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ABSTRACT

This paper proposes a distributed average consensus al-
gorithm in order to solve the cooperative spectrum sens-
ing task without a cognitive base station. The proposed
consensus algorithm converges to the optimal decision
statistic in the limit. Since in practice the iteration num-
ber has to be finite, we derive high probability bounds
on the iteration number at which all the CRs are at
most ε away from the optimal decision statistic. More-
over, we compute the performance characteristics of the
proposed in-network cooperative spectrum sensing at a
given iteration.

1. INTRODUCTION

Cognitive radio, a paradigm originated by Mitola [1],
has emerged as a promising technology for maximizing
the utilization of limited bandwidth while accommodat-
ing the increasing amount of services and applications
in wireless networks. A cognitive radio (CR) transceiver
is able to adapt to the dynamic radio environment and
the network parameters to maximize the utilization of
limited resources while providing flexibility in wireless
access [2]. By detecting particular spectrum holes and
exploiting them rapidly, CRs can significantly improve
spectrum utilization. To guarantee high spectrum uti-
lization efficiency, while avoiding interference to licensed
users, CR must rapidly adapt to spectrum conditions.

Hence, important capabilities to be provided by a
CR include spectrum sensing, dynamic frequency selec-
tion and transmit power control [3]. Co-existence of
multiple cognitive networks is highly probable by virtue
of the cognitive radio paradigm. However, the coex-
istence of multiple CRs generates mutual interference,
leading to the hidden terminal problem. This problem
typically occurs when a cognitive radio is shadowed, in
severe fading or with high path loss, while a primary
user (PU) is in vicinity [2, 3]. In order to address the
hidden terminal problem, CRs can cooperate to sense
and share the spectrum without introducing harmful in-
terference to the PU. Thus, one of the most important
and critical components of CR is spectrum sensing and
accordingly, detection of PUs. However, the communi-
cation model adopted in the cooperative spectrum sens-
ing (CSS) literature assumes noise-free communications
between CRs and the cognitive base station (CBS) [2–5],
which is clearly not the case in realistic CSS scenarios.
Only very recently, this model has been extended to ad-
mit imperfect channels [6, 7].

In this paper, we propose a network in which CRs
can detect the spectrum cooperatively without the need
of a CBS. Assuming non-cooperative primary signaling,

we adopt an energy-based detection scheme at the CRs.
Moreover, we utilize distributed averaging algorithms to
fuse the soft local CR energy decisions over the network.
We derive high probability bounds on the iteration num-
ber at which all the CRs are ε close to the optimal deci-
sion statistic. Also presented, for a given iteration step,
are the probability of detection, miss detection and false
alarm of the proposed in-network cooperative spectrum
sensing.

2. PROBLEM FORMULATION

This section summarizes the energy-based centralized
cooperative spectrum sensing and presents the dis-
tributed average consensus algorithms that recently re-
ceived a lot of attention. Finally, this section concludes
with a brief discussion on the motivations of this paper.

2.1 Cooperative Spectrum Sensing

Formally, the extended CSS model considered in this
paper is as follows. We assume that each CR performs
local spectrum sensing independently. The CR local
spectrum sensing is to decide between the following two
hypotheses [2, 3, 5]:

H0 : xi(k) = wi(k) (1)
H1 : xi(k) = s(k) + wi(k) (2)

for i = 1, 2, . . . , N , k = 1, 2, . . . ,K, (K being the PU
complex signal length) where xi(k), s(k), and wi(k) de-
note the complex observed signal at the i-th CR, the
complex signal transmitted from the PU, and the addi-
tive complex Gaussian white noise (wi(k) ∼ CG(0, σ2)).
Note that this model is especially valid when the CRs
are close to each other, and their relative distances are
smaller than their distances to the PU, so that they ob-
serve almost identical source signal. Moreover, the local
spectrum sensing SNR is defined as [6]

γ =
1
σ2

K∑
k=1

|s(k)|2 ,
ES

σ2
. (3)

We assume that the primary signaling is unknown and
we adopt energy detection as the building block for the
cooperative spectrum sensing scheme. Thus, each cog-
nitive obtain their local decision statistic, denoted as qi,
as [2, 6],

qi =
K∑

k=1

|xi(k)|2. (4)
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CRs transmit their local soft decisions to a cognitive
base station (CBS) through control channels allowing
the transmitted values to be seen error-free. The CBS
then averages the local soft decisions to obtain the
network-wide decision statistic and the decision on the
spectrum occupancy is made as [2, 5, 6]

q ,
1
N

N∑
i=1

qi > (≤)τ ⇒ Spectrum is (un)occupied

(5)
where τ denotes the decision threshold providing trade-
off between the probability of detection and false alarm
performance of the CBS. The final decision made at the
CBS is then transmitted back to the CRs through high
SNR cognitive pilot channels.

