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ABSTRACT
We present a method to extract a common subsystem from
a HRIR dataset to allow for easier real-time convolution in
interactive audio environments and more efficient HRIR in-
terpolation. An iterative least squares method is described for
this deconvolution operation, and the relation of this method
to that of finding the approximate greatest common divisor
of polynomial systems is discussed.

1. INTRODUCTION AND MOTIVATION

3-D auditory spatialisation is a vital ingredient in the cre-
ation of convincing audio-visual presentations such as video
conferencing, 3-D cinema and immersive gaming. Currently,
methods for presenting convincing virtual auditory scenes
fall into two main classes: loudspeaker and binaural repro-
duction. The first case involves multichannel reproduction
of a recorded/synthesized soundfield over a large number of
loudspeakers, typically aimed at reproduction for distributed
audiences. Although such systems are generally optimised
for single listeners in the centre of a reproduction area, it is
far more practical to employ effective binaural reproduction
techniques either by headphones or by transaural reproduc-
tion for individual listeners.

Such binaural techniques utilise Head Related Impulse
Responses (HRIRs), which model the filtering effect of the
outer ear, head and torso on sound. Location specific mod-
ulations are introduced to signals as they are filtered and
the brain decodes this information to aid in localisation of
sound sources. HRIRs, or their frequency domain equiva-
lent Head Related Transfer Functions (HRTFs), contain three
types of cues for localisation, namely interaural time dif-
ference (ITD), interaural level difference (ILD) and spectral
cues. One can impose the first two of these cues on a mono
source with relative ease but the resulting binaural playback
does not result in correct externalisation of the sound source.
There are also front-back confusions to contend with. Hart-
mann and Wittenberg [1] show that in order to ensure ac-
curacy in localisation and proper externalisation of sound
sources it is necessary to have realistic spectral profiles at
each ear. HRIRs are captured by placing small receivers in
a blocked ear canal and moving a sound source to different
spatial locations around a measurement sphere.

Many researchers have explored the topic of extracting a
directional independent component from HRTF data. Several
have taken the approach of taking a simple average across the
data set, see for example [2]. Keyrouz et al [3] and Moller [4]
implement “diffuse field equalisation”, which involves com-
puting a diffuse reference spectrum by power averaging all
the HRTFs for one ear and finding the square root. This refer-
ence spectrum is then deconvolved from the original HRTFs
to produce the equalised HRTFs. In [5] the authors refer to

splitting the HRTF into a two stage transfer function; the “di-
rectional transfer function” (DTF) and the “common trans-
fer function” i.e. that which is directionally independent.
Their method was to compute an average magnitude spec-
trum of the HRTF data and apply minimum phase assump-
tions. Freeland et al [6] introduce a HRTF reduction and
interpolation method which utilises interpositional transfer
functions (IPTFs). These IPTFs are ratios of HRTFs from
contiguous locations which are simplified using balanced or-
der reduction and subsequently can be used to interpolate one
HRTF given three.

Haneda et al [7] propose a method for extracting common
acoustic poles from HRIR datasets, such that each HRIR is
represented by an IIR filter and a FIR filter. They model
HRIRs using common poles which are independent of source
direction and zeros which are dependent on direction. The
common poles are considered to represent a resonance sys-
tem in the pinna and ear canal and are estimated as the au-
toregressive coefficients for a HRTF set. It is proposed in this
paper that a HRIR can be considered as the convolution of
two FIR filters, a direction independent filter and a direction
dependent filter. This direction dependent filter is extracted
using an iterative least squares method.

The removal of a common factor across the HRIR dataset
is motivated by the need for adaptive real-time convolution
to allow for a more interactive virtual auditory space. The
convolution with the common factor could be completed of-
fline and stored leaving a shorter HRIR that would change
with a relative movement between source and receiver. The
order reduction that this algorithm achieves is also a useful
base from which to implement HRIR interpolation. Due to
the tedious and time consuming nature of their measurement,
HRIRs are measured with at best 5◦ spatial resolution and
more frequently at a lower resolution. This can be problem-
atic as humans can identify spatial sound source movement
with as low as 1◦ accuracy [8] for certain source positions
and frequencies. Our method would provide a set of signifi-
cantly shorter filters to carry out interpolation on. This inter-
polation could then be implemented using an existing method
such as Karhunen-Loeve expansion and linear interpolation
as is described in [9] or principal component analysis and
spherical thin plate splines as described in [10].

A novel approach to factorisation of the HRIR has been
introduced by the authors in [11] and will be outlined in Sec-
tion 2. The relationship between this deconvolution opera-
tion and polynomial root finding will also be discussed in
this section. In Section 3 the algorithm is applied to HRIRs
from the CIPIC database [12] and the results presented for
two subjects. Finally, Section 4 details future work to be
completed related to this topic.
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2. THE ALGORITHM

Here it is proposed that a set of HRIRs (denote hφ ) be simpli-
fied by factoring each filter into the convolution of a direction
independent subsystem (denote f ) which is common to the
whole set and a direction dependent residual (denote gφ ). A
HRIR is modelled by a FIR filter with the impulse response
samples as its coefficients. The algorithm used in finding this
common subsystem of a HRIR dataset is equivalent to find-
ing the approximate greatest common divisor (AGCD) of the
HRIR z-domain FIR filter set. We formulate the task of find-
ing the AGCD as a non linear optimisation problem:

min
f ,(g1,···,gN)

N

∑
φ=1
‖hφ − ( f ∗gφ )‖2 (1)

where hφ = [hφ

0 , ...,hφ

m−1]
T ,

gφ = [gφ

0 , . . . ,gφ

j−1]
T

f = [ f0, f1, . . . , fk−1]T

Authors such as Zeng [13], Corless [14] and Chin [15]
have published extensively in the area of determining
AGCDs of polynomial sets. They establish methods of ap-
proaching this problem for small numbers of polynomials of
relatively short order (generally less than tenth order). Even
in these limited circumstances there is no guarantee of con-
vergence to a global minimum. In this paper such methods
are applied to polynomials of order 200 of which there are
hundreds, even thousands and, as such, finding a global min-
imum is very unlikely. Our proposed iterative least squares
method is equivalent to the divisor quotient method described
by Chin et al [15] wherein they provide a proof of conver-
gence to a point on the mean square error surface with gradi-
ent zero, i.e. a local minimum or maximum.

