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ABSTRACT 
When multiple correlated data channels are simultaneously 
processed, multichannel-autoregressive (M-AR) processes 
may be combined with optimal filtering such as Kalman or 
H∞ for prediction or estimation from noisy observations. 
However, the estimation of the M-AR parameters from noisy 
observations is a key issue to be addressed. Off-line or itera-
tive approaches have been proposed recently, but their com-
putational costs are high or some of them may diverge. Us-
ing on-line approaches such as EKF and SPKF is of inter-
est, but the size of the state vector to be estimated is quite 
high. To reduce this size and the resulting computational 
costs, we suggest using dual optimal filters. In this paper, we 
study the relevance of cross-coupled Kalman filters and 
cross-coupled H∞ filters. The comparative simulation study 
we carry out shows that our approach corresponds to a 
compromise between computational cost and performances 
in terms of pole estimation accuracy. 

1. INTRODUCTION 

Scalar autoregressive (AR) process has played a key role in 
signal processing, more particularly in the field of speech 
enhancement and coding, in spectral analysis for biomedical 
applications, in mobile communication systems, in radar 
processing, etc. Nevertheless, when the observations are dis-
turbed by an additive measurement noise, the AR parameter 
estimates may be biased. To overcome this problem, one can 
use the “noise-compensated” Yule-Walker (NCYW) equa-
tions, which however require the preliminary estimation of 
the additive-noise variance. To deal with the estimations of 
both the AR process and the noise variance, various off-line 
or iterative methods have been proposed by Zheng [1], Bo-
billet et al. [2], etc. On-line methods can be based on ex-
tended Kalman filter (EKF) and the sigma-point Kalman 
filters (SPKF) [3]. As an alternative, one of us suggests using 
mutually-interactive Kalman filters based solutions to avoid a 
non-linear approach [4]. Once a new observation is available, 
the first filter uses the latest estimated AR parameters to es-
timate the signal, whereas the second filter uses the estimated 
signal to update the AR parameters. This approach can be 
viewed as a recursive instrumental variable-based method 
and hence has the advantage of providing consistent esti-
mates of the parameters from noisy observations. To relax 

Gaussian assumptions required by Kalman filtering, cross- 
coupled H∞ filter based solution was then studied [5]. 

Even if scalar AR model is often used, a multichannel-
autoregressive (M-AR) process is more suited when multi-
ple correlated data channels are simultaneously processed. 
This is for instance the case in biomedical applications 
when dealing with cardiovascular systems and analyzing 
the interactions between blood pressure, heart rate and res-
pirations [6]. In radar processing when multiple antennas 
are used, one aims at rejecting the sea clutter to detect the 
target. Variants of the space-time adaptive processing 
(STAP) algorithm such as the parametric adaptive matched 
filter (PAMF) and the space-time autoregressive filter 
(STAR) [7] consist in modelling the sea clutter by a M-AR 
process. In the field of mobile communication systems 
based on CDMA or OFDM, the fading-channel processes 
can be estimated or predicted by modelling the channels 
with a M-AR process [8] [9]. In all cases, the p th order M-
AR process ( )ns  satisfies: 
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where { } pl
lA ,...,1
)(

=  are the MM ×  AR parameter matrices 

and )(nu  is a 1×M  zero-mean white noise vector whose 
autocorrelation matrix uΣ  satisfies: 
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In addition, the M-AR parameter matrices { } pl
lA ,...,1
)(

=  

are constrained so that the roots { } pMiip ,...,1=  of: 

 )(det zAp  (3) 

lie inside the unit circle in the z-plane, where: 

 pp
Mp zAzAzAIzA −−− ++++= )(2)2(1)1( ...)(  (4) 