2.2 Distributed Average Consensus

Consider a network where each CR measures a physical
phenomenon that is represented by a real scalar value
qi(0) ≡ qi where i denotes the CR index. Distributed av-
erage consensus (DAC) is a decentralized method allow-
ing all CRs to compute the average of the initial observa-
tions, i.e., q(0) , 1/N

∑N
i=1 qi(0), in an iterative fashion

via only near neighbors’ communications [8–12]. Differ-
ent types of consensus protocols and their performance
characteristics have been studied extensively in the lit-
erature. We consider in our analysis the synchronous
linear consensus algorithms where every CR, simultane-
ously, updates its own state value by a weighted sum of
its neighbors’ values and its own value [8, 9]:

qi(t+ 1) = Wiiqi(t) +
∑
j∈Ni

Wijqj(t) (6)

where W is the weight matrix with non-negative en-
tries and Ni is the neighbor set of CR i, i.e., node
j ∈ Ni if j is within the transmission radius of node
i. It assumed that the transmission is below the capac-
ity within the neighborhood of each node allowing CRs
to receive error-free state values.

In this case, the network-wide update is given by
q(t + 1) = Wq(t), where q(t) = [q1(t) . . . qN (t)]T . The
state values converge to a consensus, namely the ini-
tial node measurements’ average, regardless of the initial
state values if [8]:

1TW = 1T , W1 = 1, ρ(W − 11T /N) < 1 (7)

where 1 is the all ones vector and ρ(·) denotes the spec-
tral radius of its argument. It is also shown that if the
graph is connected, then any doubly stochastic matrix
W satisfy the spectral radius condition. Of note is that
it is easy to see that average consensus protocols can be
modified to compute any function f(q1, q2, . . . , qN ) with
a linear synopsis.

2.3 Spectrum Sensing without a CBS

CSS techniques vastly considered in the current litera-
ture rely on the presence of a CBS capable of performing
the tasks required to fuse the received local CR deci-
sions. The CBS based CSS has however direct impli-

cations to consider in practical applications; to name a
few:
• High transmission power required at each CR to

transmit its local information to the CBS
• Lack of robustness in case of CBS failures
• Limited bandwidth available for coordination
• CBS needs to broadcast the final decision to the co-

operating CRs.
It is intuitive to consider a CSS scheme with a CBS

from both theoretical and practical point of view as
a first step to understand the issues underlying CSS,
and subsequently CRNs. However, innovation of algo-
rithms capable of sensing the spectrum occupancy with-
out the need of a CBS is of significant interest for ap-
plications envisioned for future CRNs. Providing in-
network algorithms capable of sensing the spectrum co-
operatively will open new directions and possibilities to
CRNs. Thus, it is important to create models and al-
gorithms capable of cooperatively sensing the spectrum
without the need of a CBS as distributed CSS will take
the CR paradigm one step further.

In this work, we adopt the consensus algorithms to
achieve the in-network spectrum sensing task. Unfor-
tunately, consensus algorithms achieve the average of
the initial measurements in the limit; a constraint that
clearly cannot be satisfied in current cognitive networks.
Thus, in this work we are interested in the trade-off be-
tween the iteration number and the system performance.

3. IN-NETWORK SPECTRUM SENSING

DAC guarantees us that every CR will, almost surely,
have the desired decision statistic in the limit, i.e.,

Pr
{

lim
t→∞

qi(t) = q(0)
}

= 1 (8)

for i = 1, 2, . . . , N . Since DAC will not run infinite
many iterations, CRs need to stop at a finite time step
t < ∞. Clearly, when the iterations are stopped, we
would like all the CRs to have the same decision regard-
ing the spectrum occupancy. Thus, we would like to
have maxi |qi(t)− q(0)| to be as small as possible in or-
der to guarantee the mentioned constraint. This can be
achieved by keeping the number of iterations large. On
the other hand, we want the communication cost and
the number of transmissions between the nodes to be
low. This is achieved by keeping the number of itera-
tions small. Thus, there is a clear trade-off between the
system performance and communication cost.

