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ABSTRACT

This paper provides a SURE optimization for the param-
eters of a sub-class of smooth sigmoid based shrinkage
functions. The optimization is performed on an unbiased
estimation risk obtained by using sigmoid shrinkage func-
tions. The SURE sigmoid shrinkage performance measure-
ments are compared to those of the SURELET (SURE lin-
ear expansion of thresholds) parameterization. It is shown
that the SURE sigmoid shrinkage performs better than the
SURELET parameterization on most standard images. The
relevance of SigShrink is reinforced by the flexible spatial
adaptation it provides thanks to its parameters: a threshold
for discriminating large and small data and an attenuation
degree to control the shrinkage imposed to data with small
amplitudes.

1. INTRODUCTION

The WaveShrink (Wavelet Shrinkage) estimation of a signal
involves projecting the observed noisy signal on a wavelet
basis, estimating the signal coefficients with a threshold-
ing or shrinkage function and reconstructing an estimate
of the signal by means of the inverse wavelet transform of
the shrunken wavelet coefficients. The Smooth Sigmoid-
Based Shrinkage (SSBS) functions introduced in [1] con-
stitute a wide class of WaveShrink functions. The SSBS
functions derive from the sigmoid function and perform
an adjustable wavelet shrinkage thanks to parameters that
control the attenuation degree imposed to the wavelet co-
efficients.

The present work addresses (Section 3) the optimiza-
tion of a sub-class of the SSBS functions, the non-zero-
forcing SSBS functions, hereafter called the SigShrink
(Sigmoid Shrinkage) functions. The optimization of the
SigShrink parameters is performed in the sense of the new
SURE (Stein Unbiased Risk of Estimation, [2]) proposed in
[3]. The SURE SigShrink estimation performance is then
compared to that of the SURELET (SURE linear expan-
sion of thresholds) parameterization (proposed in [3]). The
SURELET parameterization consists in a sum of Deriva-
tives Of Gaussian (DOGs) distribution. It is shown that the
SURE SigShrink is more relevant than the sum of DOGs
both in terms of estimation risk and spatial adaptation.

Before addressing the main topics of the paper, the fol-
lowing Section 2 briefly describes the non-parametric es-
timation by wavelet shrinkage and the class of SigShrink
functions.
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2. SIGMOID SHRINKAGE IN THE WAVELET DOMAIN

2.1 Shrinkage in the wavelet domain

Let {c;}1<ign be a sequence of wavelet coefficients,

c; =d;i+e€;, i=12,...,N, (D)

where d = {d;}1 ¢;<n represents the wavelet coefficients of
the signal of interest and the random variables {€;}; <i<n
are independent and identically distributed (iid), Gaussian
with null mean and variance ¢, in short, €; ~ A4 (0, 02) for
everyi=1,2,...,N.

The non-parametric estimation by shrinkage in the
wavelet domain (WaveShrink estimation in the sense
of [4]) involves estimating the wavelet coefficients d =
{ditigigny of the signal under consideration by d =
{6(cihigign, where 6(-) is a thresholding or shrinkage
function. This processing is proved to be a relevant strat-
egy when the wavelet transform achieves a sparse repre-
sentation of the signal in the sense that, among the co-
efficients d;, i = 1,2,..., N, only a few of them have large
amplitudes and, as such, characterize the signal. In this
respect, thresholding estimators such as “keep or kill” and
“shrink or kill” rules are nearly optimal, in the Mean Square
Error (MSE) sense, in comparison with oracles (see [4] for
further details).

However, wavelet representations of many signals en-
countered in practical applications such as speech and im-
age processing fail to sparse enough (see examples given
in [5]). In order to obtain a shrinkage better adapted for
estimating less sparse signals, [1] proposes to construct
shrinkage functions satisfying the following properties.

(P1) Smoothness: of the shrinkage function so as to induce
small variability among data with close values.