In (4), 1−z  denotes the backward shift operator and MI  is 
the MM × identity matrix. 
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According to the comparative study carried out by Schlögl 
[10], the Nuttall-Strand method is the most relevant approach 
to estimate the M-AR parameters among the standard ap-
proaches (Yule-Walker equations, Levinson algorithm, etc.), 
when noise-free observations are available. However, when 
the M-AR process is disturbed by an additive white noise, the 
standard estimation methods, mentioned above, lead to bi-
ased estimates of the M-AR parameter matrices. 
To avoid this drawback, the approach proposed in [11] is 
based on a set of two equations that the noise variances and 
the coefficients of the AR matrices should satisfy. The first 
one corresponds to the NCYW equations and the second 
makes it possible to express the noise variances from the 
coefficients of the AR matrices and the autocorrelation of the 
observations filtered by the inverse filter )(zAp . Therefore, a 
Newton-Raphson algorithm is used to estimate the noise 
variances and the M-AR parameters are deduced by means of 
the NCYW equations. In [12], the extension of Zheng's  
method [1] to the multichannel case has recently been pro-
posed. Nevertheless, this method may lead to a set of AR 
parameter matrix estimates corresponding to an unstable 
system when the SNR is low. In [13], Petitjean et al. have 
proposed an extension of [2]; although the approach provides 
significant results even for low SNR, the computational cost 
could be reduced. Concerning on-line methods, SPKF meth-
ods or EKF approach could be considered [13]. However, the 
size of the state vector to be estimated is ( ) 12 ×+ MppM . 
Indeed, it stores both the coefficients of the AR parameter 
matrices and the p last values of the process )(ns . The com-
putational cost hence becomes high. To avoid using high 
dimension matrices, we propose to extend to the multichan-
nel case the approach proposed in [5] and [4]. The proposed 
methods are then compared with existing methods such as 
[11], [12], [13] and SPKF methods. 
In section 2, the dual optimal structure is presented. The re-
sults of the comparative study between dual Kalman filtering, 
dual H∞ filtering and other approaches are given in section 3. 

2. PROBLEM STATEMENT 

2.1 Dual optimal filter structure 

Let the M-AR process )(ns  be disturbed by an additive zero-
mean white noise vector )(nb  uncorrelated with )(nu , and 

with correlation matrix 
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 ( ) )()( nbnsny +=  (5) 

The purpose of our method is to estimate the M-AR parame-
ter matrices from the noisy observation vector ( )ny . To this 
end, our approach is based on dual optimal filters as shown 
in Fig.1. Thus, given the noisy observation vector ( )ny , the 
first optimal filter uses the latest estimated AR parameter 
matrices to estimate the M-AR process, while the second 
filter estimates the parameter matrices from the estimated 
process vector ( )nŝ . 

Figure 1 : Dual optimal filters for the estimation of the  
M-AR process and its parameter matrices. 
 
Let us first define the following state vector, whose dimen-
sion is 1×Mp :  

 [ ]TTT pnsnsnx )1()()( +−= L  (6) 
Hence, the state-space representation of the system (1) and 
(5) is given by:  
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where the transition matrix Φ , Γ and H  are respectively 
defined as follows: 
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and [ ]MMM
T IH 00 L=Γ=  (9) 

When using H∞ filters, one focuses on the estimation of a 
specific linear combination of the state vector components, as 
follows: 
 )()( nxLnz =  (10) 

where L  is a MpM ×  linear transformation operator. Here, 
as we aim at estimating the process )(ns , this operator is 

selected to be [ ]MMM
T IHL 00 L=Γ== . 

2.2 Purpose of Kalman or H∞ filtering 

Optimal recursive filters make it possible to recursively esti-
mate the state vector )(nx . In the following, let )/(ˆ lnx  de-
note the estimation of )(nx  given ( ){ }

li
iy

,...,0=
. 

Based on the state space model (7), two kinds of approaches 
can be used: 
On the one hand, a Kalman filter provides an estimate 

)/(ˆ)/(ˆ nnxnns TΓ=  of the M-AR process )(ns  by minimiz-
ing the trace of the following a posteriori error covariance 
matrix ( ) ]))/(ˆ)())(/(ˆ)([(/ TnnxnxnnxnxEnnP −−= . 
Note that this covariance matrix satisfies a Ricatti  
equation. 

Optimal filter #1 
M-AR process estimation 

Optimal filter #2 
AR parameter estimation 

( )nŝ

 

( )ny

{ } pl
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=  
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On the other hand, the a posteriori H∞ filter aims at estimat-
ing )/(ˆ)(ˆ)(ˆ nnxnxLns TΓ==  by minimizing the H∞ norm of 
the transfer operator that maps the noise vectors )(nu , )(nb  
and the initial state error )0(ˆ)0(0 xxe −=  to the estimation 
error )(ˆ)()( nsnsne −= , as follows: 
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with N the number of available data samples, 0>uQ  and 
0>bR  are weighting matrices which are tuned by the de-

signer to achieve performance requirements. In addition, 
00 >P  denotes a positive matrix that reflects how small is 

the initial state error 0e . 
However, as a closed-form solution to the above optimal H∞ 
estimation problem does not always exist, the following 
suboptimal design strategy is usually considered: 
 2γ<∞J  (13) 
Where 0>γ  is a prescribed level of disturbance  
attenuation. 
Following the method presented in [14], there exists an H∞ 
estimator )(ˆ ns  for a given 0>γ  if there exits a stabilizing 
symmetric positive definite solution 0)( >∞ nP  to the fol-
lowing Riccati-type equation: 
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u
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where: 
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This leads to the following constraint: 

