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ABSTRACT
Gradient type methods are widely used approaches for non-
linear programming in image processing, due to their sim-
plicity, low memory requirement and ability to provide
medium-accurate solutions without excessive computational
costs. In this work we discuss some improved gradient pro-
jection methods for constrained optimization problems in im-
age deblurring and denoising. Crucial feature of these ap-
proaches is the combination of special steplength rules and
scaled gradient directions, appropriately designed to achieve
a better convergence rate. Convergence results are given by
exploiting monotone or nonmonotone line-search strategies
along the feasible direction. The effectiveness of the algo-
rithms is evaluated on the problems arising from the maxi-
mum likelihood approach to the deconvolution of images and
from the edge-preserving removal of Poisson noise. Numer-
ical results obtained by facing large scale problems involv-
ing images of several mega-pixels on graphics processors are
also reported.

1. INTRODUCTION

Image deblurring and denoising procedures based on the
maximum likelihood criterion lead to model the imaging
problem as a constrained large scale optimization problem,
with a nonlinear, convex objective function. In general, given
the observed blurred and noisy imagey ∈ R

m, the objec-
tive function is a combination of a fit–to–data functionalJy
that measures the discrepancy of the solution fromy, and
a penalty termJR governing some properties of the recon-
structed image. Thus, an approximation of the original im-
age can be obtained by computing a vectorx ∈R

n that solves
the minimization problem

min Jy(x)+ τJR(x),
x ≥ 0

whereτ is a regularization parameter. The fit–to–data term
Jy(x) should be chosen according to the noise statistics: if
A ∈ R

m×n represents the impulse response of the image ac-
quisition system (A equal to the identity matrix in the case
of denoising problems), when Gaussian noise is assumed,

then the least square functional is employed (see Section
3.1), while the Kullback-Leibler divergence is more appro-
priate for the Poisson noise (see Section 4). For the regu-
larization termJR(x), several choices can be considered; we
mention the Tikhonov regularization, the sparsity inducing
ℓ1-penalization and the edge preserving Total Variation reg-
ularization.
The optimization problems arising in the imaging framework
have very special features, which should be taken into ac-
count when designing the optimization methods for comput-
ing the solution. For example, the sizes of the problems are
very large (since images with several mega-pixels need to
be processed), the constraints have a very simple form and,
often, some of the data cannot be represented in explicit ma-
trix format but they are available only as operators. The op-
timization methods successfully applied to these problems
consist in iterative schemes that can be grouped in two main
classes: the explicit methods that use only matrix-vector
products at each iteration and the implicit ones that require
to solve a linear system per iteration. The former are widely
used for their simplicity, low memory requirement and low
cost per iteration, while the latter are appealing for theirfast
convergence. However, the recent advances on the acceler-
ation techniques for gradient-type methods make some ex-
plicit approaches well suited to achieve moderate-accurate
solutions with very competitive convergence rate.
This work deals with the explicit method proposed in [4]
for image deblurring problems and able to face minimization
problem of the general form

min f (x),
x ∈ Ω (1)

whereΩ ⊂ R
n is a closed convex set andf : Ω → R is a

continuously differentiable function. The method is a Scaled
Gradient Projection (SGP) algorithm based on special scal-
ing techniques and steplength selection rules. As in other
popular algorithms for image restoration, such as the Expec-
tation Maximization (EM) method [12] and the Image Space
Reconstruction Algorithm (ISRA) [6], the descent directions
exploited by SGP are derived by diagonal scalings of∇ f (x).
The selection of the steplength along these directions is per-
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formed by taking into account recent ideas on the alternation
of the well known Barzilai-Borwein steplength rules [2]. The
above strategies are crucial to improve the convergence rate
but they are not sufficient to ensure the convergence of the
scheme; to this end, line-search strategies along the feasible
direction are exploited to ensure a decrease of the objective
function (in a monotone or nonmonotone way) during the
iterative procedure. SGP has been evaluated in [4] as iter-
ative regularization method for the deconvolution of images
corrupted by Poisson noise, that is for the minimization of
the Kullback-Leibler function subject to nonnegativity con-
straints; it has shown very good convergence rate and signifi-
cant improvements in comparison to the EM method and the
Modified Residual Norm Steepest Descent algorithm [1].
Here, we discuss the application of SGP to other imaging
problems: the deconvolution of images corrupted by Gaus-
sian noise and the edge-preserving removal of Poisson noise.
Furthermore, we present some numerical results on large
scale imaging problems obtained by implementing SGP on
Graphics Processing Units.
The paper is outlined as follows. In Section 2 we briefly re-
call the SGP scheme, in Section 3 we describe its behaviour
on the considered imaging problems and in Section 4 we
evaluate the implementation of SGP on graphics processors.

