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ABSTRACT
The paper studies the theoretical error lower bound of the
mobile tracking problem in mixed Line-of-sight (LOS) and
non-line-of-sight (NLOS) conditions. A new method is pre-
sented to compute the posterior Cramer-Rao lower bound
(CRLB): the mobile state is first estimated by decentralized
EKF method, then sigma point set and unscented transfor-
mation are applied to calculate Fisher information matrix
(FIM). Numerical results show that the error performance of
three algorithms is in a good agreement with the theoretical
bounds.

1. INTRODUCTION

In dense urban regions, the non-line-of-sight (NLOS) condi-
tion is very common, where the direct path from the mobile
station (MS) to a base station (BS) is blocked by buildings
and other obstacles. Propagation wave may actually travel
excess path lengths due to effects of reflection, refraction and
scattering in such condition. In terms of range based mea-
surements such as time of arrival (TOA), time difference of
arrival (TDOA) and receiver signal strength (RSS), this extra
propagation distance imposes positive biases on the true path,
which cause large errors on the MS location estimations.

Many methods have been proposed to deal with the
NLOS problem. Reference [1] has summarized the methods
for static position systems. Several algorithms have been pro-
posed to track the mobile more effectively by exploiting the
redundant measurements in time series, including the two-
step Kalman filtering technique for smoothing range mea-
surements and mitigating NLOS errors in [2] and a Kalman
based interacting multiple model (IMM) smoother [3]. In
our previous work, modified EKF banks with data fusion
method [4] and the Rao-Blackwellized particle filtering al-
gorithm [5] have improved performance compared with the
existing methods.

In this paper, we investigate the theoretical lower bound
of the performance error of mobile tracking in mixed
LOS/NLOS conditions. For simplicity, we consider the prob-
lem under the assumption that the LOS and NLOS transition
history is known, which avoids the false detection of sight
condition. A new method is presented to calculate the pos-
terior CRLB, which adopts the decentralized EKF method
to estimate the mobile state first, then applies sigma point set
and unscented transformation to calculate Fisher information
matrix (FIM), the inverse of posterior CRLB value.

Although we study the theoretical lower bound in the
context of mobile cellular positioning, the methodology is
completely general for other platforms, such as ultra wide

band (UWB), satellite based position etc. The posterior
CRLB we derive could be used as the theoretical basis for
developing new algorithms in this kind of problems. It is
also useful in predicting the performance for various sam-
pling intervals and sensor accuracy.

The paper is organized as follows: Section II presents
the dynamic system models and formulates the problem
of mobility tracking in the mixed LOS/NLOS conditions.
Sect. III describes the derivation of the performance lower
bound. Numerical results and performance comparison are
presented and discussed in Sect. IV. Sect. V draws some
conclusions.

2. SYSTEM MODEL

2.1 Mobile State Model
In this work, we assume that the MS moves according to a
dynamic white noise acceleration model in a 2-D Cartesian
coordinate plane [6]:

Xk = ΦXk−1 +Wk (1)

where Φ models the state kinematics, the mobile state at time
k is defined as Xk = [xk,yk, ẋk, ẏk]T , [xk,yk] denotes the mo-
bile position; [ẋk, ẏk] denotes the velocity. Wk is a white zero
mean Gaussian noise, with covariance matrix Q.

2.2 Measurement Model
method. Suppose di,k represents the true range between the
mobile position [xk,yk] and the location of BSi [xi,yi]:

di,k
∆= hi(Xk) =

√
(xk− xi)2 +(yk− yi)2, i ∈ (1,2...M) (2)

In a LOS environment, the range measurement between MS
and the BSi is only corrupted by the system measurement
noise ni,k, which can be modeled as an independent and iden-
tically distributed (i.i.d.) zero mean white Gaussian noise
N(0,σ2

m). In NLOS conditions, the range measurement is
corrupted by two sources of errors: the measurement noise
ni,k and the NLOS error bi,k. Field tests showed that, the
mean and standard deviation of the NLOS range error are in
the order of 513 m and 436 m respectively [7]. As in ref. [3-
5], NLOS error is also modeled as a positively biased Gaus-
sian distribution with N(mNLOS,σ2

NLOS) here. Then the range
measurement equations are

LOS : zi,k = di,k +ni,k (3)

NLOS : zi,k = di,k +ni,k +bi,k (4)
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We introduce a variable si,k ∈ S
∆= {0,1} to represent

LOS/NLOS condition between MS and the BSi at the time
instant k, with si,k = 0 for LOS and si,k = 1 for NLOS. Eq.
(3) and (4) can be further transformed to:

zi,k = di,k +m(si,k)+R(si,k) · vi,k, si,k ∈S (5)

where vi,k is the normalized i.i.d. zero mean white Gaussian
noise and

m(si,k) =
{

0, i f si,k = 0
mNLOS, i f si,k = 1 (6)