3.1 Cognitive Network Convergence

Note that the local decision statistics qi(0) are, for large
enough K (asymptotically but for K ≥ 10 in prac-
tice [6]), modeled as Gaussian [6, 13]:

Hk : qi(0) ∼ G{µk, δk} (9)

for i = 1, 2, . . . , N and k ∈ {0, 1}, where

µ0 = Kσ2, δ0 = 2Kσ4 (10)

and
µ1 = (K + γ)σ2, δ1 = 2(K + 2γ)σ4 (11)
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where µk and δk denotes the mean and the variance of
the Gaussian distribution, respectively.

Recall that we need to ensure that maxi |qi(t)−q(0)|
is small enough so that all the CR’s make the same (bet-
ter) decision with regard to the spectrum occupancy. In
other words, we are interested in iteration numbers at
which all the CRs decision statistic qi(t) is ε (in the ab-
solute value) close to the optimal cooperative decision
statistic q(0). The following Proposition gives a bound
on such iteration number.

Proposition 1 For any ε > 0 and t ≥ T (ε), we have
that

Pr{ max
1≤i≤N

|qi(t)− q(0)| ≥ ε|Hk} ≤ ε (12)

where k ∈ {0, 1} and

T (ε) =
3/2 log ε−1 + 1/2 log(E{||q(0)||22|Hk})

1− ρ(W − J)
. (13)

and J , 1/N11T .

Proof 1 We start our proof by noting that
max1≤i≤N |qi(t) − q(0)| = ||q(t) − q(0)1||∞. Thus,
we have

Pr{||q(t)− q(0)1||∞ ≥ ε|Hk}
= Pr{||q(t)− q(0)1||2∞ ≥ ε2|Hk} (14)

≤ E{||q(t)− q(0)1||2∞|Hk}
ε2

(15)

where the second line follows from the Markov inequal-
ity. Now note that ||q(t) − q(0)1||2∞ ≤ ||q(t) − q(0)1||22.
Moreover, we have almost surely that [8]

||q(t)− q(0)1||22 ≤ ρ2t(W − J)||q(0)||22 (16)

where in the above J = 1/N11T . Furthermore,
this implies that E{||q(t) − q(0)1||2∞|Hk} ≤ ρ(W −
J)2tE{||q(0)||22|Hk} yielding

Pr{||q(t)− q(0)1||∞ ≥ ε|Hk}

≤ ρ2t(W − J)E{||q(0)||22|Hk}
ε2

. (17)

Since ρ(W − J)2tE{||q(0)||22|Hk} = ε3, we have

t =
3/2 log ε−1 + 1/2 log(E{||q(0)||22|Hk})

log(ρ(W − J))−1
. (18)

Finally nothing that log(1 + u) ≤ u (a bound which is
tight for small u), we obtain the claimed result.

Proposition 1 gives the iteration number T (ε) guar-
anteeing us to have maxi |qi(t) − q(0)| arbitrarily small
with very high probability. Namely, with probability at
least 1 − ε. However, as expected T (ε) depends on the
initial conditions which also depend on the spectrum
occupancy. Since we do not have access to this informa-
tion, in the following we provide an upper-bound.

Lemma 1 The following statement holds:

E{||q(0)||22|H0} < E{||q(0)||22|H1} (19)

where

E{||q(0)||22|H0} = N [2Kσ4 + (Kσ2)2] (20)

and

E{||q(0)||22|H1} = Nσ4[2K + 4γ + (K + γ)2]. (21)

Proof 2 Recall that for a random variable u, we have

E{u2} = Var{u}+ (E{u})2. (22)

We also have that Var{qi(0)|Hk} = Var{qj(0)|Hk} and
E{qi(0)|Hk} = E{qj(0)|Hk} for all i, j and k ∈ {0, 1}
indicating that E{||q(0)||22|Hk} = N [E{q2i (0)|Hk}] for
k ∈ {0, 1}. Moreover, observe the following set of
(in)equalities:

E{||q(0)||22|H0} = N [δ0 + (µ0)2] (23)

= N [2Kσ4 + (Kσ2)2] (24)

< N [2Kσ4 + 4γσ4 + [(K + γ)σ2]2]
(25)

= N [δ1 + (µ1)2] (26)

= E{||q(0)||22|H1} (27)

where the inequality holds since γS > 0, for {ES , σ} > 0
and the result of the Lemma follows.

