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ABSTRACT

The paper presents the possibility of using a sliding window
for image feature extraction in order to identify image re-
gions of interest. The study includes the comparison of fea-
ture extraction methods both in the space and frequency do-
mains using the discrete Fourier transform and the discrete
wavelet transform to achieve reliable classification results
for a given application. The compactness of feature clus-
ters is evaluated exploiting a proposed numerical criterion.
In case of real image data, the clusters compactness can of-
ten be improved by employing a chosen smoothing method on
the raw data. In this paper, the procedure of smoothing, fea-
ture extraction and classification is applied to microscopic
images of aluminum alloys in order to isolate regions of sim-
ilar properties and to study their relationship. To achieve this
goal the sliding window classification results are combined
and isolated misclassified subregions repaired. The propor-
tion of misclassified regions is then used for the evaluation
of the efficiency of the proposed method along with the pro-
posed measure of cluster compactness.

1. INTRODUCTION

Automated detection of image areas of different structures
represents a problem being solved in many engineering, tech-
nological and biomedical applications [13, 14, 16, 3]. In the
field of microscopic imagery, it is often necessary to employ
methods which are invariant to scale, rotation, translation or
illumination [20, 19, 8].

The motivation of this paper is automated classification
of image structures in microscopic images of metal alloys.

MICROSCOPIC IMAGE OF ANNEALED ALLOY

Figure 1: Microscopic image of an aluminium alloy sample
with areas of different textures caused by annealing
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Figure 2: Segmentation of a simulated image presenting
(a) the original image, (b) the result of individual subimages
classification, and (c) visualization of the features computed
by the discrete wavelet transform

Aluminium alloys are widely used in the car and aero indus-
tries for its favorable physical properties, such as low den-
sity. One of the usage limitations is insufficient temperature
resistance (up to 200 ◦C). This problem forms a specific re-
search topic of a project solved at the Institute of Chemical
Technology in Prague. The project is devoted to finding the
optimal admixture of cerium (Ce) into an Al-Cr-Fe-Ti-Ce al-
loy obtained by fast cooling so as to sustain temperatures up
to 400 ◦C. To investigate the improved temperature stabil-
ity, alloys of different content of cerium are annealed over
a certain period of time and the resulting quality changes of
the originally homogeneous structures are observed with an
electronic microscope producing images such as in Fig. 1.
The aim of the work is to detect the homogeneous and the
coarser-texture areas by the means of image processing in
order to evaluate the amount of temperature degradation.

A simulated image approximating this problem is pre-
sented in Fig. 2(a). A possible approach presented in this
paper is based upon the sliding window used for feature ex-
traction from individual subimages and subsequent feature
classification using the artificial neural networks. This pro-
cess is presented in Figs 2(b) and (c), where a pair of image
features computed by the discrete wavelet transform (DWT)
and the result of classification are visualized.
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Mathematical methods associated with the process of im-
age classification [18] include methods of image analysis
and de-noising [1, 12, 9, 21] followed by feature extrac-
tion [15] either in the space, frequency, or wavelet domains
[11, 2, 6, 4]. Accordingly, this paper compares the classifica-
tion results achieved by neural networks [10, 5] using these
different methods of feature extraction. As a quality mea-
sure of feature clusters, we propose the use of a new criteria
function [17] described further.

The proposed algorithm is applied both to simulated im-
ages and real microscopic images presenting the efficiency
of the suggested method.

2. TEXTURE FEATURE EXTRACTION

Appropriate selection of a feature extraction method forms a
crucial point in obtaining as compact clusters as possible for
efficient classification.

The study has been devoted to the selection of R=2 fea-
tures for each subimage {Ik}Q−1

k=0 only forming the two row
pattern matrix PR,Q for better visualization even though more
features can provide better basis for their classification.

2.1 Space-Domain Features
Two types of space-domain features representing the median

and the standard deviation, f (s)
k,1 and f (s)

k,2 , resp., were used for

the individual subimages {Ik}Q−1
k=0 of the size M×N given as

f (s)
k,1 = median{ Ik(m,n)} (1)

f (s)
k,2 =

1
M N

√
M−1

∑
m=0

N−1

∑
n=0

(Ik(m,n)− Ik)2 (2)

where Ik stands for the mean value of the k-th subimage. Dif-
ference images were used for numerical experiments as well.