 0)()( 1 >−
∞ nDnP  (16) 

If the condition (16) is fulfilled, the H∞ filter exists. 
It should be noted that the level attenuation factor γ  should 
be carefully selected [14] to satisfy the condition in (16): 
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where ])[eigmax( F  is the maximum eignvalue of the  
matrix F .  
At that stage, one can either set 2γ to a specific constant 
value that is high enough to satisfy (17) or adjust it according 
to (17) as follows: 
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with 2>ζ . 

2.3 Recursive estimation of the state vector when 
using Kalman or H∞ filtering 

In both cases, the state vector and the M-AR process are 
estimated as follows: 
 )()()1/1(ˆ)/(ˆ nnKnnxnnx υ+−−Φ=  (19) 

where the so-called innovation process is given by: 
 )1/1(ˆ)()( −−Φ−= nnxHnynυ  (20) 

However, the way the gain )(nK  in (19) is defined depends 
on the kind of filtering. Thus, when a Kalman filter is used, 
the gain, now noted )(nKKal , is given by: 

 1])1/([)1/()( −Σ+−−= b
TT

Kal HnnHPHnnPnK (21) 

where the covariance matrix is updated by using the follow-
ing set of relations: 

 T
u
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 )1/()()1/()/( −−−= nnHPnKnnPnnP Kal  (23) 

In addition, the covariance matrix of the innovation process 
)(nυ  satisfies: 

 b
THnnHPnC Σ+−= )1/()(  (24) 

When an H∞ filter is used, the gain is denoted as )(nK∞  
and is given by: 

 11)()()( −−
∞∞ = b

T RHnDnPnK  (25) 

It should be noted that the matrix )(nP∞ can be seen as an 
upper bound of the error covariance matrix in the Kalman 
filter theory, i.e: 

]))(ˆ)())((ˆ)([()()( TnxnxnxnxEnPnP −−=≥∞ . 

Remark 1: 
Due to (15), the H∞ estimator has a computational cost 
slightly higher than Kalman’s one. 
Remark 2: 
If the weighting parameters uQ , bR  and 0P  are 
respectively chosen to be uΣ , bΣ  and the initial error 
covariance matrix of )0(x  then the H∞ filter reduces to the 
Kalman one when ∞→γ . 
However, { } pl

lA ,...,1
)(

=  must be available because they are 
used to define the transition matrix Φ . In addition, the co-
variance matrices of )(nu  and )(nb  or the weighting matri-
ces uQ , and bR  must be defined. 

2.4 M-AR process estimation 

To estimate the M-AR parameter matrices from the estimated 
process, equations (19) is used to express the estimated proc-
ess as a function of the parameter matrices:  
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and )()()( nnKn T υν Γ= . When a Kalman filter is used, its 
covariance matrix is equal to 

ΓΓ=Σ T
KalKal

T nKnCnK )()()(ν .  

By stacking the columns of the matrix TΘ  on top of each 
others, the resulting 12 ×pM  state vector can be expressed 
as: 
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Hence, equation (26) can be rewritten as follows: 

 )()()1/1(ˆ)/(ˆ nnnnXnns νθ +−−−=  (29) 

where T
M nnxInnX )1/1(ˆ)1/1(ˆ −−⊗=−−  (30) 

with ⊗  denotes the matrix Kronecker product. 

When the M-AR process is assumed stationary, the AR pa-
rameters are time-invariant and, hence, satisfy the following 
relationship: 
 )1()( −= nn θθ  (31) 

Thus, equations (29) and (31) define a state space representa-
tion for the estimation of the AR parameters. A second opti-
mal filter is then used to recursively estimate )(nθ .  
If a second H∞ filter is chosen to recursively estimate )(nθ , 
the AR parameter estimation error is defined  
as ( ))(ˆ)()1(ˆ nnnXe θθθ −−−= . 