R(si,k) =

{
σm, i f si,k = 0√
σ2

m +σ2
NLOS, i f si,k = 1

(7)

Field measurements have shown a dynamic transition be-
tween LOS and NLOS conditions in typical cellular commu-
nication environments [8]. Thus, the transitions between the
two-state sight condition variable si,k can be further assumed
as a first-order Markov chain with initial probability vector
πi and transition probability matrix Ai : si,k ∼MC(π i,Ai) [3-
5]. Note that the M sight conditions are assumed as i.i.d.
first-order Markov chains for the independence of the BSs.

Denote the total observation sequence up to time k
as Z1:k, where Zk

∆= [z1,k,z2,k, ...,zM,k]T , the correspond-

ing discrete sight condition sequence S1:k, where Sk
∆=

[s1,k,s2,k, ...,sM,k]T and the continuous state sequence X1:k.
The problem of mobile positioning in mixed LOS/NLOS
conditions is to infer the current mobile state X1:k from
the observation Z1:k, which corresponds to compute the
marginal posterior p(X1:k

/
Z1:k) or the joint posterior

p(X1:k,S1:k
/
Z1:k).

The optimal Bayesian solution to the problem, unfortu-
nately, cannot be computed analytically, because the mea-
surement equation is nonlinear. Moreover, the required
density p(X1:k

/
Z1:k) is a mixture density with the number

of components growing exponentially with time, which in-
volves high-dimensional integrals and is prohibitive to com-
pute. Several suboptimal solutions have been proposed, in
which different approximation methods have been applied
[3-5]. However, in dealing with approximations, a lower
bound of performance should be derived, so as to predict the
best achievable performance before running the algorithms
and assess the level of approximation introduced by a partic-
ular algorithm.

Section III presents the derivation of the performance
lower bound in detail. Also a new method is proposed to cal-
culate the posterior CRLB with relatively low computation
complexity.

3. POSTERIOR CRLB

Let X̂k be an unbiased estimator of the state vector Xk, based
on the set of measurements Z1:k. Then, the estimate covari-
ance Pk is bounded by the P-CRLB J−1

k :

Pk = E{[X̂k−Xk][X̂k−Xk]T} ≥ J−1
k (8)

where Jk is the posterior Fisher information matrix (FIM):

Jk = E{−∇Xk ∇T
Xk

log p(Xk,Zk)} (9)

and ∇Xk is the first-order partial derivative operator with re-
spect to Xk.

Tichavsky et al [9] show that the FIM Jk can be recur-
sively calculated as

Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k (10)

where
D11

k = E{−∇Xk ∇T
Xk

log p(Xk+1 |Xk )} (11)

D12
k = [D21

k ]T

= E{−∇Xk ∇T
Xk+1

log p(Xk+1 |Xk )} (12)

D22
k = E{−∇Xk+1∇T

Xk+1
log p(Xk+1 |Xk )}

+E{−∇Xk+1∇T
Xk+1

log p(Zk+1 |Xk+1 )}
= D22,a

k +D22,b
k

(13)

We initialize the recursion of Equ. (10) with

J0 = E{−∇X0∇T
X0

log p(X0)} (14)

For the case of the linear dynamic Gaussian white noise
acceleration state model in Equ.(1), the Equation (11-13) can
be simplified as :

D11
k = ΦT Q−1Φ (15)

D12
k = (D21

k )T =−ΦT Q−1 (16)

D22
k = Q−1 +D22,b

k (17)

Substitute Equ. (15)-(17) into Equ. (10) and apply the matrix
inversion lemma, we get:

Jk+1 = (Q+ΦJ−1
k ΦT )−1 +D22,b

k (18)

The expectation D22,b
k relates to nonlinear measurement

equation, thus has no analytically closed-form results. Monte
Carlo random sampling approach could be used to circum-
vent the difficulty by converting the above integrals to sum-
mations [10]. Considering that the mobile state can be ap-
proximately estimated using decentralized EKF method, we
propose a new method using sigma point set and unscented
transformation, a deterministically sampling method with
relatively low computation complexity.