2. THE SGP ALGORITHM

To recall the SGP scheme for the solution of the problem (1)
we need some basic definitions and notations. We denote
by ‖ · ‖D the vector norm induced by the symmetric positive
definite matrixD ∈ R

n×n: ‖x‖D =
√

xT Dx. As usual, the 2-
norm of vectors is denoted by‖ · ‖. Given a closed convex
setΩ ⊂ R

n, we define the projection operator associated to
D as

PΩ,D(x) = argminy∈Ω‖y− x‖D.

In the special case in whichD = I, I being the identity matrix,
and Ω is the nonnegative orthant, the projector operator is
denoted byP+(·). Furthermore, letD be the set of then×n
symmetric positive definite matricesD such that‖D‖≤ L and
‖D−1‖ ≤ L, for a given thresholdL > 1.
The main SGP steps are given in Algorithm 1.
At each SGP iteration the vector

y(k) = PΩ,D−1
k

(x(k) −αkDk∇ f (x(k)))

is defined by combining a scaled steepest descent direction
with a projection onΩ. Since the projection is performed
by using the projection operator associated to the inverse of
the scaling matrix, it is possible to prove that the resulting
search direction∆x(k) = y(k) − x(k) is a descent direction for

the problem (1), that is∆x(k)T ∇ f (x(k)) < 0. The global con-
vergence of the algorithm is obtained by means of the non-
monotone line–search procedure described in the Step 5, that
implies f (x(k+1)) lower than the reference valuefmax. We
observe that this line–search reduces to the standard mono-
tone Armijo rule whenM = 1 ( fmax = f (x(k))). The follow-
ing convergence result for SGP has been proved in [4] by
employing standard techniques (see also [3]).

THEOREM 2.1 Let {x(k)} be the sequence generated by ap-
plying the SGP algorithm to the problem (1) and assume that
the level set Ω0 = {x ∈ Ω : f (x)≤ f (x(0))} is bounded. Then,

Algorithm 1 Scaled Gradient Projection (SGP) Method

Choose the starting pointx(0) ∈ Ω, set the parametersβ ,θ ∈
(0,1), 0< αmin < αmax and fix a positive integerM.

FOR k = 0,1,2, ... DO THE FOLLOWING STEPS:
STEP 1. Choose the parameterαk ∈ [αmin,αmax] and the

scaling matrixDk ∈ D ;
STEP 2. Projection:y(k) = PΩ,D−1

k
(x(k)−αkDk∇ f (x(k)));

STEP 3. Descent direction:∆x(k) = y(k) − x(k);
STEP 4. Setλk = 1 and fmax = max

0≤ j≤min(k,M−1)
f (x(k− j));

STEP 5. Backtracking loop:
let fnew = f (x(k) +λk∆x(k));
IF fnew ≤ fmax +βλk∇ f (x(k))T ∆x(k) THEN

go to Step 6;
ELSE

setλk = θλk and go to Step 5.
ENDIF

STEP 6. Setx(k+1) = x(k) +λk∆x(k).
END

every accumulation point x∗ ∈ Ω of the sequence {x(k)} is a
constrained stationary point, that is

∇ f (x∗)T (x− x∗) ≥ 0, ∀x ∈ Ω.

It is worth to stress that any choice of the steplengthαk ∈
[αmin,αmax] and of the scaling matrixDk ∈ D are allowed;
then, this freedom of choice can be fruitfully exploited for
introducing performance improvements.
An effective selection strategy for the steplength parameter
is obtained by adapting to the context of the scaling gradient
methods the Barzilai-Borwein (BB) rules [2], widely used
in standard non-scaled gradient methods. When the scaled
directionDk∇ f (x(k)) is exploited within a step of the form
(x(k)−αkDk∇ f (x(k))), the BB steplength rules become