Now, given the result of the Lemma 1 and noting
that log(·) is a monotonic function implying that u1 ≤
u2 ⇒ log(u1) ≤ log(u2), we have

T (ε) ≤ 3/2 log ε−1 + 1/2 log(Nσ4[2K + 4γ + (K + γ)2])
1− ρ(W − J)

(28)
which depends on the desired accuracy ε, the signal
length K, the number of CRs N , the noise variance
σ2, the signal energy ES and the network connectivity
ρ(W − J). Thus, for given these set of parameters, we
can guarantee that the probability that all the CRs de-
cision statistics are at most ε away (in absolute value)
from the optimal decision statistic, is at least 1− ε.

Of note is that, the primary signaling energy has
little (logarithmic) effect where the network connectivity
has a great impact on how fast the CRs converge to the
optimal cooperative decision. This is due to the fact
that
• Network connectivity directly influences (inversely

proportional to (1 − ρ(W − J))) the speed of infor-
mation fusion over the network where increasing net-
work connectivity allows CRs to reach more CRs at
each iteration.

• Increasing primary signaling energy changes the ini-
tial conditions of the system and increases the sec-
ond moment of the soft decisions that are fed to the
in-network iterative algorithm. Initial conditions has
little impact (logarithmic) on the convergence speed.

3.2 Performance Characterization

Next we analyze the decision of the CRs at time step t.
Note that the CRs makes decision by simply comparing
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their current state value to a decision threshold τ , i.e.,

qi(t) > (≤)τ ⇒ Spectrum is (un)occupied. (29)

For a given time step t, the probability of detection, the
probability of miss detection and the probability of false
alarm of the i-th CR are, respectively, given by,
• PD(i; t) , Pr{qi(t) > τ |H1}
• PM (i; t) , Pr{qi(t) ≤ τ |H1}
• PF (i; t) , Pr{qi(t) > τ |H0}

for all i = 1, 2, . . . , N and t ≥ 0.
Recall that the DAC iterations yield q(t) = W tq(0)

indicating that

qi(t) = [W t]iq(0)⇒ qi(t) =
N∑

j=1

[W t]ijqj(0) (30)

where [W t]i denotes the i-th row of the matrix W t and
[W t]ij denotes the elements of the matrix W t. Note that
qj(0)’s are independent Gaussian random variables for a
given hypothesis as defined in (9). Moreover, W t1 = 1
for all t ≥ 0 since W1 = 1. Thus, qi(t), which is a
(normalized) weighted average of Gaussian distributed
random variables, is also Gaussian distributed, i.e.,

Hk : qi(t) ∼ G{µk, δk||[W t]i||22} (31)

where || · ||2, as usual, denotes the `2 norm. The prob-
ability of detection at the i-th node and time step t is
given by

PD(i; t) = F
(
τ ;µ1, δ1||[W t]i||22

)
(32)

where F = 1 − F and F (u;x, y) denotes the cumula-
tive distribution function (CDF) of a Gaussian random
variable with mean x and variance y. Since PM (i; t) =
1− PD(i; t), we have

PM (i; t) = F
(
τ ;µ1, δ1||[W t]i||22

)
. (33)

Finally, using similar steps, we have shown that

PF (i; t) = F
(
τ ;µ0, δ0||[W t]i||22

)
. (34)

Thus, for a given T (ε), we can exactly calculate the per-
node performance of the system by characterizing the
probabilities of interest.

The following discusses the limiting behavior of the
above computed probabilities.

Corollary 1 As the iteration number tends to infin-
ity, the performance converges to limt→∞ PD(i; t) =
F (τ ;µ1, δ1/N), limt→∞ PM (i; t) = F (τ ;µ1, δ1/N) and
limt→∞ PF (i; t) = F (τ ;µ0, δ0/N) for all i = 1, 2, . . . , N
and where N is the number of CRs in the network.

Proof 3 The result follows by using the facts that F (·)
and `2 norm are continuous functions, i.e.,

lim
t→∞

PD(i; t) = F
(
τ ;µ1, δ1 lim

t→∞
||[W t]i||22

)
(35)

and limt→∞[W t]i = 1/N1T for all i = 1, 2, . . . , N since
limt→∞W t = 1/N11T [8]. Similar steps are applied to

PM (i; t) and PF (i; t) in order to obtain the results shown
in the above corollary.

As expected, the above results, i.e., the limiting be-
havior of the in-network cooperative spectrum sensing,
corresponds to the performance of a centralized system
with a CBS. Before we further proceed, an interesting
Lemma is in order. Of note is that consensus system
improves the quality of the state value estimates by de-
creasing their variances through iterations and effects
the probabilities through the variance parameter in the
CDFs.