Using linearization approximation, D22,b
k can be further

computed as

D22,b
k = 1

2 E{∇Xk+1∇T
Xk+1
{[Zk+1−h(Xk+1)−m(Sk+1)]

T Σ−1
k+1

[Zk+1−h(Xk+1)−m(Sk+1)]}}=E
{

HT
k+1Σ−1

k+1Hk+1
}

(19)
where Hk+1 =

[
H1,k+1...,HM,k+1

]T and Hi,k+1 = ∂hi(Xk+1)
∂Xk+1

.
Σk+1 denotes the measurement covariance matrix, and the
subscript k + 1 represents the time varying LOS or NLOS
sight conditions.
Let

Λ22,b
k

∆= HT
k+1Σ−1

k+1Hk+1 (20)

then Equ. (19) can be simplified as

D22,b
k = E{Λ22,b

k }=
∫

Λ22,b
k d p(Xk+1) (21)

Under the assumption that the LOS and NLOS condition
between MS and each BS is known during the whole MS
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trajectory, the density p(Xk/Zk) conforms to Gaussian dis-
tribution. Since the time varying LOS and NLOS conditions
have different mean and variance, we apply the decentralized
EKF method to compute the p(Xk/Zk) approximately. The
mean matrix X̂k is :

X̂k = X̂k/k−1 +
M

∑
i=1

Ki,k(zi,k− ẑi,k/k−1) (22)

in which,
ẑi,k/k−1 = hi(X̂k/k−1)+m(si,k) (23)

the Kalman gain:

Ki,k = P̂i,kHT
i,kR(si,k)−2 (24)

P̂i,k =
[
P̂−1

k/k−1 +HT
i,kR(si,k)−2Hi,k

]−1
(25)

And the covariance matrix P̂k is :

P̂k = [P̂−1
k/k−1 +

M

∑
i=1

HT
i,kR(si,k)−2Hi,k]−1 (26)

Assume a nx dimension motion state variable Xk is es-
timated with mean X̂k and covariance P̂k. To calculate the
statistics of D22,b

k , we use unscented transformation method

as follows: First, a set of 2nx + 1 sigma points SS( j)
k ={

W ( j)
k ,X ( j)

k

}
can be deterministically sampled from the mul-

tivariate Gaussian distribution X ( j)
k ∼ N(X̂k, P̂k). A symmet-

ric set of sigma points can be generated according to the fol-
lowing requirements:

• j = 0
X (0)

k = X̂k

W (0)
k = κ

/
(nx +κ)

• j = 1, ...,nx

X ( j)
k = X̂k +

(√
(nx +κ)P̂k

)

j

W ( j)
k = 1

/{2(nx +κ)}
• j = nx +1, ...,2nx

X ( j)
k = X̂k−

(√
(nx +κ)P̂k

)

j−nx

W ( j)
k = 1

/{2(nx +κ)}

(27)

where κ is a scaling parameter and (
√

(nx +κ)P̂k) j is the

jth column of the matrix square root of (nx + κ)P̂k. W ( j)
k

is the weight associated with jth point, which satisfies
2nx
∑

i=0
W ( j)

k = 1. Substituting X ( j)
k into (20), Λ22,b( j)

k−1 can be cal-

culated. Then, the expectation D22,b
k−1 can be computed as:

D22,b
k−1 =

2nx

∑
j=0

Λ22,b( j)
k−1 W ( j)

k . (28)

A detailed scheme of computing the P-CRLB is given below.

Iteratively compute the Posterior CRLB
I. Initialization:

k=0, Set {X̂0, P̂0};
II. Recursive estimation: for k=1,2,...,
1) Predict the mean and covariance of mobile state

X̂k/k−1 = ΦX̂k−1
P̂k/k−1 = ΦP̂k−1ΦT +Q

2) For i = 1, ...,M, si,k = 0 and 1
2.1) Predict the measurements according to known sight

conditions (LOS or NLOS) according to (23)
2.2) Compute Kalman gain according to (24)(25)
3) Update the {X̂k, P̂k} using decentralized EKF method

according to (22)(26)
4) deterministically choose a set of 2nx +1 sigma points

SS( j)
k =

{
W ( j)

k ,X ( j)
k

}
according to (27)

5) Compute the Λ22,b( j)
k−1 = g(X ( j)

k ) according to (20)
and estimate the expectation according to (28)

6) Update Jk according to (18)
7) The position MSE bound is then

locationP−CRLB =
√

J−1
k (1,1)+ J−1

k (2,2),
where, J−1

k (1,1) and J−1
k (2,2) are the bounds on the MSE

corresponding to xk and yk respectively .

Symmetric sigma point set and unscented transformation
method is known to compute the projected mean and covari-
ance to the second order accuracy [11]. Thus, based on the
approximately estimation of the mobile state, and the de-
terministic sampling method using sigma point set and un-
scented transformation, the PCRLB can be effectively calcu-
lated.