α(1)
k =

r(k−1)T
D−1

k D−1
k r(k−1)

r(k−1)T
D−1

k z(k−1)
, α(2)

k =
r(k−1)T

Dkz(k−1)

z(k−1)T
DkDkz(k−1)

,

wherer(k−1)=x(k)−x(k−1) andz(k−1)=∇ f (x(k))−∇ f (x(k−1)).
It may be observed that these formulas reduce to the standard
BB rules in the case of non-scaled gradient methods, that is
whenDk = I. The recent literature on the steplength selec-
tion in gradient methods suggests to design steplength updat-
ing strategies by alternating the two BB rules. We recall the
adaptive alternation strategy proposed in [4, 9], that has given
remarkable convergence rate improvements in many differ-
ent applications. Given an initial valueα0, the steplengths
αk, k = 1,2, . . . , are defined by the following criterion:

IF α(2)
k /α(1)

k ≤ τk THEN

αk = min
{

α(2)
j , j = max{1,k−Mα} , . . . ,k

}

;

τk+1 = τk ∗0.9;
ELSE

αk = α(1)
k ; τk+1 = τk ∗1.1;

ENDIF

whereMα is a prefixed non-negative integer andτ1 ∈ (0,1).
Concerning the choice of the scaling matrixDk, a suited up-
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dating rule generally depends on the special form of the ob-
jective function and then we discuss this topic later, when
some applications of SGP will be presented.

3. TWO APPLICATIONS OF SGP

The numerical results reported in [4] show that SGP is a
useful iterative regularization method for the deconvolution
of images corrupted by Poisson noise (see also Section 4).
These promising results motivate the application of SGP to
other imaging problems, such as, for example, the decon-
volution of images corrupted by Gaussian noise and the re-
moval of Poisson noise.

3.1 Least-squares approach to nonnegative image de-
blurring

It is well-known that the maximum likelihood approach to
image deblurring in the case of Gaussian noise leads to the
following nonnegatively constrained least-squares problem:

min Jy(x) = 1
2‖Ax− y‖2 .

x ≥ 0

Due to the ill-posedness of this convex problem, several iter-
ative methods with the semiconvergence property have been
proposed to obtain regularized solution by an early stop-
ping of the iterations. Among these methods, the Projected
Landweber (PL) method [7] and ISRA [6] are the most pop-
ular approaches. The PL iteration is given by

x(k+1) = P+(x(k)−α∇Jy(x
(k))) = P+(x(k) +αAT (y−Ax(k))) ,

where α is a fixed steplength satisfying the conditions
0 < α < 2

||A||2 , while ISRA can be described by

x(k+1) = x(k) AT y

AT Ax(k)
= x(k) − x(k)

AT Ax(k)
∇Jy(x

(k)) ,

where the multiplication and the division of vectors are in the
Hadamard sense, i.e. pixel by pixel. The interested reader
can refer to the above mentioned references for more details
on the two methods; here, we emphasize that SGP can be
considered a generalization of both PL and ISRA. In fact,
SGP is based on a gradient projection as PL, but it uses vari-
able steplengths and scaled directions not exploited by PL.
On the other hand, SGP can implement the same scaling of
ISRA, but it benefits also from the variable steplengths not
available in ISRA. Thus, in order to evaluate if the more gen-
eral form can be useful in practice, it seems natural to update
the SGP scaling matrix according to the scaling of ISRA:

Dk = diag

(

min

[

L, max

{

1
L

,
x(k)

AT Ax(k)

}])

,

whereL is a large threshold (L = 1010 in our simulations).
For the sake of completeness and to better assess the impor-
tance of the scaling, we test also the behaviour of an SGP
version without scaling matrix, that is withDk = I in each it-
eration; the corresponding method is denote by GP. The other
main parameters of SGP and GP are set as follows:

• steplength parameter:αmin = 10−10 , αmax = 105 ,
α0 = 1.3 , Mα = 2 , τ1 = 0.5 ;

• line-search parameter:θ = 0.4 , β = 10−4 , M = 1 .

Figure 1: The original images (upper panels), the corre-
sponding blurred and noisy images (middle panels) and the
reconstructed images (lower panels).