The divisor-quotient iteration method is a variant of the
well-known Gauss-Newton non-linear least squares algo-
rithm with the exception that the usual step of linearization
around the current guess is already done, as the system is bi-
linear i.e. by holding f constant, the system is linear in gφ ,
and vice-versa. Given an initial guess for f , standard least
squares can be used to find the residues, gφ , which minimise
the error between f ∗ gφ and hφ . This gφ can then be used
to generate a refined f again using least squares and hence a
recursive process is defined.

Divisor-Quotient iteration
i=iteration count

1. Guess f0 (i = 0)
2. Solve for each residual, gφ , as follows:

gφ

i+1 = F†
i hφ (2)

Where Fi is the convolution matrix formed from fi and †
denotes the Moore-Penrose pseudoinverse.

3. Solve for fi+1 using

fi+1 =

 G1
i+1
...

GN
i+1


†

h where h =

 h1

...
hN

 (3)

Gφ

i+1 is the convolution matrix formed from gφ

i+1
4. Set i = i + 1 and repeat steps 2 and 3 until there is con-

vergence.

3. RESULTS OF TESTS ON CIPIC DATABASE

The CIPIC database [12] is a public domain HRIR database
which consists of 1250 HRIR measurements for each of 45
subjects. Each 200 sample long HRIR is measured at a lo-
cation on a sphere of radius one meter centred on the subject
head and is sampled at 44.1kHz. The results displayed below
are using the left ear HRIRs from subjects 3 and 21. Subjects
3 is a human subject while subject 21 is the KEMAR dummy
head with large pinna.

Figures 1 and 2 show reconstructed HRIRs, at a variety
of positions on the azimuth, where a 100 sample long com-
mon subsystem has been extracted from the whole dataset
(1250 measurements) and compares them to the original un-
factorised HRIRs. There are three different initial guesses
used in these examples. The first initial guess is all ones.
The second initial guess is the first 100 samples of an aver-
age taken over the entire HRIR dataset for the relevant sub-
ject and ear and the third is a 100 sample long random vector
generated by Matlab. The same random vector is used in
each case. The comparison is shown in both the time and
frequency domain (magnitude (dB)).

It is evident from the fact that only the blue line (which
denotes the original HRIRs/HRTFs) is visible for most cases,
that there is negligible difference between the original and
the reconvolved HRIR for each initial condition, given a 100
sample long common component has been extracted. In Fig-
ure 1 there is a small mismatch visible in the frequency spec-
trum for each position on the azimuth at high frequencies
(>18kHz), especially when the average initial condition is
used. There is also some distortion visible at the 16kHz notch
for the 80◦ HRIR. Figure 2 shows the same high frequency
distortion for subject 3. It also appears that the reconstruction
is better for all initial conditions for the ipsilateral HRIRs for
both subjects i.e. those HRIR which are on the left side of
the head (−80◦ to 0◦ in the azimuth). Nonetheless the recon-
structed HRIRs/HRTFs are still very similar to the original
ones.

Rather than seek to extract a common subsystem of a
given length from the entire measurement sphere, it is also
reasonable to consider the extraction on a quadrant or oc-
tant of the sphere. Also consideration can be given to the
length of the common subsystem. In the above examples a
length of 100 samples is used and yields good results. The
choice of length is a trade off between computational capac-
ity available for real-time convolution and the error in the
reconstructed HRIR.

Figures 3 and 4 plot the mean squared error versus the
length of the common subsystem for subjects 21 and 3 re-
spectively. The mean square error measure describes the
difference between the entire original HRIR dataset (1250
HRIRs, each 200 samples in length) and the reconvolved
HRIRs for each initial condition. One would expect the error
to be monotonically increasing with the length of the com-
mon component and the average and random initial condi-
tions generally follow this profile for both subjects. There is
however a pronounced notch in the error profile for the ones
initial condition which occurs in the region of 140 to 180
samples for each case.
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Figure 1: Subject 21. Comparison of original HRIR to reconvolved HRIRs with different initial f0 guesses
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Figure 2: Subject 3. Comparison of original HRIR to reconvolved HRIRs with different initial f0 guesses
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Figure 3: Subject 21: MSE profile for different initial f0 guesses
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Figure 4: Subject 3: MSE profile for different initial f0 guesses

4. FUTURE WORK

Future work to be addressed by the authors includes an exam-
ination of the perceptual quality of the reconvolved HRIRs as
well as use of the simplification in conjunction with other
methods such as balanced model reduction [6]. A mean
squared error criterion was used here to determine conver-
gence, as this was convenient, but in future work it would be
desirable to implement a critical band/Mel frequency weight-
ing to give a better perceptual error measure. Another in-
teresting avenue is that of finding common factors amongst
HRIRs for different subjects with possible application to the
anatomical parameterisation of HRTFs.

5. CONCLUSION

An order reduction technique for HRIR has been presented
by the authors based on a least squares factorisation process.
Tests on the CIPIC database show the effectiveness of this
method. It is hoped this will ease the computational load of
real-time convolution and allow for more convincing interac-
tive virtual auditory space.
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