4. NUMERICAL RESULTS

The mobile trajectories are generated according to the motion
model described in Section II.A. The MS is assumed to re-
ceive the signals from only three BSs all the time. Thus, dur-
ing the mobile tracking, M is known and fixed. The random
acceleration variance σ2

x ,σ2
y are both chosen to 0.5 m/s2. The

simulated trajectory has L = 1600 time samples, and the sam-
ple interval ∆t = 0.5 s. The simulated measurement data are
generated by adding the measurement noise and the NLOS
noise to the true distance from MS to each BS. The measure-
ment noise is assumed to be a white random variable with
zero mean and standard deviation σm = 150 m, whereas the
NLOS measurement noise is also assumed to be a white ran-
dom variable but with positive mean mNLOS = 513 m and
standard deviation σNLOS = 409 m [2-5]. The initial estima-
tion of the mode probability are set to p(si,0) = p(si,1) = 0.5
for i = 1 to 3. The mode transition probability is chosen by
p0 = p1 = 0.85. The LOS or NLOS mode between the MS
with each BS is generated by sampling from the transition
probability of the Markov chain, and is changed every 200
samples in each transition case [2-5].

We compare the posterior CRLB with the performance of
the IMM-KF smoother [3], the modified EKF banks [4] and
the improved Rao-Blackwellized particle filtering method
[5]. The sight condition is assumed to be known when com-
puting the posterior CRLB. Table 1 shows one realization
of the actual sight condition used in the simulation with ev-
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Table 1: Actual sight condition during the whole trajectory
with 200 samples in each transition. (si,k = 0 for LOS and
si,k = 1 for NLOS)

T(k) 1 2 3 4 5 6 7 8
s1,k 1 0 0 0 0 0 0 0
s2,k 0 0 0 0 0 0 0 0
s3,k 0 1 1 0 0 0 0 0

ery 200 samples in one time period of T(k). 100 particles
are used in the improved Rao-Blackwellized particle filter-
ing method. All the simulation results are obtained based on
MC = 50 Monte Carlo realizations with the same parameters.

Define the position root mean square error (RMSE) at in-
stant k as:

RMSEk =

√
1

MC

MC
∑

mc=1
[(x̂k,mc− xk)2 +(ŷk,mc− yk)2]. The

comparison of position RMSE among all three algorithms
and the Posterior CRLB is presented in Fig. 1. It shows
that, among all three tracking algorithms the improved RBPF
method is the most accurate, followed by modified EKF bank
methods and the IMM-KF method, which has the worst error
performance. And the level of the error standard derivation
is in general higher than the posterior bound, because: (1) all
the algorithms are based on approximations to some extent;
and (2) the errors in estimation of the LOS or NLOS condi-
tion will also increase the location error. Reason (2) can be
further supported by the following observation.

The error estimation of position RMSE in all the three
algorithms is relatively larger in the time period 1, 2 and 3.
This is because there exits the NLOS sight condition between
the MS and a certain BS, which interferes with the estimation
of the mobile positions. However, posterior CRLB does not
suffer much adverse impact from the NLOS measurement,
for the reasons that the sight condition is known, and the
NLOS error could be mitigated. Moreover, during the time
period from 4 to 8, the sight conditions are all LOS, and Fig-
ure 1 shows the estimation errors are reduced, especially for
improved RBPF method and modified EKF bank methods,
which are in a good agreement with the posterior CRLB.

We further present the cumulative distribution function
(CDF) of root square error (RSE) in Fig. 2. RSE is de-
fined as RSE =

√
((x̂k− xk)2 +(ŷk− yk)2). From Fig. 2,

most RSEs of the posterior CRLB are within [30m, 32.9m],
while a small portion (less than 5%) is larger than 32.9m.
The relative large errors are caused by the initial value set-
tings, as is showed in Fig.1. Statistical results show that, in
the CDF of PCRLB, 67% error is within 31.9m, and 95%
error is within 32.9m. US Federal Communications Com-
mission (FCC) has mandated that the location accuracy of
emergency calls should be 100 meters with 67% possibility
and 300 meters with 95% possibilty for the network-based
location systems [12]. Obviously, in Fig. 2, it is clear that the
location accuracy of the three algorithms all satisfy the FCC
requirement. However, when comparing with the posterior
CRLB, there is still room for improving the location perfor-
mance. Whether or not there exits a more efficient tracking
method in this application is a topic for future study.
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Figure 1: Position RMSE vs. Time instant
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5. CONCLUSION

The paper presented the derivation of a posterior Cramer-
Rao lower bound of the mobile tracking problem in mixed
LOS/NLOS conditions. The theoretical bound was derived
under the assumption that the LOS/NLOS sight condition is
known during the whole trajectory. Simulation results in the
error performance of all three algorithms showed the agree-
ment with the theoretical bounds.

Future work will relax the assumption that the transition
sequence of the sight conditions is known and calculate the
theoretical bound by referring to the method in ref. [13][14].
In addition, more accurate tracking method is also needed to
be further studied.
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