We report the results obtained by comparing the schemes
on two test problems generated from the 256×256 original
images shown in the upper panels of Figure 1: an image of
the nebula NGC5979 (left panel) and the frequently used
satellite image (right panel). Blurred and noisy images
(middle panels in Figure 1) are obtained by convolving
these images with the point spread function available at
http://www.mathcs.emory.edu/ nagy/RestoreTools/index.html
and by perturbing the results with additive white Gaussian
noise with zero expected value and variancesσ2 = 1. For
each method, we evaluate the relative reconstruction error,
defined as‖x(k) − x‖/‖x‖, wherex is the image to be recon-
structed andx(k) is the reconstruction afterk iterations; then
we report the minimum relative reconstruction error (err),
the number of iterations (it) and the computational time in
seconds (sec) required to provide the minimum error. Table 1
summarizes the numerical results obtained by implementing
the algorithms in standard C on an AMD Athlon 3500+
2.2GHz processor; the same starting image is considered

for all the schemes:x(0)
i = c, i = 1, . . . ,n, c = ∑m

j=1 y j/n.
The SGP method is clearly preferable in terms of number
of iterations and, even if it exhibits a cost per iteration
larger than the other schemes, it generally provides the best
overall computational time. The best SGP reconstructions
are shown in the lower panels of Figure 1.

3.2 Edge-preserving removal of Poisson noise

We consider the optimization-based approach for removing
Poisson noise recently proposed in [15], that consists in
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Table 1: Image deblurring: behaviour of the algorithms.

Method err it sec err it sec

Nebula NGC5979 Satellite

PL 0.081 1134 7.90 0.278 10307 70.61
ISRA 0.075 1800 13.38 0.300 5248 38.42
SGP 0.075 90 1.88 0.302 314 6.28
GP 0.080 136 1.77 0.278 1768 21.51

the minimization of a functional obtained by penalizing the
Kullback-Leibler divergence by means of an edge preserving
functional. In order to introduce this optimization problem
we use the following notation. Lety ∈ R

n be the detected
noisy image; furthermore, ifxi denotes the value associated
to thei-th pixel of the imagex, we denote byxi+ andxi− the
values associated to the pixels that are just below and above
the i-th pixel, respectively; similarly,xi+ andxi− denote the
values associated to the pixels that are just after and before
the i-th pixel, respectively. Then, an estimate of the noise-
free image can be obtained by solving the problem

min ∑i

(

xi − yi − yi ln
xi
yi

)

+ τ
(

1
2 ∑i ψδ

(

∆2
i

))

,
x ≥ η

(2)

where∆2
i = (xi+ −xi)

2+(xi+ −xi)
2 and ψδ (t) = 2

√
t +δ 2,

δ being a small quantity tuning the discontinuities into the
image [5],η > 0 is a small positive constant smaller than the
background emission andτ > 0 is a regularization parame-
ter. See also [14] for a recent analysis of the total variation
minimization. In the feasible region the objective function of
the problem (2) is continuously differentiable, thus the SGP
method can be applied. In particular, following the gradient
splitting idea presented in [10], a diagonal scaling matrixfor
SGP can be defined as

(Dk)i,i = min

(

L, max

[

1
L

,
x(k)

i

1+ τVi(x(k))

])

, (3)

whereVi(x(k)) =
{

2ψ ′
δ (∆2

i )+ψ ′
δ (∆2

i−)+ψ ′
δ (∆2

i−)
}

x(k)
i .

In this numerical experience we compare the SGP described
in section 2, equipped with the scaling matrix (3), and two
more traditional gradient algorithms. The first is a gradient
projection (GP) method obtained by usingDk = I in SGP.
The second algorithm, that we denote by GP-BB, can be also

derived by the SGP by settingDk = I and αk = α(1)
k ; this

scheme is very similar to the GPRS-BB method proposed in
[8]. The numerical experiments have been carried out on two
test problems generated by corrupting with Poisson noise the
images in Figure 2. For each test problem we determine an
approximate optimal value of the objective function by run-
ning the monotone SGP method until the relative difference
between the function values at two successive iterates is less
than 10−7. Then we use this reference value as stopping cri-
terion for the other algorithms. In Table 2 the results obtained
on the LCR-phantom image are summarized in terms ofℓ2
relative error, iterations number and computational time;in
this case, Matlab implementations of the algorithms are run
on an AMD Opteron Dual Core 2.4 GHz processor. We set
η = 10−5 and the regularization parameterτ equal to 0.25,

Figure 2: Original images for denoising problems: the LCR-
phantom described in [15] (256×256) and a dental radiog-
raphy (512×512).