2.2 Frequency-Domain Features
Another set of features has been computed in the frequency
domain using the discrete Fourier transform (DFT) of each
subimage Ik

Îk(ω1,ω2) =
M−1

∑
m=0

N−1

∑
n=0

Ik(m,n)e− j ω1 ne− j ω2 m (3)

The features f ( f )
k,1 and f ( f )

k,2 have been computed as the means

of the magnitudes of Îk in selected two-dimensional fre-
quency bands.

2.3 Space-Scale Features
The space-scale features have been computed by the discrete
wavelet transform (DWT) employing selected wavelet filters
in a multi-level decomposition process.

Each level of image decomposition is separable into one-
dimensional (1D) processing of the rows and subsequent
transformation of the result column-wise. For each new level
j+1, the scaling coefficients cL

j+1 (or the wavelet coefficients
cH

j+1) of length V are produced via convolution of the scaling
coefficients cL

j from the previous level j with the low-pass
filter h0 (or high-pass filter h1) of U taps and downsampling

by coefficient 2

cL
j+1(v) =

U−1

∑
u=0

h0(u)cL
j (2v−u) (4)

cH
j+1(v) =

U−1

∑
u=0

h1(u)cL
j (2v−u) (5)

where v=0,1, . . . ,V−1, j=0,1,2, and cL
0 represents the orig-

inal signal. The results of row-wise DWT cL
j+1 and cH

j+1 are
then transformed column-wise to obtain four sets of 2D DWT
coefficients cLL

j+1, cLH
j+1, cHL

j+1, and cHH
j+1 . After the wavelet de-

composition of each subimage Ik the median value of squared
wavelet coefficients of selected scales have been used to es-
timate features f (w)

k,1 and f (w)
k,1 for each subimage.

3. IMAGE SMOOTHING
To improve the classification results the median filtering or
wavelet shrinkage has been used for image smoothing. The
wavelet shrinkage algorithm consists of decomposition of the
image to level 1 using the selected wavelet function. The
wavelet coefficients of all three subbands cHH

1 , cLH
1 , and cHL

1
have then been modified using the soft global thresholding
technique. The threshold value has been estimated as

δ (s) =
√

2σ2
n logL (6)

where L is the number of wavelet coefficients to be thresh-
olded and σn is the standard deviation of additive noise pos-
sibly estimated as the MAD (Median Absolute Deviation)
given as

σn =median{|cHH
1 |}/0.6745 (7)

where the constant in the denominator corresponds to the
normal distribution. This robust estimation technique as-
sumes the cHH

1 subband containing the highest frequencies
to be dominated by noise.

4. CLASSIFICATION

Fig. 3 compares the classification results for the simulated
image using the space-domain features with those obtained
via the DFT. The results differ especially at the regions
boundaries.
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Figure 3: Comparison of the simulated image classifica-
tion using (a) the space-domain features (CSC =0.537) and
(b) the frequency-domain features (CSC = 0.551) after me-
dian filtering
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During the segmentation process, each subimage con-
fined by the sliding window is represented by R features
which are organized in the pattern matrix PR,Q and form
clusters in the R-dimensional space. The proposed classifi-
cation algorithm is based upon the application of the self-
organizing neural networks [10, 7] using Q feature vectors as
patterns for the input layer of the neural network. The num-
ber S of the output layer elements is equal to the number of
classes. During the learning process, the network weights are
changed to minimize the distances between each input vector
and the corresponding weights of the winning neuron char-
acterized by its coefficients closest to the current pattern. In
case that the process is successfully completed, the network
weights belonging to separate output elements represent typ-
ical class individuals.
The complete algorithm includes the following steps:
1. Estimation of feature vectors for all subimages to form

feature matrix
2. Initialization of network weights and the learning process

coefficients
3. Iterative application of the competitive process and Ko-

honen learning rule for all feature vectors during the
learning stage

4. Simulation to find class assignment of individual feature
vectors

To compare the classification results of Q signal seg-
ments with the feature matrix PR,Q = [p1,p2, . . . ,pQ] for a
selection of different sets of R = 2 features and C classes
a specific criterion [17] has been designed. Each class i =
1, . . . ,C is characterized by the mean distance of the column
feature vectors p jk belonging to the class segments jk for in-
dices k=1,2, . . . ,Ni from the class center in the i−th row of
the matrix WC,R = [w1,w2, . . . ,wC]′ by relation