(P2) Penalized shrinkage: a strong (resp. a weak) attenua-
tion is imposed for small (resp. large) data.

(P3) Vanishing attenuation at infinity: the attenuation de-
creases to zero when the amplitude of the coefficient
tends to infinity.

For a signal whose wavelet representation fails to be sparse
enough, it is more convenient to impose the penalized
shrinkage property (P2) instead of zero-forcing since small
coefficients may contain significant information about the
signal. Property (P1) guarantees the regularity of the
shrinkage process and the role of property (P3) is to avoid
over-smoothing of the estimate (noise mainly affect small
wavelet coefficients).
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2.2 Smooth sigmoid-based shrinkage
The family of real-valued functions defined by

X

6T,ﬂ,(x) = 1 + e_T(DC‘_/U ’

2
for (7,4) € R} xR, are suitable functions for the estimation
of less sparse signals since they satisfy (P1), (P2) and (P3)
properties. Each 67 is the product of the identity func-
tion with a sigmoid-like function. A function 6, ) will here-
after be called a SigShrink (Sigmoid Shrinkage) function.
The class of SigShrink functions pertains to a wide class of
smooth sigmoid-based shrinkage (SSBS) functions given in
(1].

The parameter A in Eq. (2) is the SigShrink “thresh-
old”. This follows from that 6;, tends to a hard-
thresholding function with threshold height A when 7
tends to co. For fixed A, the SigShrink parameter 7 con-
trols the attenuation degree we want to impose to the
wavelet coefficients in the interval ]0,A[. Indeed, the
points O = (0,0) and A = (1,A/2) are fixed points for
the class of SigShrink functions, and the parameter 7 re-
lates to the curvature of the SigShrink arc OA in the fol-
lowing sense: if 0 is the angle between the fixed vector

OA and the vector carried by the tangent to the curve
of 6;, at point A, then cosf = OA.CA/IIOAII.IICAII =

(10+7L) /\/5(20 +411+12212), and thus, we derive that
7 = 1(6, 1) can be written as a function of § and A as fol-
lows: 7(6,4) = 1047 ([sin?6 +2sinOcosO] /[5cos* 0 —1]).
The larger 0, the stronger the attenuation of the coeffi-
cients with amplitudes less than or equal to A (see [1]).

In contrast to thresholding functions, SigShrink allows
for artifact-free denoising: the smoothness of the SigShrink
functions allows for reducing noise without impacting sig-
nificantly the signal. This is due to the fact that the shrink-
age is performed with less variability among coefficients
with close values. In contrast to the SURELET parame-
terization ([3]), SigShrink allows for adjustable denoising:
the above interpretation of the SigShrink parameters al-
lows choosing the denoising level. From hard denoising to
smooth denoising, there exists a wide class of regularities
that can be attained for the denoised signal by adjusting
the attenuation degree and threshold. The following Sec-
tion 2.3 details these adjustable and artifact-free SigShrink
properties (the risk comparison is reported in Section 3).

2.3 Smooth adaptation (adjustable and artifact-free de-
noising)

The shrinkage performed by the SigShrink method is ad-
justable via the attenuation degree 0 and the threshold A.

Figure 2 gives denoising examples for different values
of 0 and A. The denoising concerns the ‘Lena’ image cor-
rupted by independent additive, white and Gaussian noise
(AWGN) with standard deviation o = 35 (figure 1). The
wavelet transform used is the stationary wavelet transform
(6] with the Haar wavelet. The thresholds used are the stan-
dard minimax and universal thresholds [4]. In these fig-
ures, SigShrinkg » stands for the SigShrink function which
parameters are 8 and A. The PSNR (Peak Signal to Noise
Ratio, in deciBel unit, dB),

2552
) , 3)

PSNR = 1010g10 (m

is also given to assess the quality of the denoised images.