Lemma 2 PD(i; t + 1) > PD(i; t) and PF (i; t + 1) <
PF (i; t) ∀i and t ≥ 0 if τ ∈ (µ0, µ1).

Proof 4 Note that for fixed u and y such that u > y,
we have F (u; y, z1) > F (u; y, z2) for z1 < z2. Moreover,
PD(i; t) is in the form of 1−F , and ||[W t]i||22 is strictly
decreasing for all i through iterations. Therefore, we
have,

PD(i; t+ 1) > (<){=}PD(i; t) if τ < (>){=}µ1 (36)

Similarly,

PF (i; t+ 1) > (<){=}PF (i; t) if τ < (>){=}µ0 (37)

Noting that we want PD(i; t) to increase whereas PF (i; t)
to decrease through iterations concludes the proof.

According to the Lemma 2, in order to guarantee
performance improvements through iterations both in
terms of detection (which occurs when τ < µ1) and
false alarm (which occurs when τ > µ0), the decision
threshold should satisfy τ ∈ (µ0, µ1).

Consider a random graph on [0, 1]× [0, 1] where the
CRs are uniformly placed in the unit square. The con-
nectivity radius is 0.4. Moreover, we form the weight
matrix of the in-network consensus system as W =
I−νL where I, L and ν = 2/(λ1(L) +λN−1(L)) denote
the identity matrix, graph laplacian and the constant
edge weight, respectively [8]. Of note is that the par-
ticular values of the entries of W is not directly impor-
tant as the proposed system does not depend on par-
ticular W (although the proposed system depends on
the spectral gap of W which varies depending on the
algorithm utilized to design the weights). Figure 1 de-
picts the probability of detection and false alarm of the
CRs through iterations. Note that they all converge to
the same probabilities directed by the optimal decision
statistics. For reference, we have also denote the uni-
versal upper bound on T (ε) with a vertical dashed line.
The derived bound on the iteration number clearly en-
sures the convergence of the CRs to the optimal decision
statistic.

3.3 Universal Bounds on the Performance

The following Lemma, that will be useful in the sub-
sequent of this section, gives a universal bound on the
rows of the matrix W t.

Lemma 3 The following statement holds:

||[W t]i||22 ≤ N−1 + ρ2t(W − J) (38)
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Figure 1: The behavior of the PD(i; t) (solid) and
PF (i; t) (dashed) through iterations where the network
connectivity ρ(W − J) = 0.91, τ = 25, N = 20,
ε = 10−2, K = ES = 20 and σ2 = 1. For given set
of parameters, T (ε) ≤ 134 , T .

for all i = 1, 2, . . . , N .

Proof 5 Observe the following set of (in)equalities:

||[W t]i||22 = ||[W t]i −N−11T +N−11T ||22 (39)

=(a) ||[W t]i −N−11T ||22 +N−1 (40)

≤(b) ||W t − J ||22 +N−1 (41)

≤(c) ρ2t(W − J) +N−1 (42)

where (a) follows since
(
[W t]i −N−11T

)
N−11 = 0 as

W1 = 1 ⇒ W t1 = 1 and since ||1/N1T ||22 = 1/N ,
(b) follows from the fact that the norm of any row of
W − J is smaller than the norm of the matrix W − J
and (c) is due to the fact that W t − J = (W − J)t and
||W − J || = ρ(W − J), and norm inequality.

In the limit, the upper bound becomes an equality
since limt→∞ ||[W t]i||22 = 1/N for all i = 1, 2, . . . , N .
Moreover, given the above Lemma and considering the
region of interest for the decision threshold, i.e., τ ∈
(µ0, µ1), we have the following universal bounds:

PD(i; t) ≥ F
(
τ ;µ1, δ1

(
N−1 + ρ2t(W − J)

))
(43)

and

PM (i; t) ≤ F
(
τ ;µ1, δ1

(
N−1 + ρ2t(W − J)

))
. (44)

Finally, using similar steps, we have that

PF (i; t) ≤ F
(
τ ;µ0, δ0

(
N−1 + ρ2t(W − J)

))
. (45)

The above bounds relates the system performance to
the spectral radius of the weight matrix and provides
bounds valid for all CRs in the network.

4. CONCLUDING REMARKS

We proposed a distributed average consensus system
that is capable of solving the cooperative spectrum sens-
ing task without the presence of a base station. We pro-
vided bounds on the iteration number allowing all the
CRs to be at most ε away from the optimal decision
statistic. Moreover, we have characterized the perfor-
mance of the algorithm through iterations and shown
the reliability of the bound.
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