Table 2: Image denoising: behaviour of the algorithms on
the LCR-phantom.

Method err it sec err it sec

δ = 10−8 δ = 10−1

SGP 0.027 369 35.14 0.025 148 14.30
GP 0.032 2000∗ 159.13 0.025 280 23.23

GP-BB 0.032 2000∗ 156.35 0.025 735 70.62

a value derived from the literature for this test image. Look-
ing at Table 2, we may observe that the SGP versions largely
outperform the other algorithms, confirming the importance
of both the scaling strategy and the alternating steplengthse-
lection. The SGP method has been applied also for the test
problem obtained by perturbing with Poisson noise the den-
tal radiography in the right panel of the Figure (2). In this
case the relative difference inℓ2 norm between the noisy and
the noise-free image is 0.179 and the parametersδ andτ has
been estimated by an empirical procedure. The best results in
terms of accuracy are obtained withδ = 10−1 andτ = 0.25,
for which the SGP method provides an approximation of the
true object with an error equal to 0.028, in 113 iterations per-
formed in 42 seconds.

4. SGP ON GRAPHICS PROCESSING UNITS

In this section we discuss an implementation of SGP for
Graphics Processing Units (GPU), that are non-expensive
parallel processing devices available on many up-to-date per-
sonal computers. For this experience we apply SGP as iter-
ative regularization algorithm for the deblurring of images
corrupted by Poisson noise, that is, for an approximate solu-
tion of

min Jy(x) = ∑m
i=1

(

∑n
j=1 Ai jx j +b− yi − yi ln

∑n
j=1 Ai jx j+b

yi

)

,
x ≥ 0

whereb > 0 denotes a constant background radiation. An
effective version of SGP for such kind of application has
been recently proposed in [4] by deriving the updating rule
for the matrixDk from the scaling used by the well-known
EM method [12]. Taking into account that, under standard
assumption on the blurring matrixA, the EM method for the
above minimization problem can be written as

x(k+1) = x(k) AT y

Ax(k) +b
= x(k) − x(k)∇Jy(x

(k)) ,
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the following choice for the matrixDk is suggested in [4]:

Dk = diag

(

min

[

L, max

{

1
L

,xk
}])

.

Thus, SGP can be viewed as a generalization of the EM
method able to exploit variable steplengths for improving
the convergence rate. The fast convergence allowed SGP
to largely improve the EM computational time on the stan-
dard serial architecture tested in [4]. Here, we show that the
same holds when these algorithms are implemented on mod-
ern graphics processors. In Table 3 we report the numeri-
cal results obtained by running EM and SGP on a NVIDIA
GTX 280 graphics card, equipped with 30 streaming multi-
processors (240 total cores) running at 1296 MHz and with
1GB of global memory. The parallel implementation is de-
veloped within the programming environment CUDA (Com-
pute Unified Device Architecture), provided by NVIDIA (see
http://www.nvidia.com/cuda). In particular, the kernel li-
braries of CUDA called CUFFT and CUBLAS are exploited
for performing the 2-D FFTs and the linear algebra opera-
tions. For evaluating speedups in comparison with standard
CPU implementations, we report also the results obtained by
means of a C implementation (within the Microsoft Visual
Studio 2005 environment) on a personal computer equipped
with an AMD Athlon X2 Dual-Core at 3.11GHz and 3GB
of RAM. The test problems we consider are generated as in
[4, 13]: an image of the nebula NGC5979 sized 256× 256
is convolved with an ideal PSF, then a constant background
term is added and the resulting image is perturbed with Pois-
son noise. Test problems of larger size are obtained by ex-
panding the original images and the PSF by means of a zero-
padding technique on their FFTs. The same parameters given
in Section 3.1 are used for SGP, except the line-search param-
eterM, for which the settingM = 10 is preferred. The results
in Table 3 show that the GPU implementations allow us to
save time over the CPU implementation for more than one
order of magnitude. Furthermore, SGP largely outperforms
EM also on graphics processors, even if the additional oper-
ations required in each SGP iteration (in particular the scalar
products involved in the steplength selection) make this al-
gorithm less suited than EM for a parallel implementation on
GPU. We refer to [13] for a deeper analysis of the SGP imple-
mentation on GPU and to [11] for examples of other image
reconstruction algorithms implemented on graphics proces-
sors.
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