R. D. Nowak, and S. J. Wright,
padding technique on their FFTs. The same parameters given Gradient projection for sparse reconstruction: applica-
in Section 3.1 are used for SGP, except the line-search param  tion to compressed sensing and other inverse problems,”
eterM, for which the settindVl = 10 is preferred. The results |IEEE J. Sel. Topics in Sg. Proc., vol. 1, pp. 586-597,

in Table 3 show that the GPU implementations allow us to ~ 2007.

save time over the CPU implementation for more than on¢9] G. Frassoldati, L. Zanni, and G. Zanghirati, “New adap-
order of magnitude. Furthermore, SGP largely outperforms tive stepsize selections in gradient methods,'ndust.

EM also on graphics processors, even if the additional oper- Manag. Optim., vol. 4, pp. 299-312, 2008.

ations required in each SGP iteration (in particular théesca [10] H. Lanteri, M. Roche, and C. Aime, “Penalized max-
products involved in the steplength selection) make this al"  “jmum Jikelihood image restoration with positivity con-

GPU. We refer to [13] for a deeper analysis of the SGP imple- | 18, pp. 1397-1419, 2002.

mentation on GPU and to [11] for examples of other imag . u .
reconstruction algorithms implemented on graphics proceill] S. Lee and S. J. Wright “Implementing al-
gorithms for signal and image reconstruc-

sors. ) . . A )
tion on graphical processing units.”, submitted
2008. Available at: http://www.optimization-
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