Noisy ‘Lena’ image
PSNR=17.2494 dB

50 100 150 200 250 GO0 350 400 450 500

Figure 1: ‘Lena’ image corrupted by AWGN with standard
deviation o = 35.

For a fixed attenuation degree (angle 6), we observe
that the smoother denoising is obtained with the larger
threshold (universal threshold). A small value for the
threshold (minimax threshold) leads to better preservation
of the textural information contained in the image (com-
pare in figure 2, image (a) versus image (d); image (b) ver-
sus image (e); image (c) versus image (f)).

Now, for a fixed threshold A, the SigShrink shape is con-
trollable via angle 6. The attenuation degree 6 reflects the
regularity of the shrinkage and the attenuation imposed
to data with small amplitudes (mainly noise coefficients).
The larger 6, the better the noise reduction. However,
SigShrink functions are more regular for small values of 0,
and thus, small values for 6 lead to less artifacts (in figure
2, compare images (d), (e) and (f)).

It follows that SigShrink denoising is flexible thanks to
parameters 6 and A, preserves the image features and leads
to artifact-free denoising. Note that the SigShrink param-
eter selection discussed in this section is heuristic in the
sense that the threshold is chosen on the basis of the well-
known properties of the standard minimax and univer-
sal thresholds for discriminating signal and noise wavelet
coefficients, whereas the attenuation degree is chosen so
as to guarantee a regular (artifact-free) denoising. It is
now interesting to compare the risk performance of the
SigShrink denoising to that of the most performant shrink-
age function, the SURELET approach (SURE optimization
for a shrinkage function parameterized as a Linear Expan-
sion of Thresholds, LET) [3]. The following addresses the
SURE-based optimization of the SigShrink parameters and
provides this comparison.

3. SURE-BASED OPTIMIZATION OF SIGSHRINK
PARAMETERS

3.1 SURE-based optimization of SigShrink parameters

Consider the WaveShrink estimation described in section
2.1. The risk function used to measure the accuracy of a
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WaveShrink estimator is the standard MSE. This risk is
~ 1 o 1 X 2
rold,d) = eI -l = G YV E[di-ote)] @

for a shrinkage function 6. The SURE approach [2] involves
estimating unbiasedly the risk rs5(d, d). The SURE opti-
mization then consists in finding the set of parameters that
minimizes this unbiased estimate.

From [3, Theorem 1], we have that

~ 1 N
ro(d,d) =~ I, + Y E(6%(ci) —2¢;6(c) +2026’(ci))),
i=1
(5)

where 0 can be any differentiable shrinkage function that
does not explode at infinity (see [3] for details). A SigShrink
function is such a shrinkage function. The derivate of the
SigShrink function 0, is

1+ (1+7|x])e 7 0¥-1
1+ e—T(IxI—/l))Z

8 (0 = ©)

Proposition 1 The quantity 9 +||d| 62 IN, wherel||-||¢, de-
notes ¢»-norm and

N 2g2— C? +2(0% + 0%1|ci| - C?)e’mci";‘)

I, A) = —
o Nizzl (1+ e-Tlel-Dy2

)

R ()
is an unbiased estimator of therisk rs_, (d,d), where 6, ) is
a SigShrink function.

As a consequence of proposition 1, we get that mini-
mizing IS, (d, tAi) of Eq. (4) amounts to minimizing the un-
biased (SURE) estimator 9 given by Eq. (7). The next sec-
tion presents experimental tests for illustrating the SURE
SigShrink denoising of some natural images corrupted by
AWGN. For every tested image and every noise standard
deviation considered, the optimal SURE SigShrink param-
eters are those minimizing 9, the values {c;}; ¢;<n repre-
senting the wavelet coefficients of the noisy image.

3.2 Experimental results

The SURE optimization approach for SigShrink is now
given for some standard test images corrupted by AWGN.