ClassDist(i) =
1
Ni

Ni

∑
k=1

dist(p jk ,wi) (8)

where Ni represents the number of segments belonging to
class i and the function dist evaluates the Euclidean distance
of two vectors. The classification results can then be numer-
ically characterized by the mean value of average class dis-
tances related to the mean value of the class centers distances
obtained through the learning process and described as

CSC = mean(ClassDist)/mean(dist(W,W′)) (9)

This Cluster Segmentation Criterion (CSC) produces low
values for compact and well separated clusters while closely
spaced clusters with extensive dispersion result in high CSC
values.

The numerical results for different feature extraction
methods producing R=2 feature sets each are summarized

Table 1: CLUSTER COMPACTNESS EVALUATION FOR DIF-
FERENT FEATURE EXTRACTION METHODS AND CLASSIFI-
CATION INTO 3 CLASSES WITHOUT IMAGE DE-NOISING

Feature extraction method
Simulated
Image

Real
Image 1

Real
Image 2

Space domain - CSC: 0.537 0.727 0.637
Frequency domain - CSC: 0.551 0.605 0.599

Wavelet domain - CSC: 0.441 0.453 0.531

in Tab. 1 of CSC values for different images. It is possible to
conclude that all used types of classification parameters pro-
vide similar results, however, the wavelet features perform
slightly better for all images. As displayed in Fig. 4, visual
evaluation of the percentage of misclassified image segments
at region boundaries indicates the suitability of this method.

5. RESULTS

The selected results of real data processing are presented in
Fig. 4 showing classification for non-overlapping windows
and features obtained by the average frequency components
evaluation in given bands obtained by the discrete Fourier
transform and average values of discrete wavelet transform
in selected scales. Results are affected mostly by selected
image preprocessing methods, window size, feature extrac-
tion methods and classification algorithms.

The resulting CSC measures averaged over several exper-
iments are presented in Fig. 5 indicating that the frequency
and the wavelet domain features mostly surpass the space do-
main features.

6. CONCLUSION

The paper presents selected methods of microscopic images
analysis for automated region detection. The processed im-
ages of aluminium alloys reveal areas of structural changes
of the originally homogeneous texture as a consequence of
the annealing process. The size of these areas characterizes
the alloy quality. Prior to application of image segmentation
methods, it proved necessary to preprocess the image data by
smoothing and histogram alteration.

The proposed region detection algorithm is based upon
feature extraction using the sliding window and subsequent
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Figure 4: Segmentation results for two different alloy sam-
ples using (a) the space-domain features extracted from the
real image 2 smoothed by wavelet shrinkage (CSC =0.574)
and (b) the DWT-based features from the real image 1 de-
picted in Fig. 1 (CSC=0.558)
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Figure 5: Classification results using different smoothing and image classification methods displaying the CSC criterion values
for (a) the simulated image from Fig. 2(a), (b) the real image 1 from Fig. 1, and (c) the real image 2 from Fig. 4(a)

classification using an artificial neural network. Considering
the data properties, we produce three different feature com-
putation methods based on the space domain, the Fourier do-
main, and the wavelet domain. According to the CSC meas-
sure of clusters quality, the wavelet domain features slightly
surpass the other methods.

Further work will be devoted to the application of over-
lapping windows for more detail classification and to the
search for the most efficient kind of features and their combi-
nation to produce compact and well separated clusters. An-
other aim of the work will include the evaluation of the per-
centage of successfully classified segments for larger number
of experiments.
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