2.5. Other parameters to be estimated 

An iterative estimation of the covariance matrix uΣ  can be 
derived from the Kalman filtering equations (22)-(23) as 
follows [4]: 
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where [ ]MMM
TT IF 00][ 1 L=ΓΓΓ= -  and λ  is the 

forgetting factor. 
When tuning the weighting parameters uQ , bR and 0P  for 
the H∞  filter, we suggest to recursively tune uQ  as follows: 
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Here, the weighting matrix bR is assigned to bΣ . Moreover, 
as there is no a priori knowledge about the initial state error, 
the weighting matrix 0P  is assigned to the identity  
matrix MpI . 

3. SIMULATION RESULTS 

We have run several simulation tests based on various M-AR 
processes. Here, let us consider a 2nd order ( 2=p ) two-
channel ( 2=M ) AR process: 

 ( ) ( ) ( ) ( )nunsAnsAns +−−−−= 21 )2()1(  (34) 

where the AR coefficient matrices are those defined by 
Hasan in [11]: 
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In that case, the M-AR parameter matrices lead to four roots 
of )(det zAp , namely 125.1

1 941.0 jep ×= , 
125.1

2 941.0 jep −×= , 599.03 =p  and 461.04 −=p . 
In addition, ( )nu  is the two-channel stationary Gaussian 
white noise, uncorrelated between channels and with unit 
variance on each channel. The additive noise ( )nb  is also a 
two-channel stationary Gaussian white noise, uncorrelated 
with ( )nu . 

A comparative study is carried out between [11], [12], [13], 
and SPKF methods (i.e. UKF and CDKF). Since UKF and 
CDKF provide the same results, we only present those ob-
tained with UKF. Two simulation protocols are considered: 
1. 1024 samples are available and the signal-to-noise ratio 

(SNR) varies from 0 to 20 dB. 
2. the SNR is set to 10dB and the number of samples is 

equal to 64 or 128 or 256 or 512 or 1024. In every case, 
the results are averaged over 1000 realizations. 

The criterion we considered is the mean square error (MSE) 
on the modulus and the argument of the roots of )(det zAp . 
For the sake of clarity, we only provide simulation results 
dedicated to 1p  and 3p . Note that the same comments can 

be done for 2p  and 4p , respectively. 

In table 1, every method can be considered as reliable. EIV 
based method are of interest as they do not require the values 
of uΣ  and bΣ . EKF and UKF lead to the smallest MSE. 
Our approaches provide quite similar results, but they have 
the advantage of having a smaller computational cost. In-
deed, the computational cost of the EKF and SPKF methods 

is of the order of ( ) 




 +

32 MppMO  whereas the dual filters 

have complexity of the order of ( ) ( )( )322 MpOpMO +




 . 

When γ  is fixed and high enough to always satisfy (17), 
cross-coupled Kalman filter and cross-coupled H∞ filters pro-
vide similar results. When selecting the noise attenuation 
level γ  automatically according to equ. (18), the resulting 
MSE becomes higher. Therefore, the main difficulty when 
using H∞ filters is the selection of the attenuation level γ . 
When the SNR becomes lower, Hasan’s method [11] and 
ILSV [12] are not necessary reliable and may provide pa-
rameter estimates that lead to unstable system.  
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Methods MSE on the estimated modulus of 
p1 

MSE of the estimated modulus of 
p3 

Hasan [11] 3,45 310−×  16,4 310−×  
ILSV [12] 20,0 510−×  24,2 310−×  

EKF with true values of uΣ  and bΣ  [3], [13] 7,0 510−×  4 310−×  

UKF with true values of uΣ  and bΣ  [3], [13] 7,0 510−×  4,6 310−×  
EIV (method 1 labelled SR [13]) 11,7 510−×  9,6 310−×  

EIV (method 2 labelled HOYW [13]) 10,5 510−×  9,6 310−×  
Cross-coupled Kalman filtering (see section 2) 8,0 510−×  11,8 310−×  
Cross-coupled H∞ filtering (fixed value for γ ) 8,0 510−×  11,8 310−×  

Cross-coupled H∞ filtering (varying value for γ ) 2,5 310−×  34,4 310−×  

Table 1: MSE of the modulus of some roots of  )(ˆdet zAp . SNR=10 dB, 1024 samples, and 1000 realizations. 
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Figure 2: MSE of the modulus of 1p . Left: protocol #1 ; right: protocol #2.

According to figure 2, EKF and UKF provide similar results. 
Our cross-coupled structure based on Kalman filtering still 
provides good performances in terms of MSE. Although the 
Gaussian assumptions are required unlike H∞ filters, this 
method can be very useful. Therefore, we would rather sug-
gest using the cross-coupled Kalman filtering for the on-line 
estimation of the M-AR parameters. 
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