The SigShrink estimation is compared with that of the
SURELET “sum of DOGs” (Derivatives Of Gaussian) pa-
rameterization. SURELET is a SURE-based method that
moreover includes an inter-scale predictor with a priori
information about the position of significant wavelet co-
efficients. For the comparison with SigShrink, we only
use the “sum of DOGs” parameterization, that is the
SURELET method without inter-scale predictor and Gaus-
sian smoothing. By so proceeding, we thus compare two
shrinkage functions: SigShrink versus “sum of DOGs”. The
sum of DOGs initially proposed in [3] is given by

K _k=1,2
6611,612 ..... ag (x) = Z akxe 272 R (8)
k=1

where T is some pre-specified parameter. After a discus-
sion on the choice of the number K of derivatives in (8), [3]

concludes, on the basis of experimental tests, that results
are very similar for K > 2 and thus, they consider the fol-
lowing case (where K = 2):

S
6&1,@2 (X) = (al + ae 1202 )xr (9)

where o is the noise standard deviation.
From Eq. (2), it follows that the difference between a
SigShrink function and the sum of DOGs of Eq. (9) are

the weights 1/1 + e 70¥"Y and a; + a, TS imposed to
the wavelet coefficient represented by the variable x. Since
these weights depend on two parameters, we can expect
performance of the same order for both the SigShrink and
the sum of DOGs parameterizations. Note also that the
SigShrink weight is based on the ¢;-norm (absolute value
of x) whereas the sum of DOGs takes into account the ¢;-
norm (quadratic) of x. Since the signal representation is
assumed to be sparse, the SigShrink might probably lead to
slightly better results than the sum of DOGs. These obser-
vations are confirmed by the following experimental tests.

In the sequel, the SURE SigShrink parameters (attenua-
tion degree and threshold) are those obtained by perform-
ing the SURE optimization at every detail (horizontal, ver-
tical, diagonal) sub-image located at the different resolu-
tion levels concerned (4 resolution levels in our tests).

We consider the standard 2-dimensional Discrete
Wavelet Transform (DWT) for the PSNR comparison be-
tween the two methods since the authors of [3] pro-
vides their free MatLab code' based on the DWT for the
SURELET method. The wavelet used is the Symlet wavelet
of order 8 (‘sym8’ in the Matlab Wavelet toolbox) The tests
are carried out with the following values for the noise stan-
dard deviation: o = 5,15,25,35. For every value o, 25
tests have been performed based on different noise real-
izations. Every test involves: performing a DWT for the
tested image corrupted by AWGN, computing the optimal
SURE SigShrink parameters, applying the SigShrink func-
tion with these parameters to denoise the wavelet coeffi-
cients and building an estimate of the corresponding im-
age by applying the inverse DWT to the shrunken coeffi-
cients. For every test, the PSNR is calculated for the origi-
nal image and the denoised image.

Table 1 gives the average values for the 25 PSNRs ob-
tained by the SURE SigShrink and the SURELET “sum of
DOGs” methods.

We use the Matlab routine fmincon to compute the op-
timal SURE SigShrink parameters. This function computes
the minimum of a constrained multivariable function by
using nonlinear programming methods (see Matlab help
for the details).

From table 1, it follows that the two methods yield
PSNRs of the same order, with a slight advantage for the
SigShrink method.

To conclude this section, we now illustrate, in figure 3,
the SigShrink denoising for an ultrasonic image of breast
cancer. The contrasts of the denoised SigShrink images are
slightly enhanced in order to highlight that SigShrink de-
noises the image and preserves feature information with-
out introducing artifacts (because of the regularity of the
SigShrink function).

lavalaible at http: //bigwww.epfl.ch/demo/suredenoising/
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(a) SigShrinky s 2, (b) SigShrinky /4,2, (c) SigShrinky/3 1,
PSNR=27.3019 dB PSNR=27.0110 dB PSNR=26.8441 dB

(d) SigShrinky g4, (e) SigShrinky 4, 2,, (f) SigShrink;3 4,
PSNR=27.2852 dB PSNR=28.1485 dB PSNR=27.9440 dB

Figure 2: SigShrink denoising of ‘Lena’ image corrupted by AWGN with standard deviation o = 35 (see figure 1). The
universal threshold 1, and the minimax threshold A,, are used.

Ultrasonic image SigShrink; e 2, SigShrinky 6 2,

Figure 3: SigShrink denoising for an ultrasonic image of breast cancer. The SWT with four resolution levels and the
biorthogonal spline wavelet with order 3 for decomposition and with order 1 for reconstruction (‘biorl.3’ in Matlab
Wavelet toolbox) are used. The noise standard deviation is estimated by the median absolute deviation normalised by
the constant 0.6745 (see [4]).
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Table 1: Average values of the PSNRs computed over 25 noise realizations, when denoising test images by the SURE
SigShrink and SURELET parameterizations (without additional processing such as interscale predictors). The tested im-
ages are corrupted by AWGN with standard deviation 0. The DWT is computed by using the ‘sym8’ wavelet.

Images ‘House’ ‘Peppers’ ‘Barbara’ ‘Lena’ ‘Flin’  ‘Finger’ ‘Boat’  ‘Barco’
o =5 (= Input PSNR = 34.1514).

SigShrink [ 37.4880 36.6827 36.3980 37.5518 35.3128 35.8805 36.3608 36.9928
SURELET || 37.3752 36.6708  36.3767 37.5023 35.3102 35.9472 36.3489 35.9698
o =15 (= Input PSNR = 24.6090).

SigShrink [ 31.6472 30.0930 29.3972  32.0571 28.3815 29.4191 30.2895 30.4545
SURELET || 31.2834 29.9621 29.2817 31.9059 28.3502 29.4365 30.2706 27.4525
o =25 (= Input PSNR = 20.1720).

SigShrink [ 29.2948 273111 26.5146 29.7435 25.6407 26.6262 27.8216 27.9599
SURELET || 28.8085 26.9941 26.4404 29.5937 25.5953 26.7659 27.8227 23.6221
0 =35 (= Input PSNR = 17.2494).

SigShrink [[ 27.7840 25.5818 24.8910 28.2782 23.9326 24.9625 26.3764 26.5068
SURELET || 27.2768 25.1307 24.8383 28.1462 23.8954 25.0756 26.3880 21.3570

4, CONCLUSION REFERENCES

The paper proposes a SURE approach for estimating the
SigShrink (Sigmoid Shrinkage) parameters. It also pro-
vides a comparison of the two novel WaveShrink functions,
namely the SigShrink function of [1] and the sum of DOGs
(also called LET, Linear Expansion of Thresholds) of [3].
The experimental tests show that the SURE SigShrink per-
forms slightly better than the SURE sum of DOGs, with no
additional computational load.

In practical applications, the advantage of SigShrink is
the spatial adaptation that results from its parameter inter-
pretation: as highlighted in Section 2 above, the function
has been constructed in order to perform without neces-
sarily using the SURE optimization. The SigShrink param-
eters are meaningful: a threshold for discriminating large
and small coefficients and an attenuation degree to control
the shrinkage imposed to small data. This results in a very
flexible shrinkage in the sense that it allows for a fine tun-
ing of the denoising by varying two parameters (see Sec-
tion 2.3). As a consequence, if the SURE results are not sat-
isfactory, or if we wish to reduce noise without impacting
significantly the signal, then we can choose more adapted
(smaller) attenuation degree and threshold than those ob-
tained from the SURE approach.

To conclude this work, we can reasonably expect to
improve SigShrink denoising performance by introducing
inter-scale or/and intra-scale predictor, which could pro-
vide information about the position of significant wavelet
coefficients. Such predictors are used by the more popu-

lar WaveShrink toolboxes, namely the SURELET [3] and the
BLS-GSM [7] (free MatLab code <).
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